Information and Software Technology 64 (2015) 102-112

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof m——

On the usefulness of ownership metrics in open-source software
projects

@ CrossMark

Matthieu Foucault **, Cédric Teyton?, David Lo ", Xavier Blanc?, Jean-Rémy Falleri*

2 University of Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
b School of Information Systems, Singapore Management University, Singapore

ARTICLE INFO ABSTRACT

Article history:

Received 1 September 2014

Received in revised form 15 January 2015
Accepted 30 January 2015

Available online 9 February 2015

Context: Code ownership metrics were recently defined in order to distinguish major and minor
contributors of a software module, and to assess whether the ownership of such a module is strong or
shared between developers.

Objective: The relationship between these metrics and software quality was initially validated on
proprietary software projects. Our objective in this paper is to evaluate such relationship in open-source
software projects, and to compare these metrics to other code and process metrics.

Method: On a newly crafted dataset of seven open-source software projects, we perform, using inferential
statistics, an analysis of code ownership metrics and their relationship with software quality.

Results: We confirm the existence of a relationship between code ownership and software quality, but
the relative importance of ownership metrics in multiple linear regression models is low compared to
metrics such as the number of lines of code, the number of modifications performed over the last release,
or the number of developers of a module.

Conclusion: Although we do find a relationship between code ownership and software quality, the added
value of ownership metrics compared to other metrics is still to be proven.

Keywords:

Software engineering
Empirical study
Process metrics

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Process metrics, which measure developer’s activity, were
shown to have a strong relationship with software quality and, to
be more useful than code metrics when it comes to defect predic-
tion [1]. Among process metrics, the ones introduced by Bird et al.
that measure code ownership (CO) are of a particular interest [2].
These metrics, called CO metrics in this paper, quantify the level
to which developers own modules of a software project, by mea-
suring the ratio of contributions they make to such modules. CO
metrics split developers of a module into two distinct groups:
major and minor developers, who perform more and less than 5%
of the contributions, respectively.

The usefulness of these metrics was validated on Microsoft soft-
ware projects, showing that they have a strong relationship with
the number of bugs of a module, and that adding code ownership
metrics to a regression model (with the number of bugs as the
dependent variable) improves its quality [2]. Bird et al. also
observed that the more minor developers contribute to a software

* Corresponding author.
E-mail addresses: mfoucaul@labri.fr (M. Foucault), cteyton@labri.fr (C. Teyton),
davidlo@smu.edu.sg (D. Lo), xblanc@labri.fr (X. Blanc), falleri@labri.fr (J.-R. Falleri).

http://dx.doi.org/10.1016/j.infsof.2015.01.013
0950-5849/© 2015 Elsevier B.V. All rights reserved.

module, the more bugs it contains. A possible explanation comes
from the fact that minor developers have less knowledge of the
modules they contribute to, and therefore may introduce more
bugs. Moreover, Bird et al. also observed that for a given software
module two other metrics are related to its number of bugs: the
number of major developers, and the ratio of contributions pre-
formed by the main developer of a module to the total amount
of contributions on such module. Contrary to minor developers,
major developers have more insight on the modules they con-
tribute to, and therefore may introduce less bugs.

Such a finding has two main consequences. First, development
team should be reorganized with the objective to increase code
ownership by limiting the number of minor developers, or if it is
not possible, to have major developers reviewing the contributions
of the minor ones. Second, CO metrics should be used when pre-
dicting the number of bugs of software modules, as adding them
to a model significantly improves its quality.

As these results were observed solely on two Microsoft projects,
we therefore replicated the Bird et al. study but with open-source
software systems [3]. However, our replication, made on seven
open-source Java software projects, did not yield the same
observations. In particular, we did not observe any significant

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.013&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.013
mailto:mfoucaul@labri.fr
mailto:cteyton@labri.fr
mailto:davidlo@smu.edu.sg
mailto:xblanc@labri.fr
mailto:falleri@labri.fr
http://dx.doi.org/10.1016/j.infsof.2015.01.013
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

M. Foucault et al./Information and Software Technology 64 (2015) 102-112 103

correlations between the CO metrics and the number of post-
release bugs. So far, our replication was not complete as we only
observed Java open-source software projects.

We therefore propose in this paper a deeper study that goes fur-
ther and that aims to generally question the usefulness of the CO
metrics for open-source software systems.

First of all, to overcome the limitation of our previous study, we
propose in this study a new dataset of open-source software
projects developed in several programming languages. Another
essential point strengthening the validity of our study is the
technique used to collect bug-related information: based on
previous research, we concluded that automatic techniques devel-
oped to measure the number of bugs per module are not accurate
nor precise enough [4-6], and therefore relied only on manually
crafted data.

Further, we push our investigation toward the relative impor-
tance of the CO metrics for estimating the number of bugs. Our
previous study only tries to observe a correlation between CO
metrics and number of bugs, and does not investigate on the
importance of these metrics in a model accounting for several vari-
ables. In this study we check their relative importance as compared
to metrics that are frequently used to measure the quality of a soft-
ware module, using an automatic technique called PMVD [7],
which evaluates the importance of each metric in a multiple linear
regression model, with the number of bugs as the dependent
variable.

In comparison to our previous study, we therefore propose the
new following contributions:

e A completely new dataset that contains open-source projects
developed in different programming languages, and manually
crafted bug-related data.

e New results of correlation between CO metrics and post release
bugs.

e An investigation on the relative importance of CO metrics.

This paper is structured as follows: Section 2 presents the foun-
dations of code ownership and the metrics related to it. Section 3
presents the detailed methodology of our study, including the con-
struction of the dataset. Section 4 presents the main results of our
study which shows that the usefulness of CO metrics is debatable
in case of open-source software systems. Section 5 presents the
threats to the validity of our study. Finally, Section 6 provides an
overview of the related work and Section 7 concludes this paper.

2. Background and theory

This section starts by presenting the code ownership (CO)
metrics that have been defined to measure to which extent
developers own software modules.

2.1. Ownership metrics

Before explaining how CO metrics are measured, we need to
define the model we use to represent a software development pro-
ject and define the pertinent concepts, such as software module
and developer contribution.

We assume that a software project is composed of a finite set of
software modules that are developed by a finite set of developers
who submit their code modifications by sending commits to a
shared code repository.

Each module is defined by a finite set of source code files. When
a developer modifies one of the files of a software module by
committing her work, she is contributing to that module. The
weight of the contribution made by a developer to a given module

can be measured with different metrics. Bird et al. [2] chose to
measure it by counting the number of files touched by the develop-
er. For example, if Alice contributes to a module by modifying three
files in a first commit and five files afterwards, she is contributing
with a weight of eight. Another possibility is to measure the weight
of a developer contribution by counting the number of line changes
performed by the developer, also called code churn [8].

In our formal definitions, we use D as the set of developers that
contribute to the project. For a given module, we define wy as the
weight of a developer d.

CO metrics mainly measure the ratio of contributions made by
one developer compared to the rest of the team. More formally, for
a given module, the ownership of a developer d is:

Wy
>dep(Wq)

Bird et al. [2] proposed three ownership-based metrics that are
computed for each software module:

owng =

Most valued owner' This score is the highest value of the ratio
of contributions performed by all developers. More formally, for a
given software module, its Most valued owner value (MVO) is

max({owny|d € D})

Minor This score counts how many developers have a ratio of
contributions that is lower than 5%. Such developers are
considered to be minor contributors of the software module.
More formally, for a given software module, its Minor value is

{0 < owny < 5%|d € D}|

Major This score counts how many developers have a ratio of
contributions that is bigger than 5%. Such developers are con-
sidered to be major contributors of the software module. More
formally, for a given software module, its Major value is

[{owng > 5%|d € D}

Bird et al. showed that varying the 5% threshold used by the
metrics Minor and Major to other values from 2% to 10% did not
impact the results they obtained regarding the relationship
between code ownership and software quality.

2.2. Code ownership and software quality

When the amount of developers of a software system rises,
work must be divided between contributors. Whether a shared
or strong ownership is preferable is a matter of debate where
two theories come face to face. On the one hand the XP movement
[9] and Raymond [10] advocate shared ownership, and the latter
introduced “Linus’ Law”, which states that “given enough eyeballs,
all bugs are shallow”, i.e., increasing the number of contributors
accelerates the detection and correction of bugs. On the other hand
Bird et al. [2]. advocate for a strong ownership, and aim to confirm
the “too many cooks spoil the broth” theory stating that when the
number of developers increases, coordination in the development
efforts becomes too complex to ensure. Further, both theories are
backed by empirical findings: Rahman and Devanbu [11], consid-
ered ownership at the level of individual lines of code, and found
that code implicated in bugs was strongly associated to a single
developer’s contribution.

In this paper we focus on the second theory, and deeply
investigate on the Bird et al. CO metrics. As these metrics were only
validated on Microsoft software system, we here check their

1 This metric originally called ownership has been renamed here for sake of clarity.

104 M. Foucault et al./Information and Software Technology 64 (2015) 102-112

usefulness for open-source software systems. Bird et al. validate
their claim by observing relationships between CO metrics and
Software Quality, which is measured by counting the number of
bugs. In particular, they base their claim on the following
hypotheses:

Most valued owner This metric measures the highest percent-
age of contributions that a developer made to a software mod-
ule. If the MVO of a software module is close to 100%, this means
that one developer performed almost all the changes made to
that module. If the MVO is low that means that the greater con-
tributor makes few contributions and therefore that the module
is shared between several developers that all perform few con-
tributions. A high value therefore reveals that the software
module has strong ownership while a low value reveals that
it has shared ownership. Therefore, the impact of ownership
on Software Quality is formulated by the following hypothesis:
Huvo: The MVO metric is negatively correlated to the number of
bugs.

Minor If there are lots of minor contributors, this implicitly
means that many contributions are made by minor contributors
and therefore the software module is shared between many
developers. Work is thus fragmented between many developers
with little knowledge of the module they are working on, and
therefore overseeing all these contributions becomes an obsta-
cle. Thus, the impact of ownership on Software Quality is for-
mulated by the following hypothesis:

Hpminor: The Minor metric is positively correlated to the number
of bugs.

Major If there are lots of major contributors, this means that
they all perform a significant amount of contributions and
therefore that the software module has a shared ownership,
and therefore that coordinating the work of developers is more
difficult. Hence, the hypothesis regarding the Major metric is:
Hugjor: The Major metric is positively correlated to the number
of bugs.

Our objective is therefore to check these hypotheses for open
source system but also to detect the relative importance of CO met-
rics, as it is clearly expressed in the next section.

3. Design of the methodology

We design our methodology around the two following research
questions:

RQ1 Does code ownership, measured via the CO metrics MVO,
Minor, and Major, have a relationship with software modules
quality, measured with their number of post-release bugs?

RQ2 If so, do these metrics provide an added value (compared to
other state-of-the-art metrics) for predicting the number of
post-release bugs of a software module?

We propose to answering these two research questions using
statistical inference on a dataset drawn from open-source software
projects. This section then presents the methodology we designed
to obtain and to measure such a dataset. It presents the corpus of
software projects we used to perform our study, the approach we
defined for identifying software modules within software projects,
and how we compute the different metrics. The computation of the
tests as well as their interpretation is presented in the Section 4.

To ease the replication of our own study, the artifacts we used
and the data we measured is available online.?

2 http://se.labri.fr/data/articles/IST-2014.

3.1. Corpus of software projects

Performing our study requires a corpus of software projects
with clearly identified software modules, contributions made by
developers to the modules, and, for each module, the number of
bugs it contains.

3.1.1. Reliability of existing datasets

Such a corpus is available in public datasets such as the PRO-
MISE repository [12], on which we relied on in our previous study
[3]. However, these datasets have two main issues regarding the
design of our study.

First, they lack in clearly identifying authors of commits. Most
projects included in these datasets use Subversion as a centralized
version control system (VCS), which is not adequate for computing
ownership metrics as Subversion does not make any distinction
between the author and the committer of a change.’ This is an issue
in open-source projects hosted with centralized VCSs such as
Subversion, as only the developers having “write” access to the
repository appear as authors. Other developers thus contribute by
sending patches, who are applied by the core developers of the pro-
ject [13]. Although techniques to retrieve the submission and accep-
tance of such patches exist [14], this information is difficult to
extract and much reliable than the one provided by decentralized
VCSs such as Git.

Second, they lack in providing accurate bug-related informa-
tion. The state-of-the-art technique used in these datasets consists
in parsing the commit messages, looking for a bug identifier in the
bugtracker (e.g. "Bug #42") [15,16]. This technique assumes that
developers reference bugs in commit messages, which is not
always the case [4,5]. Therefore, there are probably many bugs
missing from the dataset. Moreover, Herzig et al. showed that a
large proportion of issues available in bugtrackers are misclassi-
fied: many issues are classified as bugs although they are in fact
features or improvements [6]. As a consequence, there is probably
a substantial amount of false bugs are in such datasets.

3.1.2. Software projects selection criteria

We therefore decide to build a new dataset dedicated to our
study, and that covers these two issues. Regarding the first issue,
our dataset must contain projects that use a VCS which is able to
make the distinction between the author and the committer of a
change. Regarding the second issue, the bug-related information
should be as accurate as possible. In other words, only true bugs
must be included within it (no false positive).

Identification of authors. To cover the first constraint we simply
choose to rely on Git that natively distinguish authors from
committers.*

Identification of Bugs. The second constraint is much more com-
plex to address. The objective is to identify bug-fixing commits
stored in a VCS with the intent to be as precise as possible. We
assume that the number of bug-fixing commits is a fair represen-
tation of the actual number of bugs within a software module.

As we were not able to find an automatic approach which
would not introduce a bias in our study, we decided to manually
analyze commits to constitute our dataset. For instance, among
the best automatic approaches, the one developed by Tian et al.
has a precision of only 0.53 in the tested project (the Linux kernel),
which in our case would increase the number of bug-fixing com-
mits identified, and would be a bias to our study [17].

Our manual approach therefore aims to identify commits that
are true bugfixes. We choose to focus on post-release bugfixes, as

3 http://subversion.apache.org].
4 http://git-scm.com/.

http://se.labri.fr/data/articles/IST-2014
http://subversion.apache.org/
http://git-scm.com/

M. Foucault et al./Information and Software Technology 64 (2015) 102-112 105

Table 1

The FLOSS projects included in our dataset.
Project Language Release Previous release #Commits #Modules #Bugfixes #LoC
Angular.js JavaScript 1.0.0 0.10.0 783 26 147 11,041
Ansible Python 1.5.0 1.4.0 1241 29 62 50,553
Jenkins Java 1.509 1.480 1341 60 74 79,774
JQuery Javascript 1.8.0 1.7.0 567 23 46 5306
PHPUnit PHP 3.6.0 3.5.0 500 16 46 11,885
Rails Ruby 232 220 1072 46 390 33,919
Mono C# 2.10.0 2.8.0 2800 184 351 1,777,719

it is the case for the study of Bird et al. [2]. Identifying post-release
bug fixes can be eased by the development process of a software
project. In particular, in some projects, a maintenance branch is
created for each release of a software. These maintenance branches
differ from development branches in the fact that they usually do
not contain new features. Further, the operations performed in
such branches are usually bug-fixing, documentation, optimiza-
tions, or compatibility updates related to third party dependencies
(e.g., the 2.3.x maintenance branch of Rails contains updates relat-
ed to new versions of the Ruby programming language). Therefore,
to ease our manual analysis, we choose to integrate in our dataset
only software projects where the chosen release has a maintenance
branch associated to it. Moreover, we restrict our search to main-
tenance branches where no commit was performed for the past six
months, in order to have branches where most of the bugs were fixed.

Our definition of a bug-fixing commit includes any semantic
changes to the source code which fixes an unwanted behavior.
The type of bugs considered includes any arithmetic or logic bug
(e.g., division by zero, infinite loops, etc.), resource bugs (e.g., null
pointer exceptions, buffer overflows, etc.), multi-threading issues
such as deadlocks or race conditions, interfacing bugs (e.g., wrong
usage of a particular API, incorrect protocol implementation or
assumptions of a particular platform, etc.), security vulnerabilities,
as well as misunderstood requirements and design flaws.

Practically, the identification of bug-fixing commits is per-
formed manually, discarding commits where new features are
implemented. We choose to ignore commits where performance
optimizations are performed, as we consider performance issues
as a different aspect of code quality. Moreover, we also ignore com-
mits that resolve compatibility issues due to the evolution of a
third-party dependency (although, we consider OS or hardware
compatibility issues as bug), as these bugfixes are not due to the
lack of quality of the changed code, but to the modification of an
external requirement. Finally, it occurs that bug-fixing commits
are lated discarded by the developers due to a regression
introduced by the bugfix. In such cases, the developers perform a
“revert” operation of such commits, and we ignore both the
“revert” and the “reverted” commits.

We consider that bug-fixing commits are atomic, in the way
that we do not consider the possibility that a bug-fixing commit
may in fact include two bug-fixes. Moreover, if a bug-fixing com-
mits affects two modules, the number of bug-fixing commits will
be incremented in both modules.

3.1.3. Selected corpus of projects

According to these requirements, we manually select seven
open-source projects. These projects, summarized in Table 1, are
written in six different programming languages: JavaScript, Java,
PHP, Python, Ruby and C#. The developers contributions we con-
sidered are the ones performed between the “Release” and the
“Previous Release” shown in the table.” The “#Commits” column

5 In the case of Mono, the 2.10.0 release in on a different branch than the 2.8.0, so
we considered the commits since the common ancestor of these two releases instead.

in the table corresponds to the number of commits performed
between the two releases.

The main criterion for the choice of these releases, besides the
availability of a maintenance branch, is the fact that Git was
indeed the VCS used when they were developed, as in many of
the projects selected here, the older part of the development
history was done with Subversion, and then imported to Git.
The selected releases are minor releases (i.e., no breaking changes
have been performed in the selected development period) in
Ansible, JQuery, PHPUnit and Rails. They are major release in
Angular.JS, Jenkins and Mono.

The selected releases are, with the exception of the one in Ansible,
considered to be long term supported (LTS) releases. For these LTS
releases, bug-fixing commits are backported from the main develop-
ment branch even after these new releases are available. In Ansible,
although the maintenance of the 1.5.x releases stopped a couple of
week before the availability of the 1.6.0 release, it was performed
simultaneously with the development of the 1.6.0 release.

3.2. Modules definition

The metrics used in our study all target software modules. In
order to perform our analysis we therefore have to decompose
each project in a finite set of software modules, which is well
known to be a hard task that requires some subjective choices [18].

We therefore chose to use a manual process that aims to
decompose a project into a finite set of software modules. We
asked three members of our research group to provide, for each
of the six projects in the corpus, a list of software modules. After
comparing the resulting decompositions, we ended up with two
distinct lists of modules (two members returned quite the same
list), one slightly finer grained than the other. The results provided
in this paper are the ones obtained with the finer decomposition of
modules, which is the one generated by two members. As the
results obtained with the coarser decomposition are similar, they
are available in the Appendix of this paper.

The manual process used by the three participants is a quite
simple approach that looks at the directory tree of a given project.
We consider that a software module is either a file or a directory,
with the possibility to include or not its subdirectories.

3.3. Metrics computation

To reach our objective, which is to state whether the code own-
ership has an influence on the software quality, we need to mea-
sure CO metrics, as well as other process and code metrics, such
as the number of lines of code (LoC) of a module, its number of
touches, its code churn, and the total number of developers who
edited such a module.

As defined in Section 2, CO metrics require to weigh the contri-
butions of the developers. For the sake of completeness, we chose
to compute two alternatives of such weight. The first alternative
consists in counting the number files touched by a developer
(Touch). The second alternative consists in counting the number

106 M. Foucault et al./ Information and Software Technology 64 (2015) 102-112

Table 2

Spearman correlation coefficients between metrics and the number of post-release bugfixes. Bold and underlined values are absolute correlation coefficients above 0.50 and 0.75,

respectively.

Project Spearman correlation

LoC NumbDevs Touches Churn MVO Major Minor
Angular 0.56*" 0.77"** 0.78"** 0.71"* —-0.46* 0.68* 0.63**
Ansible 077+ 0.79" 0.84"* 0.81° —0.25 0.16 0.8
Jenkins 0.72** 0.73* 0.67* 0.58* —0.54"* 0.63* 0.64*
JQuery 0.79"* 0.85 0.83" 0.87* -0.52* 0.64™ 0.717
Rails 0.71** 0.76* 0.69"* 0.68" ~0.62" 0.62*** 0.63*
PHPUnit 0.8 0.42 0.61 052" -0.02 0.04 079
Mono 0.5 0.47*+* 0.42** 0.37%* —0.38%* 0.34 ** 0.56"*

p-value: **<0.001 <**<0.01 <*<0.05<.<0.1.

of lines changed by a developer (Churn). Section 4 only present the
numbers using the Touch to compute the weight, and the results
computed using Churn, which are similar, are available in the
Appendix.

4. Analysis

This section presents the results of our analysis, and then
answer the two research questions that aim to question the useful-
ness of code ownership metrics.

4.1. RQ1: Is there any relationship between code ownership and
software quality?

To answer this question, we perform a correlation test (Spear-
man) between code ownership metrics and the number of post-re-
lease bug-fixing commits for each of the project of our corpus. The
results of the correlation tests are summarized in Table 2.

The correlations we obtain clearly exhibit the expected effects
of code ownership as we describe in Section 2. There is a negative
correlation between MVO and the number of bugs, confirming the
theory that modules with stronger ownership have less bugs. There
are positive correlations between both Minor and Major and the
number of bugs, meaning that the more minor and major owners,
the more bugs.

Based on these results, we can conclude that there is a sig-
nificant relationship between CO metrics and the number of bugs.
However, as in our previous study [3], other metrics are also corre-
lated with the number of bugs, without having a single metric that
outperforms the others. The fact that Minor is not the metric with
the strongest correlation is a difference with the results obtained
by Bird et al. [2].

4.2. RQ2: What is the importance of code ownership metrics for
predicting bugs?

Although CO metrics have a relationship with the number of
bugs, other metrics exhibit such a relationship. Our intent here is
to determine if CO metrics provide an added valued compared to
other metrics, and to find whether splitting developers into major
and minor contributors is useful or not.

To answer this question, we propose to use multiple linear
regression with the objective to measure the importance of each
metric regarding the estimation of the number of bugs.

Using multiple linear regression, one can assess the relative
importance of metrics, by evaluating how the R? of the regression

model improves when adding each variable to the model. The R?
measures the proportion of variation in the dependent variable
(i.e., in our case the number of bugs) explained by the regressors
(i.e., the software metrics) in the model. However, this technique
is effective only when the regressors are uncorrelated, which is

not the case with software metrics. When metrics are correlated,
the order in which the regressors are added to the model may have

a strong impact on the R? added to the model, which would be mis-
leading regarding the importance of the metrics.

To assess the relative importance of regressors in a multiple lin-
ear regression model, we use the PMVD technique, developed by
Feldman [7], and implemented in the R package relimpo [19].
To overcome the issue of the ordering of regressors, PMVD auto-
matically computes all possible permutations of the regressors,

and performs an average of the R? of each regressor over all possi-
ble orderings.

To answer our second research question we then run PMVD for
each of the project by considering not only code ownership metrics
as regressors, but also the LoC, Touch, Churn and NumDevs metrics.

Before applying the PMVD technique, we observed that Num-
Devs and Minor are collinear. These two metrics have a Pearson
correlation coefficient ranging from 0.896 to 0.996, depending on
the project. Two metrics with such a high degree of collinearity
can be considered identical, which means that, with the current
dataset, Minor is redundant with the simple metric that is the num-
ber of developers.

We still need to determine the relative importance of MVO and
Major compared to the simple metrics that are LoC, Touches, Churn
and NumbDevs. Therefore, we build a multiple linear regression
model including the aforementioned metrics as the regressors,
and the number of bug-fixing commits as the dependent variable.
For each project, we use PMVD to decompose the R* of the model
into non-negative contributions that sum to the total R?. Fig. 1 pre-
sents the result of PMVD for each project, where each bar shows
the contribution of each metric to the total R? of the model.

In all seven projects, the best metric (in terms of relative impor-
tance) is either LoC, Touches, or NumDevs. Churn has a relatively
small contribution to the total R? of the models in six out of seven
projects, whereas MVO and Major have even smaller contributions,
with negligible contributions in five and four out of seven projects,
respectively.

Based on these observations, the benefits of computing code
ownership metrics is highly debatable in open-source software
projects. Although our previous findings [3]| were relatively moder-
ate—we observed that code ownership metrics were not better
than simple metrics—the conclusions of this experiment seem
much more radical: Minor is redundant with the number of devel-
opers, and cases where MVO and Major contribute significantly to
the precision of multiple linear regression models seem incidental.

5. Threats to validity

In this section we cover the different factors that may affect the
validity of our study. We emphasize on three main categories of
threats to validity: internal, construct and external validity.

M. Foucault et al./Information and Software Technology 64 (2015) 102-112 107

Angular

Ansible

80

(0]
(0]
2 g 2
§ s
s | g ©
(]
[T @ o
2 - s ¥
g e &
a 7 o o
2 5 < °
u= [e]
e o 2 o
3 o o N o & &] 3 Q&) & &
S ¢ § N S 4 ¢ $ N S 3
N \)60 G@ N P & NS oé\ 0‘\0 S R\ 690
<0 & <9 &
R?=60.78% R?=96.66%
Jenkins JQuery
8 (0]
o 3 O
§° g €
= = o
g v g «
3 8 g =
g c
2 & g ¢
[
2 o o
5 = 5 ©
o
® J— °
T Y ¢ O & T Y ¢ & O S F
NS &S 0 I ‘@ & NS & & S R\ &
<& & <& &
R?=91.35% R?=83.17%
Rails PHPUnit
(]
(] o
g 3
s 8 b
% > o
& < 3
@ 5
° g 2 8
5 2
£ ey o 5 S e 9 o 5
> Q O @ o] N O
o & K K\ XS N X o & D K\ X ¢
N S X W@ &Ff °© S S & N @ &F
<& & <& &
R?=95.61% R?=93.7%
Mono
[0
(8] o
c w0
8
— o
© <
>
2 8
c
8 R
(7]
o o
=
o o | —
X 19 > o 5 &
S .
o & Q S N
v &0“(}\ S v 0@0@
R
R?=62.58%

Fig. 1. Relative importance of metrics in regression models with the number of bugfixes as the dependent variable.

5.1. Internal validity

The internal validity of our study can be threatened by con-
founding factors, i.e. additional variables that may explain our
results, or the differences between them and the results obtained
by Bird et al. [2]. In this section we uncover possible confounding
factors.

5.1.1. Minor and major contributors

In the Windows projects, most developers were major con-
tributors of at least one module, and few developers were exclu-
sively minor contributors [2]. Open-source projects follow a

different model, with a part of the contributors being the core
developers of the project, and another part being incidental con-
tributors, who perform a small amount of contributions. In the pro-
jects of our corpus, the proportion of developers being only minor
contributors vary between 50% and 79%. Ownership metrics, as
defined in this paper, do not make the difference between minor
contributors who belong to the core team of developers, i.e., who
are major contributors of another module, and developers who
are only minor contributors. We defined two simple metrics to
take into account this difference, which are the number of minor
contributors who are also major contributors of another module,
and the number of developers who are only minor contributors.

108 M. Foucault et al./Information and Software Technology 64 (2015) 102-112

However, correlations between these metrics and the number of
bug-fixing commits are either not statistically significant or have
a smaller effect size than existing ownership metrics.

5.1.2. Volunteers and paid contributors

Another difference between developers is the fact that many
open-source projects are industry-led or industry-involved [20],
meaning that some developers are being paid to contribute to
the projects, while others are volunteers. This could be a confound-
ing factor as the motivations of both categories of developers are
different, and may impact the quality of the code they produce.
Although we do not compare in this paper the quality of the code
performed by paid and volunteer developers, we do have some
insight of the proportion of developers in each category, based
on public information we could retrieve from social media and
developers and projects websites (i.e. GitHub, Twitter, LinkedIn).
First, all the projects in our corpus are at least industry-involved,
and projects such as Mono (Novell/Xamarin) and Ansible (Ansible,
Inc.) are clearly industry-led. Second, for the developers with the
most commits in each project (10 commits or more in the studied
period) we sought evidences of employment by one of the compa-
nies involved in the project: in all the projects with the exception
of PHP Unit where the involvement of companies seems to be less
strong, most developers who performed more than 10 commits
were paid by a company involved in the project.

5.1.3. Code ownership guidelines

Each project defines its development guidelines, which indicate
to developers the rules to follow when contributing. These rules
include the patch submission process, code style, etc. As pointed
out by Mockus et al. [21], development guidelines may include
indications relative to code ownership, which can be enforced. In
that case, module owners are defined by the project core team,
and have more responsibilities than other developers, such as
reviewing patch submissions, fielding bug reports, etc.

We sought for such guidelines in our dataset. In most projects,
there was no mention of code ownership in the guidelines. In Jenk-
ins, development guidelines advocate shared ownership, and there
is no assigned tasks to core developers: the Jenkins governance
document states that “Core committers generally use their own
judgment to decide what to work on”. In Mono, the guidelines
are more in favor of strong ownership, and state that the author
of a piece of source code automatically becomes its owner, and that
further modifications to this source code must be discussed with
such owner. However, we did not find strong ownership enforce-
ment such as the one described by Mockus et al. [21].

5.2. Construct validity

The construct validity of a study refers to whether the measure-
ments performed are consistent with the theory. We now reveal
the threats encountered in our empirical study.

With Git, developers can submit pull requests, so that the pro-
ject leaders, who have written permission on the repository, can
add their contributions to the project. As the identity of the initial
author is maintained through the pull operation, she is identifiable
even though she does not have access to the main repository. How-
ever, it may happen that a developer exchanged with a pull request
author to agree on its acceptance. Even though this developer
spent time to fix or improve the pull request content, all the credits
will go to the pull request author. This may also introduce a bias in
the results.

The modules listed from the selected project release may have
evolved through the period of time in which the CO metrics have
been computed. In case they underwent refactoring operations
such as renames or moves, information about developers contribu-

tions could be lost. In order to avoid such cases, we used Git's
rename detection to follow files that were renamed during the
studied period.

We deliberatively did not rely on the information provided by
bugtrackers, as several studies showed that their use can introduce
an important bias [4,6]. The drawback of our technique is that the
number of bug-fixing commits may not reveal the actual number
of bugs that appeared in the software modules. There may exist
bugs that are tedious to fix and remain to be resolved. In addition,
the manual analysis has some limits due to the subjective eval-
uation to decide whether or not a commit is a bug-fixing commit.
Finally, we only went through a maintenance branch to collect
such commits for each project. However, it there may exists
bug-fixing commits from the main development branch that have
not been backported to the maintenance branch.

5.3. External validity

The external validity of a study concerns the extent to which
the findings are generalizable to other subjects and settings.

As we targeted different languages, we are confident of the
generalization of the findings across languages. The only concern
we have regarding the external validity of our study is that the
projects included in our corpus were not selected using random
sampling. Although the results regarding ownership metrics cor-
roborate the ones we found in our previous study [3], they might
not be generalizable to all kinds of projects as we only analyze a
few projects in this study (14 projects in total, including our previ-
ous study).

6. Related work

In the late 2000s, several studies have shown evidence of a rela-
tionship between the number of developers of a software artifact
and its fault-proneness. Illes-Seifert and Paech [22,23] found a cor-
relation between the number of faults identified on a file and its
number of authors. Later, they explored the relationship between
several process metrics and fault-proneness, and did not find a
metric where the relationship with fault-proneness existed in all
projects. However, they found that the number of distinct authors
of a file was correlated to the number of faults in almost every
project. Weyuker et al. [24] found that adding the number of devel-
opers who edited a file to their prediction model provides a slight
improvement to the model’s precision.

Many studies used fault prediction models to validate the rele-
vance of process metrics for measuring software quality. Moser
et al. [25] compared the predictive power of two sets of software
metrics—code and process metrics—on several Eclipse projects.
They found that process metrics are better indicators of software
quality than code metrics. Similar results have been found by other
researchers who also used fault prediction as a quality indicators
for their metrics, such as in [26,1].

D’Ambros et al. [16] evaluated different sets of metrics in a
thorough study on fault prediction. They compared the process
metrics introduced by Moser et al. [25] to other metrics, such as
the classical source code metrics by Chidamber and Kemerer
[27], the measure of entropy of changes introduced by Hassan
[28], the churn of source code metrics and the entropy of source
code metrics. They found that the process metrics, the churn met-
rics, and the entropy of source code metrics are the best performers
for fault prediction. However, the authors expressed concerns with
the external validity of their study (i.e., whether the results are
generalizable), which calls for more empirical studies on that
matter.

M. Foucault et al./Information and Software Technology 64 (2015) 102-112 109

As the number of developers is not always the process metric
that shows the highest correlation, ownership metrics rely on
other information such as the proportion of contributions made
by the developers. Using this information it is possible to classify
developers as major and minor contributors. The relationship
between measures of code ownership and faults was studied by
Bird et al. [2] on Windows Vista and Windows 7 binaries. Their
study showed that the number of minor contributors of a binary

is strongly correlated to the number of pre- and post-release faults
of Windows binaries.

Mockus et al. [21] observed two code ownership patterns in
open-source projects: In the Apache project, they found that
almost every source code file with more than 30 changes had sev-
eral contributors who authored more than 10% of the changes. In
the Mozilla project they found that code ownership was enforced
by the development guidelines, which stated that all contributions

Angular Ansible
9 8
8 o 2
c ® o
5 § 8
®©
2 8 3
0 o
2 S ¥
[o] o
g o g <
o - ¢ R
5 © — 5]
c\o o Y O\o o < —
O 2 Q& ©) -0 O 23 Q& Q .3 &
9 & $ Q S 5\ o @ N X Ky
NS Qé\ O‘Q\\ I E <§)® NS \»é\ C}\Q S be\ @Qe/
<0 & <0 &
R?=67.16% R?=97.85%
Jenkins JQuery
o
8 8 8 g
C C
& o &
g I
S > &
o 8 o)
2 2
o o o v
Q « g @
(7] [72]
2 o o
S -~ Y
]] bl
= o = ® o B $
% QS O <] Q QO O &
o @ N K\ XS N o & $ X X
NS Qé\ O‘\\\ I E <§)® NS \»é\ C}\Q S be\ @Qe/
<0 & <0 &
R?=92.56% R?=81.79%
Rails PHPUnit
[0} o
g 8 2
e g g
= B ©
c Q =
> © ®
" >
o o
g s 2 =
> s
£ 1 2 <
‘S .
2 o e o]
O 3 & O & & © O 3 Q& O &
o @ £ K\ XS X o & $ X K
NS Qé\ O‘\\\ I g <§)® NS \»é\ C}\Q S be\ @Qe/
<0 & <0 &
R?=96.28% R?=91.61%
Mono
3
§ ®
g 2
Qo
% 5]
o
% «
o o
=2
o
2 o
3
O o N O O R
3 Q >
N &o"é\ N AN\ \,69%
N
R?=62.62%

Fig. A.2. Relative importance of metrics, using the finer granularity of modules, using Churn to weigh developers’ ownership.

110 M. Foucault et al./Information and Software Technology 64 (2015) 102-112

Angular Jenkins
o g
§ 8
8 o T
s 3 S 8
s 3
[0}
2 3 5 w©
I >
& 3
o
L o 5 ©
§ o = X o
xX O o Q& o} & O 2 O &
o & $ K\ S\ o & $ K\ X
RIS S R G NP S R G
<0 & <0 &
R?=87.87% R?=93.07%
Rails PHPUnit
[0] [0]
e S 3
T g I
§ g <
S 2 8
(7] o [72]
o o L o
Y— Y -
(o]
2 e e=mm = 2. —
° O o Q& O & & O o Q ©) & &
o @ K K\ N o & N K\ XS X
N \\5‘}\ C}Q\\ N @'b\ &00 NS \\é\ (}\\\ S & <§)®
<0 & <0 &
R?=95.46% R?=92.18%

Fig. A.3. Relative importance of metrics, using the larger granularity of modules, using Touches to weigh developers’ ownership.

Angular Jenkins

50
30

20

10

% of response variance
0 30
% of response variance

R?=83.31% R?=93.68%

Rails PHPUnit

50

10 20 30 40 50

10

o]

S & Q &

QO Q O

> & ¥ D)
W Q v © c\\o Ny W)

% of response variance
30
% of response variance

0

R?=96.06% R?=98.11%

Fig. A.4. Relative importance of metrics, using the larger granularity of modules, using Churn to weigh developers’ ownership.

should be reviewed and approved by the module owner. Although In a previous study, we examined the relationship between
the focus of their work was FLOSS projects and ownership was also ownership metrics and fault proneness in open-source projects
investigated, the authors did not attempt to examine the connec- [3]. Although the results of both studies confirm each other, the

tion between the ownership patterns and fault-proneness. dataset of our current study was more carefully constructed than

M. Foucault et al. / Information and Software Technology 64 (2015) 102-112 111

Table A.3

Spearman correlation coefficients between metrics and the number and density of
post-release bug-fixes, using the finer granularity of modules, and ownership
weights computed using the Churn metric. Bold and underlined values are absolute
correlation coefficients above 0.50 and 0.75, respectively.

Table A.5

Spearman correlation coefficients between metrics and the number and density of
post-release bug-fixes, using the larger granularity of modules, and ownership
weights computed using the Churn metric. Bold and underlined values are absolute
correlation coefficients above 0.50 and 0.75, respectively.

Project Spearman correlation Project Spearman correlation

MVO Major Minor MVO Major Minor
Number of bug-fixes Number of bug-fixes
Angular —0.52** 0.69* 0.57"* Angular -0.51" 0.6 0.57*
Ansible ~0.53" 0.48" 0.81" Jenkins —0.52" 0.52 0.77"
Jenkins —0.52" 0.55" 0.73* Rails -0.69" 0.64™ 0.89"
JQuery -0.57" 0.58™ 0.84" PHPUnit 036 0.49 0.62*
Rails -0.54"" 0.55"* 0.74* .
PHPUnit ~021 0.37 0.66" Kﬁ'g'j}?r’ of bug-fixes 036 059+ 0,62+
Mono —033 053" 047 Jenkins _0.36 036 0.42°
Density of bug-fixes Rails -0.02 0.08 0.22
Angular —0.44* 0.69* 0.42* PHPUnit —0.06 0.24 0.36
Ansible -0.34 0.42 0.28
jenkins —0.34* 0.32* 0.55"** p-value: **<0.001 <**<0.01<*<0.05<.<0.1.
JQuery -0.4 0.39 0.45*
Rails —0.14 0.18 0.29*
PHPUnit -0.05 0.22 0.54° We also plan to increase the amount of projects in subsequent
Mono -0.18 0.18 0.3

p-value: **<0.001 <**<0.01 <*<0.05<.<0.1.

in the previous study, which strengthens the importance of our
new findings.

7. Conclusion and future work

The study presented in this paper, in which we aimed to
improve the methodology presented in our previous paper [3],
reaches similar conclusions with a different dataset of projects.
First, we confirm that there is a relationship between ownership
metrics and software quality. However, the usefulness of code
ownership is very debatable: The Minor metric is highly collinear
with the number of developers, making its computation redundant
with a simpler metric. This result is mainly due to the intrinsic
characteristics of the open-source projects: they have many con-
tributors but most of them are minor developers. Overall, simple
metrics perform better or as well as code ownership metrics, which
not only confirm our previous findings, but questions the point of
computing ownership metrics.

Other code ownership metrics, such as MVO and Major may
however help to improve regression models for some projects,
although not in a drastic way. To confirm that these metrics do
improve the quality of regression models, and that they should
be used for bug prediction, we plan to perform a study including
a larger set of software metrics. As the method we used to measure
quality, i.e. manually counting the number of bugfixes in a mainte-
nance branch, has not been validated yet in terms of accuracy, fur-
ther studies are required to confirm these results.

Table A.4

studies, in order to improve the generalization of our findings.
Another trail would be to run a large scale experiment with the
goal to select projects where Minor and the number of developers
are not collinear, which would allow to compare both metrics.

Finally, we would like to stress that, in this study, we only
discard the use of the Minor metric. We did not explore the appli-
cation of major and minor contributors to social network metrics,
as Bird et al. did in their study of code ownership [2].

Acknowledgments

The authors would like to thank Alan Charpentier for his help in
the realization of several manual tasks performed in this study, as
well as for his helpful comments regarding the methodology we
used. The authors also thank the anonymous reviewers for their
comments which helped to improve the quality of this
contribution.

Appendix A. Results with different settings

Section 4 only presents the results obtained with the finer gran-
ularity of modules, and with ownership weights computed using
the Touches metric. For the sake of completeness, we present here
the results obtained with the larger granularity of modules, and the
ones obtained with ownership weights computed using the Churn
metric.

We also show correlations obtained with the density of bug-fix-
ing commits, rather than with the absolute number of bug-fixing
commits.

Figs. A2-AA4.

Tables A3-A6.

Spearman correlation coefficients between metrics and the density of post-release bug-fixes, using the finer granularity of modules, and ownership weights computed using the
Touches metric. Bold and underlined values are absolute correlation coefficients above 0.50 and 0.75, respectively.

Project Spearman correlation

LoC NumDevs Touches Churn MVO Major Minor
Angular 0.11 0.65* 0.45* 0.39* -0.57* 0.73** 0.4*
Ansible 0.13 0.37 0.24 0.25 -0.02 0.16 0.23
Jenkins 0.45* 0.53* 0.48** 0.4 -0.36* 0.47* 0.41*
JQuery 03 0.51* 0.5* 0.65* -0.27 0.53* 0.25
Rails 0.09 0.31* 031" 0.33* -0.21 0.29 0.16
PHPUnit 0.73** 0.26 0.5* 0.42 0.08 -0.07 0.64**
Mono 0.23* 0.29* 0.27* 0.26* -0.23* 0.19 0.38"*

p-value: **<0.001 <**<0.01 <*<0.05<.<0.1.

112 M. Foucault et al./Information and Software Technology 64 (2015) 102-112

Table A.6

Spearman correlation coefficients between metrics and the number and density of post-release bug-fixes, using the larger granularity of modules, and ownership weights
computed using the Touches metric. Bold and underlined values are absolute correlation coefficients above 0.50 and 0.75, respectively.

Project Spearman correlation

LoC NumDevs Touches Churn MVO Major Minor
Number of bug-fixes
Angular 0.16 0.74"* 0.55* 0.44. —0.52 0.59* 0.56"
Jenkins 0.82" 0.77" 0.73" 0.67"* ~0.53* 0.55* 0.77"
Rails .88 0.89" 0.87 0.88 —0.75"* 0.58™ .83
PHPUnit 78" 0.49 0.55 0.53 -0.12 -0.07 .81
Density of bug-fixes
Angular -02 0.75" 0.31 0.31 ~0.6" 0.66™ 0.52*
Jenkins 0.5* 0.47* 0.42* 0.33 -0.35 0.37 0.4
Rails 0.1 0.18 0.12 0.21 -0.14 0.14 0.15
PHPUnit 0.58 0.2 0.29 0.29 0.09 -0.27 0.55

p-value: **<0.001 <**<0.01 <*<0.05<.<0.1.

References

[1] F. Rahman, P. Devanbu, How, and why, process metrics are better, in:
Proceedings of the 2013 International Conference on Software Engineering,
2013, pp. 432-441.

C. Bird, N. Nagappan, B. Murphy, H. Gall, P. Devanbu, Don’t touch my code!:

examining the effects of ownership on software quality, in: Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on

Foundations of Software Engineering, ESEC/FSE '11, ACM, 2011, pp. 4-14,

http://dx.doi.org/10.1145/2025113.2025119.

M. Foucault, J.-R. Falleri, X. Blanc, Code ownership in open-source software, in:

Proceedings of the 18th International Conference on Evaluation and

Assessment in Software Engineering, EASE '14, ACM, 2014, pp. 39:1-39:9.

doi:10.1145/2601248.2601283.

[4] C. Bird, A. Bachmann, E. Aune,]. Duffy, A. Bernstein, V. Filkov, P. Devanbu, Fair

and balanced?: bias in bug-fix datasets, in: Proceedings of the 7th Joint

Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering, 2009, pp.

121-130.

T.F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, L. Réveillére, Empirical

evaluation of bug linking, in: Proceedings of the 17th European Conference on

Software Maintenance and Reengineering (CSMR 2013), 2013, pp. 1-10.

[6] K. Herzig, S. Just, A. Zeller, It's not a bug, it's a feature: how misclassification
impacts bug prediction, in: Proceedings of the 2013 International Conference
on Software Engineering, 2013, pp. 392-401.

[7] B. Feldman, Relative importance and value, SSRN 2255827, 2005.

[8] J.C. Munson, S.G. Elbaum, Code churn: a measure for estimating the impact of
code change, in: Proceedings of International Conference on Software
Maintenance, 1998, 1998, pp. 24-31.

[9] K. Beck, Embracing change with extreme programming, Computer 32 (10)
(1999) 70-77, http://dx.doi.org/10.1109/2.796139.

[10] E. Raymond, The cathedral, the bazaar, Knowledge, Technol. Policy 12 (3)
(1999) 23-49.

[11] F. Rahman, P. Devanbu, Ownership, experience and defects: a fine-grained
study of authorship, in: Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 491-500.

[12] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, B. Turhan, The
PROMISE repository of empirical software engineering data, 2012.

[13] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, G. Hsu, Open borders?
immigration in open source projects, in: Fourth International Workshop on
Mining Software Repositories, 2007, ICSE Workshops MSR’07, IEEE, 2007. pp.
6-6.

[14] C. Bird, A. Gourley, P. Devanbu, Detecting patch submission and acceptance in
0SS projects, in: Proceedings of the Fourth International Workshop on Mining

2

3

(5

Software Repositories, MSR 07, IEEE Computer Society, 2007, p. 26, http://
dx.doi.org/10.1109/MSR.2007.6.

[15] T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for eclipse, in:
International Workshop on Predictor Models in Software Engineering, 2007,
PROMISE’07: ICSE Workshops 2007, 2007, p. 9. doi:http://dx.doi.org/10.1109/
PROMISE.2007.10.

[16] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a
benchmark and an extensive comparison, Empirical Softw. Eng. 17 (4-5)
(2012) 531-577.

[17] Y. Tian, J. Lawall, D. Lo, Identifying linux bug fixing patches, in: 2012 34th
International Conference on Software Engineering (ICSE), 2012, pp. 386-396.

[18] D.L. Parnas, On the criteria to be used in decomposing systems into modules,
Commun. ACM 15 (12) (1972) 1053-1058.

[19] U. Groemping, Relative importance for linear regression in r: the package
relaimpo,]. Stat. Softw. 17 (1) (2006) 1-27.

[20] A. Capiluppi, K.-J. Stol, C. Boldyreff, Exploring the role of commercial
stakeholders in open source software evolution, in: Open Source Systems:
Long-Term Sustainability, IFIP Advances in Information and Communication
Technology, vol. 378, Springer, Berlin, Heidelberg, 2012, pp. 178-200.

[21] A. Mockus, R.T. Fielding, J.D. Herbsleb, Two case studies of open source
software development: apache and mozilla, ACM Trans. Softw. Eng. Methodol.
(TOSEM) 11 (3) (2002) 309-346.

[22] T. Illes-Seifert, B. Paech, Exploring the relationship of history characteristics
and defect count: an empirical study, in: Proceedings of the 2008 Workshop on
Defects in Large Software Systems, 2008, pp. 11-15.

[23] T. llles-Seifert, B. Paech, Exploring the relationship of a file’s history and its
fault-proneness: an empirical method and its application to open source
programs, Inform. Softw. Technol. 52 (5) (2010) 539-558, http://dx.doi.org/
10.1016/j.infsof.2009.11.010.

[24] E.J. Weyuker, T.J. Ostrand, R.M. Bell, Using developer information as a factor for
fault prediction, in: Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, 2007, p. 8.

[25] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction, in: ACM/IEEE
30th International Conference on Software Engineering, 2008, pp. 181-190.

[26] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, M. Nakamura, An
analysis of developer metrics for fault prediction, in: Proceedings of the 6th
International Conference on Predictive Models in Software Engineering, 2010,
p. 18.

[27] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (6) (1994) 476-493, http://dx.doi.org/10.1109/
32.295895.

[28] A.E. Hassan, Predicting faults using the complexity of code changes, in:
Proceedings of the 31st International Conference on Software Engineering,
2009, pp. 78-88.

http://dx.doi.org/10.1145/2025113.2025119
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0015
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0015
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0015
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0015
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0015
http://dx.doi.org/10.1109/2.796139
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0050
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0065
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0065
http://dx.doi.org/10.1109/MSR.2007.6
http://dx.doi.org/10.1109/MSR.2007.6
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1109/PROMISE.2007.10
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0080
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0080
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0080
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0090
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0090
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0095
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0095
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0100
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0105
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0105
http://refhub.elsevier.com/S0950-5849(15)00029-4/h0105
http://dx.doi.org/10.1016/j.infsof.2009.11.010
http://dx.doi.org/10.1016/j.infsof.2009.11.010
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.295895

	On the usefulness of ownership metrics in open-source software projects
	1 Introduction
	2 Background and theory
	2.1 Ownership metrics
	2.2 Code ownership and software quality

	3 Design of the methodology
	3.1 Corpus of software projects
	3.1.1 Reliability of existing datasets
	3.1.2 Software projects selection criteria
	3.1.3 Selected corpus of projects

	3.2 Modules definition
	3.3 Metrics computation

	4 Analysis
	4.1 RQ1: Is there any relationship between code ownership and software quality?
	4.2 RQ2: What is the importance of code ownership metrics for predicting bugs?

	5 Threats to validity
	5.1 Internal validity
	5.1.1 Minor and major contributors
	5.1.2 Volunteers and paid contributors
	5.1.3 Code ownership guidelines

	5.2 Construct validity
	5.3 External validity

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	Appendix A Results with different settings
	References

