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Abstract—Recently, many information retrieval (IR) based bug
localization approaches have been proposed in the literature.
These approaches use information retrieval techniques to process
a textual bug report and a collection of source code files to
find buggy files. They output a ranked list of files sorted by
their likelihood to contain the bug. Recent approaches can
achieve reasonable accuracy, however, even a state-of-the-art bug
localization tool outputs many ranked lists where buggy files
appear very low in the lists. This potentially causes developers
to distrust bug localization tools. Parnin and Orso recently
conduct a user study and highlight that developers do not find
an automated debugging tool useful if they do not find the root
cause of a bug early in a ranked list.

To address this problem, we build an oracle that can auto-
matically predict whether a ranked list produced by an IR-
based bug localization tool is likely to be effective or not. We
consider a ranked list to be effective if a buggy file appears
in the top-N position of the list. If a ranked list is unlikely to
be effective, developers do not need to waste time in checking
the recommended files one by one. In such cases, it is better
for developers to use traditional debugging methods or request
for further information to localize bugs. To build this oracle,
our approach extracts features that can be divided into four
categories: score features, textual features, topic model features,
and metadata features. We build a separate prediction model for
each category, and combine them to create a composite prediction
model which is used as the oracle. We name our proposed
approach APRILE, which stands for Automated PRediction of
IR-based Bug Localization’s Effectiveness. We have evaluated
APRILE to predict the effectiveness of three state-of-the-art IR-
based bug localization tools on more than three thousands bug
reports from AspectJ, Eclipse, and SWT. APRILE can achieve
an average precision, recall, and F-measure of at least 70.36%,
66.94%, and 68.03%, respectively. Furthermore, APRILE out-
performs a baseline approach by 84.48%, 17.74%, and 31.56%
for the AspectJ, Eclipse, and SWT bug reports, respectively.

I. INTRODUCTION

In software development, bugs are prevalent. Thus, de-

bugging is an important task to maintain software quality.

However, debugging is an expensive task as it requires much

time and manual labor to find root causes of bugs and correctly

fix them. In 2002, software bugs are reported to cost US

economy more than 50 billion dollars annually [27]. Therefore,

there are demands to develop tools which make debugging less

costly.

To reduce debugging cost, several techniques have been pro-

posed to support developers in locating the root cause of bugs.

One family of techniques is referred to as information retrieval

(IR) based bug localization techniques [21], [32], [39]. An IR-

based bug localization technique takes as input a textual bug

report and a collection of source code files. It outputs a ranked

list of files sorted by their suspiciousness scores which are

computed by considering the textual similarity of the files to

the input bug report. This ranked list of files is then forwarded

to developers for manual inspection. Developers can inspect

the files one-by-one starting from the most suspicious to the

least suspicious ones.

If an IR-based bug localization tool is effective, developers

should be able to find a buggy file by inspecting just a few files

at the top of the ranked list. Unfortunately, even for state-of-

the-art bug localization tools, e.g., [21], [32], [39], for many

bug reports, buggy files are located far from the beginning of

the ranked lists. Recently, Parnin and Orso conducted a user

study on an automatic debugging tool, and find that developers

do not find an automatic debugging tool useful if they cannot

find the root cause of a bug early in a ranked list [18]. These

ineffective cases can make developers lose confidence in bug

localization tools.

In this work, we mitigate the impact of the unreliability

of IR-based bug localization tools by proposing a prediction

framework that is able to compute the likelihood whether

an output of a bug localization tool is effective or not. We

consider the output of a bug localization tool as effective if

a buggy file is among the top-N files. With the help of our

approach, developers can decide whether they want to use the

output of a bug localization tool or not. If the output of a

bug localization tool is unlikely to be effective, developers are

better off to use traditional debugging methods to find the bug.

To predict the effectiveness of a bug localization instance,

i.e., the application of a bug localization tool on a bug report,

we extract important features from the input bug report and the

suspiciousness scores that are output by the bug localization

tool. The set of extracted features can be divided into four cat-

egories: features extracted from suspiciousness scores, features

extracted from words that appear in the textual contents of a

bug report, features extracted from topic models learned from

the textual contents of a bug report, and features extracted

from the metadata of a bug report. For each feature category

subset, we learn a separate prediction model from a training

dataset using a machine learning technique (i.e., Support

Vector Machine (SVM)). A prediction model outputs a score

given a bug localization instance indicating the likelihood that

the instance is effective. From the resultant four models, one
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for each feature category, we create a final prediction model

which combines the four models by computing a weighted sum

of their prediction scores. The weights are tuned to maximize

the prediction result on the training dataset. Then, we use

the final prediction model to predict the effectiveness of bug

localization instances whose effectiveness are unknown.

We name our approach APRILE (Automated PRediction of

IR-based Bug Localization’s Effectiveness), and evaluate its

performance to predict the effectiveness of state-of-the-art bug

localization techniques (i.e., BugLocator [39], BLUiR [21],

and AmaLgam [32]) which are applied on a dataset of 3,459

bugs from AspectJ, Eclipse, and SWT. These bugs were

used to evaluate state-of-the-art IR-based bug localization

tools [1]. Our experimental results show that APRILE can

achieve an average precision, recall, and F-measure of at least

70.36%, 66.94%, and 68.03%, respectively. Our approach also

outperforms a baseline based on the approach proposed by Le

and Lo [13] by 84.88%, 17.74%, and 31.56% for AspectJ,

Eclipse, and SWT bugs, respectively. Le and Lo proposed an

approach that predicts the effectiveness of a spectrum-based

bug localization tool, e.g., Tarantula [10]. Spectrum-based bug

localization tools analyze execution traces rather than bug

reports. We adapt their approach to predict the effectiveness

of an IR-based bug localization tool and use it as the baseline.

The contributions of our work are as follows:

1) We propose a comprehensive list of features extracted

from an input bug report and suspiciousness scores. Our

features are divided into four categories: score, text, topic

model, and metadata features.

2) We propose a framework that utilizes all feature cate-

gories to predict the effectiveness of an IR-based bug

localization tool. For each feature category, we create

a separate prediction model. We then construct a final

model which combines the four prediction models.

3) We evaluate our approach to predict the effectiveness

of three bug localization tools applied on 3,459 bug

reports from three software projects. The empirical results

show that APRILE achieves an average precision, recall,

and F-measure of at least 70.36%, 66.94%, and 68.03%,

respectively.

We organize the remainder of our paper as follows. In

Section II, we discuss background information on IR-based

bug localization, Support Vector Machine (SVM), and topic

modeling. Next, we present our approach in Section III.

Section IV describes our experiment settings and results. We

discuss related work in Section V. Finally, we conclude and

present future work in Section VI.

II. BACKGROUND

In this section, we discuss some background materials. We

first introduce IR-based bug localization. Next, we describe

Support Vector Machine (SVM) which is a popular classifica-

tion algorithm that we use to build prediction models. Finally,

we present a topic modeling algorithm that we use to extract

features.

A. IR-based Bug Localization

An IR-based bug localization approach takes as input a

textual bug report and a collection of program source code

files. Its output is a ranked list of files sorted by their likelihood

to be a buggy file that needs to be fixed to resolve the bug

report. This ranked list is then manually inspected from the

beginning until the buggy files are identified.

Recently, many IR-based bug localization tools have been

proposed [21], [32], [39]. The main idea behind an IR-based

bug localization tool is that a bug report and buggy files are

likely to share common words. Also, if a program file has

higher textual similarity to the bug report than other files, it

is more likely to contain the bug. By deploying text retrieval

models, IR-based bug localization tools calculate similarity

scores between a bug report and program files. Next, program

files are sorted in descending order of their textual similarity

scores, and forwarded to developers for manual investigation.

IR-based bug localization first extracts text that appear in

summary and description fields of bug reports. It also extracts

comments and identifiers that appear in source code files. Each

bug report and source code file can then be represented by a

textual document. Next these documents are input to a text

preprocessing procedure which consists of three main steps:

text normalization, stopword removal, and stemming. These

steps are described below:

• Text Normalization: In this step, special symbols and

punctuation marks are removed from a document. Next,

the document is split into its constituent words. If a word

is an identifier in a source code file, it is again split

into smaller words following the Camel casing convention

(e.g., “processFile” is split into “process” and “file”).

• Stopword Removal: In this step, English stopwords are re-

moved from the normalized document. These stopwords

frequently appear in many documents and do not help

much in differentiating one document from another. We

use the list of stopwords obtained from [2].

• Stemming: In this step, words are transformed to their

root forms. For example, “localized”, “localization”, “lo-

calize”, and “locally” are all simplified to “local”. We use

the Porter Stemming algorithm [19], which is a popular

stemming algorithm, to perform this step.

After the above steps are performed, the document represent-

ing a bug report is then compared to documents representing

source code files using various text retrieval models. These text

retrieval models assign weights to words in the documents

and, based on common words and their weights, compute

similarity of one document and another. The details of the text

retrieval model differ for different bug localization techniques.

The state-of-the-art approaches are BugLocator proposed by

Zhou et al. [39], BLUiR proposed by Saha et al. [21], and

AmaLgam proposed by Wang et al. [32].

B. Support Vector Machine

Support Vector Machine (SVM) is a popular classification

algorithm that has been been shown effective for many kinds

of problems [8]. It represents data instances as points in a
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Fig. 1. Overall framework

multi-dimensional space where each feature is a dimension. It

then separates data instances from different classes by finding

a multi-dimensional hyperplane that best separates them. This

hyperplane is often called the maximum marginal hyperplane
(MMH). The underlying function (i.e., kernel) that defines the

plane itself can be customized. The commonly used one is the

linear kernel. In this work, we use SVM with linear kernel

to build prediction models and consider a bug localization

instance as a point in the multi-dimensional space. SVM is

used to find the plane that separates effective bug localization

instances from ineffective ones.

C. Topic Modeling
Topic modeling is a technique to discover latent topics in a

collection of documents. These latent topics are inferred based

on the occurrences of words in the documents. One of the most

popular topic modeling techniques is Latent Dirichlet Alloca-

tion (LDA) [5]. LDA posits that each document is a mixture of

topics and each word in the document is associated to a topic.

Given a document, LDA generates its topic distribution, which

corresponds to the probability of each topic to be assigned to

the document. In this paper, we use LDA to infer the topic

distribution of a bug report.

III. PROPOSED APPROACH

In this section, we describe technical aspects of our pro-

posed approach. First, we present the overall framework in

Section III-A. Then, we describe two main processes in our

framework in Sections III-B & III-C.

A. Overall Framework

Figure 1 shows the overall framework of our approach.

There are two phases: training phase and deployment phase.

The purpose of the training phase is to learn a model that is

capable of differentiating effective bug localization instances

from ineffective ones. Using the learned model, the deploy-

ment phase predicts whether other bug localization instances

are likely to be effective or not. In the following paragraphs,

we discuss the details of these two phases:

a) Training phase: This phase takes as input a set of

training bug localization instances whose effectiveness labels

are known. Each instance in the training set corresponds to a

bug and comes with the following information:

1) A bug report that describes the bug.

2) Suspiciousness scores that are assigned to source code

files by an IR-based bug localization tool.

3) Effectiveness label (i.e., “effective” or “ineffective”).

In the training phase, there are two main processes: feature

extraction and model learning. In the feature extraction pro-

cess, we identify and extract some important characteristics

(aka. features) from each bug localization instance. Next, we

use these extracted features to train a model that is capable

of differentiating effective bug localization instances from

ineffective ones. This model model is used in the deployment

phase.
b) Deployment phase: In this phase, our framework

accepts bug localization instances whose effectiveness are

unknown. Similar to the training phase, our framework extracts

features from each bug localization instance. Based on the

extracted features, the prediction model learned in the training

phase will predict the effectiveness of a bug localization

instance.

B. Feature Extraction

In this section, we list features that we extract from a bug

localization instance. These include features that we extract

from suspiciousness scores produced by a bug localization

tool (score features), features that we extract from words

that appear in textual contents of an input bug report (text

features), features that we extract from topic distributions of

the bug report (topic model features), and features that we

extract from metadata of the bug report (metadata features).

The following sub-sections describe these features one by one.

1) Score Features: Table I shows a list of features that

we extract from the suspiciousness scores. A bug localization

tool outputs a suspiciousness score for every source code

file. In the table, features R1 to R20 are the suspiciousness

scores of the top-20 files in a ranked list. If the suspiciousness

scores of top ranked files are relatively low, then the instance

is likely to be ineffective. The next five features, SS1 to

SS5, are simple statistics of the top-20 suspiciousness scores.
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TABLE I
LIST OF SCORE FEATURES

ID Description
Raw Scores (20 features)

R1 Highest suspiciousness score
R2 Second highest suspiciousness score

Ri ith highest suspiciousness score (3 ≤ i ≤ 20)
Simple Statistics of Raw Scores (5 features)

SS1 Mean of {R1, . . . ,R20}
SS2 Median of {R1, . . . ,R20}
SS3 Mode of {R1, . . . ,R20}
SS4 Variance of {R1, . . . ,R20}
SS5 Standard deviation of {R1, . . . ,R20}

Gaps (21 features)
G1 R1 − R2

G2 R2 − R3

Gi Ri − Ri+1(3 ≤ i < 20)
Gmin Min of {G1, . . . ,G19}
Gmax Max of {G1, . . . ,G19}

Relative Differences (18 feature)

RD1
R2−R20
R1−R20

RD2
R3−R20
R1−R20

RDi
Ri+1−R20

R1−R20
(3 ≤ i ≤ 18)

Next, features G1 to G19, Gmin, and Gmax capture absolute

differences between two consecutive suspiciousness scores. If

the difference between two consecutive scores are large, the

corresponding two files are very different from each other. An

effective bug localization instance should be able to separate

buggy files from other files. Finally, the last 18 features, RD1

to RD18, capture how diverse the values of R1 to R20 are. The

suspiciousness scores of top-ranked files corresponding to an

effective bug localization instance are likely to be diverse. If

all files are given the same suspiciousness score, then the bug

localization instance will be ineffective.

TABLE II
LIST OF TEXT FEATURES

ID Description

TRACE
One, if there is a stack trace in the summary or
description fields of a bug report. Zero, other-
wise.

Fw
Number of times word w occurs in the summary
and description fields of a bug report.

2) Text Features: We extract text from the summary and

description fields of a bug report, and use them as text

features of a bug localization instance. Table II shows a

list of features that we extract from the textual contents of

a bug report. The first feature in our list (TRACE) has a

boolean value. Its value is 1 if the summary or descrip-

tion field of a bug report contains a stack trace. Other-

wise, its value is 0. A program stack trace usually contains

clues leading to a buggy file as it contains names of rele-

vant program files (e.g., “at org.aspectj.EclipseFactory.from-

Binding(EclipseFactory.java:202)”). Hence, the existence of a

program stack trace can help an IR-based bug localization

tool to effectively localize bugs. Furthermore, we consider

each word in a bug report as a feature, and its value is the

number of times the word appears in the bug report. Before

selecting words from bug reports as features, we perform text

preprocessing that is described in Section II-A.

TABLE III
LIST OF TOPIC MODEL FEATURES. Mk IS A TOPIC MODEL WITH THE

NUMBER OF TOPICS SET TO k (k ∈ {5, 10, 15}).

ID Description
Raw Topic Probabilities

TM1
k Probability of the 1st topic appearing in Mk

TM2
k Probability of the 2nd topic appearing in Mk

TMi
k Probability of the ith topic (3 ≤ i ≤ k) appearing in Mk

Simple Statistics of Topic Probabilities in Mk

TS1
k Max of {TM1

k, . . . ,TMi
k}

TS2
k Median of {TM1

k, . . . ,TMi
k}

TS3
k Variance of {TM1

k, . . . ,TMi
k}

TS4
k Standard deviation of {TM1

k, . . . ,TMi
k}

TS1
avg (TS1

5 + TS1
10 + TS1

15)/3

3) Topic Model Features: We apply Latent Dirichlet Allo-

cation (LDA) [5] to extract these features from bug reports.

LDA takes as input a parameter k which is the number of

topics. The output of applying LDA is a topic-model that

contains the following information:

1) k topics, where each topic is a distribution of words.

2) Probability of topic t to occur in bug report br.

3) Topic assigned to word w in bug report br.

Each time LDA is applied, it creates a topic model Mk

where k is the number of topics. For our approach, we apply

LDA with k ∈ {5, 10, 15} to infer three topic model M5,

M10, M15. Then, we capture interesting features from the three

topic modes. Table III lists features that we extract from these

models.

For each topic model Mk (k ∈ {5, 10, 15}), we use the

topic probabilities of a bug report as the features of the

corresponding bug localization instance. Each topic is an

abstraction of a set of words. The set of topics inferred by a

topic modeling technique based on the number of topics setting

k represents the level of abstraction. The higher the value of k
is, the lower the abstraction level is. By using multiple topic

models with various k values, we capture information from

many different abstraction levels in order to maximize the

chance to differentiate bug reports corresponding to effective

bug localization instances from other reports that lead to

ineffective instances. In addition to the raw topic probabilities,

we also compute simple statistics of these probabilities as

features.

4) Metadata Features: In addition to summary and descrip-

tion fields, bug reports have other fields.. These fields provide

basic information such as report date, severity, priority, etc.

We refer to this information as metadata of bug reports.

Table IV shows a list of metadata features that we are

interested in. In total, there are 14 metadata features. Among

the features, features MT1 and MT2 capture the importance

of the reported bug, features MT3 to MT7 capture the context
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TABLE IV
LIST OF METADATA FEATURES

ID Description
Importance of a Bug

MT1 Priority
MT2 Severity

Context of a Bug
MT3 Product
MT4 Component
MT5 Software version
MT6 Hardware platform (e.g., PC etc.)
MT7 Operating system platform (e.g., XP, Linux etc.)

Quality of a Bug Report
MT8 Name of reporter
MT9 Number of bug reports the reporter has submit-

ted so far at time of the current bug report.
MT10 Number of persons in CC list when the bug

report is first submitted.
MT11 Total number of attachments in the bug report
MT12 Number of attachments that are applications
MT13 Number of attachments that are texts
MT14 Number of attachments that are images

where the bug is observed, and features MT8 to MT14 capture

factors that might impact the quality of bug reports such as

the experience of the reporter, the number of attachments,

etc. We utilize features extracted from bug report metadata

to maximize the chance to capture distinctive characteristics

of bug reports that correspond to effective bug localization

instances.

C. Effectiveness Prediction Model

Our final prediction model contains four internal compo-

nents which analyze score, text, topic model, and metadata

features. Each component consists of a prediction model that

specializes in a particular feature category . For example, score

component only analyzes the score features, text component

only analyzes in the text features, and so on.

In the training phase, we use the Support Vector Machine

(SVM) algorithm to train the prediction model of each com-

ponent. SVM algorithm takes as input features of training

bug localization instances whose effectiveness are known and

learns a prediction model. A prediction model can process

features of a bug localization instance and output a prediction

score of that instance. The prediction score indicates how

likely a bug localization instance is effective. If the score is

greater than a threshold, then the corresponding instance is

predicted as effective by that prediction model. Otherwise, it is

predicted as ineffective. We linearly combine scores generated

by the prediction models of the four internal components

together to obtain the final score (i.e., APRILE score) as

follows:

APRILE(p) = α× SVMScore(p) + β × SVMText(p)

+γ × SVMTopic(p) + δ × SVMMeta(p) (1)

(α, β,γ, δ ∈ [0, 1] ∧ α+ β + γ + δ = 1)

In the above equation, p is an input bug localization in-

stance, APRILE(p) is the combined prediction score for p,
SVMScore(p), SVMText(p), SVMTopic(p), and SVMMeta(p) are

the prediction scores output by the score, text, topic model, and

metadata components, respectively. Each of the component has

a weight in range of [0, 1] and their sum equals to 1. We

also define a threshold for APRILE to differentiate prediction

scores of effective and ineffective instances. We denote the

threshold as ω. If APRILE(p) > ω, then p is an effective

instance. Otherwise, p is ineffective.

We need to tune values of α, β, γ, δ and ω. We tune these

values such that the performance of APRILE is maximized on

the training data. We measure the performance of APRILE in

terms of F-measure (see Section IV-A). We try different weight

combinations by varying the value of each weight from 0 to

1, in a step of 0.025, with a constraint that the four weights

will add up to 1. Implementation-wise, we pick the values of

α, β, and γ; if their total weight is less than 1, we set the

value of δ such that the summation of the four weights is

equal to 1. Next, we follow Equation 1 to calculate APRILE

scores of bug localization instances . Then, we call procedure

tuneOmega to tune the threshold ω such that the F-measure

is maximized. We select the weight combination of α, β, γ, δ
and ω that results in the best F-measure.

Next, we describe procedure tuneOmega. The procedure

takes as input a set of bug localization instances, and their

effectiveness labels. tuneOmega first sorts bug localization

instances in ascending order of their APRILE scores (line 1).

Next, tuneOmega calculates F-measures for two base cases.

The first case is when all instances are predicted as effective

(line 3). The second case is when all instances are predicted

as ineffective (line 5). From lines 11 to 17, tuneOmega iterates

through various ω values by taking the average of the APRILE

scores of two consecutive instances in the sorted list. The ω
value which results in the highest F-measure is selected and

returned.

Input: D: Training set of IR-based bug localization instances
L: Effectiveness labels of instances in D

Output: Pair of best ω and best F-measure
1 Sort instances in D in ascending order of their APRILE’s scores.
2 ω1 ← APRILE(D[1])− 10−3

3 Fm1 ← F-measure when effectiveness threshold is ω1

4 ω2 ← APRILE(D[D.length]) + 10−3

5 Fm2 ← F-measure when effectiveness threshold is ω2

6 if Fm1 > Fm2 then
7 Fmbest ← Fm1, ωbest ← ω1

8 else
9 Fmbest ← Fm2, ωbest ← ω2

10 end
11 for k ← 1 to D.length− 1 do
12 ω ← (APRILE(D[k]) +APRILE(D[k + 1]))/2
13 Fmtemp ← F-measure when effectiveness threshold is ω
14 if Fmtemp > Fmbest then
15 Fmbest ← Fmtemp, ωbest ← ω
16 end
17 end
18 return (ωbest, Fmbest)

Procedure tuneOmega

In the deployment phase, we apply the learned final pre-

diction model to predict the effectiveness of bug localization

instances whose effectiveness are unknown. Given an input in-

stance p, we calculate APRILE(p) (see Equation 1) by using
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TABLE V
DATASET SUMMARY: THIRD COLUMN (#BUGS) IS THE NUMBER OF BUG

REPORTS. LAST COLUMN (#FILES) IS THE NUMBER OF SOURCE CODE

FILES.

Project Study Period #Bugs #Files
AspectJ Jul 2002 - Oct 2006 286 6485

Eclipse (3.1) Oct 2004 - Mar 2011 3075 12863
SWT (3.1) Oct 2004 - Apr 2011 98 6485

prediction models SVMScore, SVMText, SVMTopic, SVMMeta,

and weights α, β, γ, δ, which are learned in the training phase.

Then, we compare APRILE(p) with threshold ω, which is

also learned in the training phase, and output the predicted

effectiveness label of p (i.e., “effective”, or “ineffective”).

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our dataset and experiment

settings. Next, we describe the research questions and our

experiment results that answer these questions. We finally

describe the threats to validity.

A. Dataset and Experiment Settings

Dataset. We conduct experiments using three sets of bug

reports from AspectJ, Eclipse, and SWT which contain a total

of more than three thousands bug reports. The details of our

dataset are shown in Table V.

Effectiveness Criterion. We consider a bug localization in-

stance effective if a buggy file can be found in the top-N

position in the ranked list. In our experiments, the default value

of N is 1.

Evaluation Metrics. We use precision, recall, and F-

measure [8] to evaluate the performance of our proposed

approach. We use four statistics to calculate precision and

recall. These statistics are true positives (TP), false positives

(FP), true negatives (TN), and false negatives (FN). The

following are their definitions:

TP: Number of effective bug localization instances that

are predicted correctly.

FP: Number of ineffective bug localization instances

that are predicted incorrectly.

TN: Number of ineffective bug localization instances

that are predicted correctly.

FN: Number of effective bug localization instances that

are predicted incorrectly

Using the above statistics, we compute precision, recall, and

F-measure as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure =
2× Precision×Recall

Precision+Recall

In the above equations, precision is the proportion of true

positives among the IR-based bug localization instances that

are predicted as effective. Recall is the proportion of true

positives among the IR-based bug localization instances that

are effective. Both precision and recall reflect the performance

of a prediction model. Usually, there is an inverse relationship

between precision and recall where higher precision might

result in lower recall (and vice versa). Hence, F-measure,

which is the harmonic mean of precision and recall, is usually

used as a summary measure which informs whether a gain in

precision (recall) outweighs a decrease in recall (precision).

Cross-Validation. We perform a ten-fold cross-validation to

evaluate the performance of our approach. Cross-validation is a

standard method to assess accuracy of prediction models [8]. It

evaluates whether the result of a prediction model generalizes

to an independent test dataset. In ten-fold cross-validation, for

each project, we randomly partition its bug reports into 10

distinct subgroups of data. Subsequently, we learn a prediction

model on nine subgroups, and test the prediction model on the

remaining subgroup. We repeat the process 10 times by using

each of the 10 subgroups as test data. Finally, we aggregate

all outputs from the ten repetitions, and calculate the final

precision, recall, and F-measure.

B. Research Questions

We analyze several research questions (RQs) to evaluate

the performance of our proposed approach. These RQs are

presented in the following paragraphs.

RQ 1: How good is the performance of our approach when
predicting the effectiveness of an IR-based bug localization
tool?

Answer to this research question will shed light on the

utility of our approach. To answer this research question, we

use APRILE to predict the effectiveness of BugLocator [39]

to locate buggy files. For each bug report in our dataset, we

predict if the ranked list produced by BugLocator is effective

or not.

RQ 2: How good is our approach compared to another
effectiveness prediction approach?

Recently, Le and Lo propose an approach to predict the

effectiveness of a spectrum-based bug localization tool [13]. A

spectrum-based bug localization tool analyzes a set of failed

and correct execution traces and computes suspiciousness

scores of program elements (e.g., statements). Program

elements are then ranked based on their scores and the

resultant ranked list is output for manual inspection. Le and

Lo’s approach uses features extracted from program execution

traces and suspiciousness scores. In IR-based bug localization

setting, there is no execution traces; thus we can only run

Le and Lo’s approach on features that are extracted from

suspiciousness scores of files. We use this approach as a

baseline to compare APRILE with. We denote this baseline

as SVMExt
Score.
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RQ 3: What are the contributions of each feature category
(i.e., score, text, topic model, and metadata) to the overall
performance of our approach?

Our proposed approach contains four components which

process four different feature categories (i.e., score, text,

topic model, and metadata). These components are combined

together by assigning weights to each of them. To investigate

the contributions of the four feature categories, we report the

averages of the weights that are assigned to these components

across the ten-fold cross-validation iterations.

RQ 4: Which of the proposed features best discriminate
effective IR-based bug localization instances from ineffective
ones?

We investigate which features from our list are helpful in

predicting effective IR-based bug localization instances. In

machine learning, Fisher score are usually used to estimate

how much discriminative features are. The Fisher score of a

feature is calculated as follows

FS(j) =

∑#class
class=1(x̄

(class)
j − x̄j)

2

∑#class
class=1(

1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j )2)

(2)

In the above equation, FS(j) is the Fisher score of the jth

feature, nclass is the number of data points (i.e., number of

bug localization instances) with label class (i.e., effective or

ineffective), x̄j is the average value of the jth feature over

all data points, x̄
(class)
j is the average value of the jth feature

over all data points with label class. If a feature has a Fisher

score of zero, then that feature does not help to discriminate

effective IR-based bug localization instances from ineffective

ones. On the other hand, a feature is very discriminative if

its Fisher score is much greater than zero. In this research

question, we investigate the most discriminative features from

each feature category for every software project (i.e., AspectJ,

Eclipse, and SWT).

RQ 5: What is the effect of changing the effectiveness criterion
on the performance of our approach?

By default, a bug localization instance is deemed effective

if a buggy file exists in the top-N positions of the ranked list,

where N = 1. This corresponds to the case when a developer

is willing to inspect only the first recommended program

file. However, developers might be willing to inspect more

files. In this research question, we vary the effectiveness

criterion by considering N = 5 and N = 10. For each of these

effectiveness criteria, we evaluate the performance of our

approach.

RQ 6: Is our approach applicable to predict the effectiveness of
various state-of-the-art IR-based based bug localization tools?

There are a number of IR-based bug localization tools that

have been proposed in the literature. In this research question,

we investigate the performance of our approach in predicting

the effectiveness of two other state-of-the-art bug localization

tools: BLUiR [21] and AmaLgam [32].

C. Results

1) RQ 1: Overall Performance.: Table VI shows the statis-

tics of effective and ineffective bug localization instances

when BugLocator is applied on the 3,459 bug reports in

our dataset. From the table, effective instances account for

22.73%, 31.67%, and 35.71% of all AspectJ, Eclipse, and

SWT instances, respectively. Considering all three datasets,

there are 1,074 effective instances which are 31.05% of the

total number instances.

Table VII shows the performance of our approach in

predicting effective and ineffective instances. Our approach

achieves an F-measure of 71.67%, 62.97%, and 69.44% for

AspectJ, Eclipse, and SWT respectively. For Eclipse, our

approach is able to correctly predict 716 out of 974 effective

instances, and 1,517 out of 2,101 ineffective instances.

Similarly, for AspectJ there are 43 out of 65 effective

instances, and 209 out of 221 ineffective instances that are

correctly predicted by our approach. For SWT, our approach

can correctly identify 25 out of 35 effective instances, and 51

out of 63 ineffective instances. Overall, our approach is able

to discover most effective and ineffective instances correctly.

Averaging across the three datasets, the precision, recall,

and F-measure of our approach are 70.36%, 66.94%, and

68.03% respectively, which are comparable to or better than

the results achieved by other software analytics studies [13],

[22], [23], [31].

TABLE VI
NUMBER OF EFFECTIVE AND INEFFECTIVE BUGLOCATOR INSTANCES

Project #Effective #Ineffective
AspectJ 65 221
Eclipse 974 2101
SWT 35 63

Total 1074 2385

TABLE VII
OVERALL PERFORMANCE ON PREDICTING BUGLOCATOR’S

EFFECTIVENESS

Project Precision Recall F-measure
AspectJ 66.15% 78.18% 71.67%
Eclipse 73.51% 55.08% 62.97%
SWT 71.43% 67.57% 69.44%

Average 70.36% 66.94% 68.03%

2) RQ 2: APRILEvs. Baseline: We compare our approach

with SVMExt
Score proposed by Le et al. [13]. We apply both

approaches to predict the effectiveness of BugLocator in-

stances. Table VIII shows the precision, recall, and F-measure

of SVMExt
Score and our approach. For all of the projects (i.e.,

AspectJ, Eclipse, and SWT), our approach achieves better

F-measure. In term of relative improvement, our approach

outperforms the baseline by 84.48%, 17.74%, and 31.56% for

AspectJ, Eclipse, and SWT, respectively.
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TABLE VIII
F-MEASURE: SVMExt

Score VS. OUR APPROACH

Project SVMExt
Score Our Approach Improvement

AspectJ 38.85% 70.67% 84.48%
Eclipse 53.48% 62.97% 17.74%
SWT 52.78% 69.44% 31.56%

3) RQ 3: Contributions of Each Feature Category: Table IX

shows our findings. We find that the contribution of each

feature category varies from project to project. For AspectJ,

score features have the largest contribution, but for Eclipse

and SWT, topic model features contribute the most. Across

the three projects, the contribution of the metadata features

are smaller than the others

.

TABLE IX
AVERAGE WEIGHTS OF EACH FEATURE CATEGORIES

Project Component
Score Text Topic Model Metadata

Aspectj 0.793 0.145 0.030 0.033
Eclipse 0.160 0.268 0.528 0.045
SWT 0.207 0.202 0.565 0.025

4) RQ 4: Most Important Features: Table X shows the top-

5 features for each category with the highest Fisher scores for

each project. The following are our findings:

1) For score features, we notice G1 and Gmax are in the

top-5 of the three projects. G1 captures the difference of

the highest suspiciousness score and the second highest

suspiciousness score, Gmax captures the maximum value

of the difference between two consecutive suspiciousness

scores. In many effective instances, the suspiciousness

score of a buggy file is often very different from the

suspiciousness score of the next file in the ranked list.

2) Next, for text features, we observe that the top-5 text

features of the three projects are quite different. There is

only one word (i.e., “error”) which is important to classify

both AspectJ and Eclipse instances. This indicates that

textual bug reports of each project are rather different

from one another. Therefore, their important text features

are unique to each project.

3) Next, we analyze topic model features. From the table,

we notice that the most important features of the three

projects comes from topic models with different numbers

of topics. This means one single topic model (i.e., one

abstraction level of words) captures some characteristics

of bug reports, but not all of them. Therefore, combining

features from different topic models helps our approach to

effectively differentiate bug reports of effective instances

from those of ineffective ones.

4) Finally, we inspect important metadata features. We find

that feature MT10 (number of persons in the CC list of

a bug report) is among the top-5 features of the three

projects. Usually, the reporters put in CC lists people

who they think to be experienced and familiar with a
similar kind of bugs. Therefore, longer CC lists somehow

show better knowledge and familiarity of reporters on

a certain kind of bugs. Consequently, these reporters

tend to submit better written bug reports that help bug

localization tools perform more effectively. Hence, values

of MT10 help our prediction model to differentiate bug

reports of effective bug localization instances from the

other ones. There are other features that are important

in 2 out of 3 projects. They are MT3, MT8, and MT14.

MT3 captures information of the product where the bug

is observed. This feature helps the prediction model to

identify which parts of the software project are likely

to lead to effective bug localization instances. MT8, and

MT14 are two features related to quality of bug reports.

If a bug is reported by an experienced reporter, the bug is

likely to be well described. Furthermore, there are cases

where reporters attach screenshots to bug reports and put

less effort in writing symptoms of the bugs explained by

the screenshots. Since a bug localization approach only

analyzes text and not images, they tend to perform poorly

for such bug reports.

.

TABLE X
MOST IMPORTANT FEATURES

Category AspectJ Eclipse SWT

Score

1. R1 1. Gmax 1. R1

2. SS5 2. G1 2. Gmax

Feature 3. SS4 3. RD4 3. G1

4. G1 4. RD5 4. RD2

5. Gmax 5. RD3 5. RD6

Text

1. Ferror 1. Feasili 1. Frun

2. Fprogram 2. Fsubclass 2. Fstatic

Feature 3. Fimpli 3. Ftest 3. Flog

4. Fvoid 4. Fnativ 4. Feclips

5. Freason 5. Ferror 5. Frefer

Topic
1. TM4

15 1. TM8
10 1. TM2

10

Model
2. TM5

15 2. TM10
15 2. TM2

15

Feature
3. TM5

5 3. TM4
15 3. TM2

5

4. TS1
avg 4. TM8

15 4. TM15
15

5. TM8
10 5. TM4

10 5. TM1
5

Metadata

1. MT6 1. MT3 1. MT10

Feature

2. MT10 2. MT14 2. MT8

3. MT11 3. MT12 3. MT1

4. MT8 4. MT13 4. MT14

5. MT3 5. MT10 5. MT9

5) RQ 5: Effect of Varying Effectiveness Criterion: Ta-

ble XI shows the number of effective and ineffective BugLo-

cator instances for N = 1, N = 5 and N = 10. Clearly,

the number of effective instances increases when we vary the

value of N from 1 to 10. Overall, the numbers of effective

BugLocator instances for N equals to 1, 5, and 10, are 31.05%,

54.96%, and 64.41% of all BugLocator instances, respectively.

Table XII shows the effect of using various effectiveness

criteria on the performance of our approach. From the table,

we notice that F-measure increases from 68.03% to 83.22%

when we increase N from 1 to 10. This shows that our

approach can work well for various effectiveness criteria.
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TABLE XI
NUMBER OF EFFECTIVE AND INEFFECTIVE INSTANCES OF BUGLOCATOR

FOR VARIOUS EFFECTIVENESS CRITERIA.

Project N=1 N=5 N=10
(+) (–) (+) (–) (+) (–)

AspectJ 65 221 139 147 172 114
Eclipse 974 2101 1694 1381 1978 1097
SWT 35 63 68 30 78 20

Total 1074 2385 1901 1558 2228 1231

TABLE XII
F-MEASURE OF OUR APPROACH FOR N=1, N=5, AND N=10

Project N=1 N=5 N=10
AspectJ 71.67% 72.52% 79.81%
Eclipse 62.97% 78.67% 80.69%
SWT 69.44% 83.33% 89.16%

Average 68.03% 78.17% 83.22%

6) RQ 6: Performance on Other IR-based Bug Localization
Tools: We inspect the performance of our approach on several

other IR-based bug localization tools namely BLUiR [21] and

AmaLgam [32]. We use the default effectiveness criterion

(i.e., N = 1). Table XIII shows the number of effective

and ineffective instances for each tool. From the table, the

total numbers of effective instances of BLUiR and AmaLgam

account for 33.07% and 54.90% of all instances respectively.

Table XIV shows the precision, recall, and F-measure of our

approach when applied to BLUiR and AmaLgam instances.

We observe that the average F-measure scores across the three

projects are close to or higher than 70%. These results show

that our approach can be applied to predict the effectiveness

of different IR-based bug localization tools.

TABLE XIII
NUMBER OF EFFECTIVE AND INEFFECTIVE INSTANCES FOR BLUIR AND

AMALGAM

Project BLUiR AmaLgam
(+) (–) (+) (–)

AspectJ 76 210 105 181
Eclipse 1013 2062 1060 2015
SWT 55 43 61 37

Total 1144 2315 1226 2233

TABLE XIV
F-MEASURE OF OUR APPROACH ON BLUIR AND AMALGAM INSTANCES

Project BLUiR AmaLgam
AspectJ 67.07% 70.85%
Eclipse 65.13% 67.83%
SWT 76.03% 84.03%

Average 69.41% 74.24%

D. Threats to Validity

Threats to internal validity relate to experimenter errors. We

have rechecked our implementation several times, but there

may still be errors that we do not notice. Threats to external
validity relate to the generalizability of our findings. We have

only experimented on bug reports from 3 open source projects.

Moreover, the projects are all written in Java and use the same

bug reporting system (i.e., Bugzilla). In the future, we plan to

reduce these threats by experimenting on more projects written

in various programming languages and which use various bug

reporting systems. We also plan to extend our study to closed

source software systems. We have only investigated 3 IR-based

bug localization tools. These tools are the latest IR-based bug

localization tools proposed in the literature. In the future, we

also want to investigate other IR-based bug localization tools.

Threats to construct validity relate to the suitability of our

evaluation metrics. We use precision, recall, and F-Measure

to evaluate our approach. These metrics are well known [8]

and have been used in many software engineering studies [4],

[13], [17]. Thus, we believe there is little threat to construct

validity.

V. RELATED WORK

In this section, we highlight related studies on IR-based

bug localization and spectrum-based bug (fault) localization

and related studies that employ classification techniques to

automate software engineering tasks. The survey here is by

no means complete.

A. IR-Based Bug Localization

These techniques leverage information retrieval techniques

to measure the similarity between a bug report and source

code files to produce a ranked list of most similar files.

Rao and Kak applied many standard IR techniques for bug

localization and evaluated their performances [20]. Lukins et

al. proposed the use of Latent Dirichlet Allocation (LDA)

for bug localization [15]. Marcus and Maletic used Latent

Semantic Indexing (LSI) to recover document to source code

traceability links [16]. Sisman and Kak proposed a technique

that predicts the likelihood of a file to be buggy by learning

from information stored in version history and use these like-

lihoods along with a Vector Space Model (VSM) to perform

bug localization [25]. Zhong et al. proposed BugLocator, a bug

localization tool that uses a specialized VSM model [39]. Saha

et al. used the structure of source code files and bug reports

to build a structured retrieval model for bug localization [21].

Wang and Lo combined the approaches by Sisman and Kak,

Zhou et al., and Saha et al. to build a better bug localization

tool [32]. Tantithamthavorn et al. consider co-change histories

to improve performance of BugLocator [26]. S.W. Thomas

et al. analyze the impact of input parameters on performance

of various IR-based bug localization tools, and introduce a

framework for combining results of different bug localization

tools [28].

In this work, we extend these studies by building an

approach that can predict if a ranked list that is output by

a bug localization technique is likely to be effective or not. If

it is likely to be ineffective, developers can ignore the ranked

list and use conventional debugging methods. Following an

ineffective bug localization output wastes developers’ time and

effort.
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B. Spectrum-Based Bug (Fault) Localization

These techniques analyze program execution traces and

pass/fail outputs of test cases to rank program elements (e.g.,

program statements). Jones and Harold proposed a suspi-

ciousness formula called Tarantula that assigns suspiciousness

scores to program elements [10]. Intuitively, Tarantula consid-

ers program elements that appear more in failed executions

as more likely to be buggy. Similarly, Abreu et al. proposed

a suspiciousness formula called Ochiai [3]. Studies have

shown that Ochiai outperforms Tarantula in ranking buggy

program elements. Wong et al. proposed DStar (D∗) to rank

program elements and showed that it outperformed 38 other

measures [33]. In another study, Wong et al. proposed a

crosstab-based statistical approach for bug localization [35].

In yet another study, Wong et al. proposed the use of an RBF

neural network for bug localization [34]. Borrowing concepts

from the data mining community, Lucia et al. investigated

the effectiveness of 40 association measures and found that

Klosgen and Information Gain are promising measures for

bug localization [14]. Recently, Xie et al. theoretically proved

that several families of suspiciousness formulas outperform the

others [36].

Other studies also analyze execution traces to find buggy

program elements. However, these studies do not compute

suspiciousness scores. Zeller and Hildebrandt proposed Delta

Debugging that search for failure inducing inputs [38]. Em-

ploying this technique, Zeller searched for minimal state

difference between failed and successful execution traces [37].

Cleve and Zeller extended Delta Debugging further by in-

corporating cause transitions, which is implemented in a tool

named AskIgor [7].

In this work, we focus on predicting the effectiveness of an

IR-based bug localization tool instead of a spectrum-based bug

localization tool. Le and Lo have developed an approach that

predicts the effectiveness of a spectrum-based bug localization

tool [13].

C. Classification Techniques for Software Engineering

There are many studies that employ classification techniques

to solve software engineering problems. Bowring et al. em-

ployed active learning to predict whether an execution trace

is correct or faulty [6]. Antoniol et al. proposed an approach

that predicts whether an issue is a bug report or a feature

request [4]. Lamkafi et al., Menzies and Marcus, and Tian et

al. proposed techniques that predict the severity of reported

bugs [11], [12], [17], [29]. Jalbert and Weimer proposed an

approach that predicts whether a bug report is a duplicate

or not [9]. Tian et al. extended Jalbert and Weimer’s work

using a more effective solution [30]. Shibab et al. proposed

an approach that predicts whether a closed bug report would

be reopened [24].

VI. CONCLUSION AND FUTURE WORK

In this paper, we address the unreliability of IR-based bug

localization techniques by proposing an automatic approach

that can predict the effectiveness of a bug localization instance.
We propose a number of features that we extract from an

input bug report and a ranked list of suspiciousness scores

that are output by a bug localization tool. These features in-

clude: suspiciousness score features, text features, topic model

features, and metadata features. For each feature category, we

use the values of the features extracted from a training data to

learn a prediction model using a machine learning technique.

We combine these prediction models together to create a final

model. We tune the contributions of each constituent model in

the final model to achieve the best performance on the training

data. Later, we use the final model to predict the effectiveness

of bug localization instances whose effectiveness are unknown.

We evaluate our proposed approach on state-of-the-art bug

localization techniques applied on a dataset of 3,459 bugs

from AspectJ, Eclipse, and SWT. Our approach can achieve

an average precision, recall, and F-measure of at least 70.36%,

66.94%, and 68.03%, respectively. Furthermore, our approach

outperforms a baseline based on the approach proposed by Le

and Lo [13] by 84.48%, 17.74%, and 31.56% for bug reports

from AspectJ, Eclipse, and SWT, respectively.

For future work, we plan to add more features to improve

F-measure further. Also, we plan to use search algorithms

such as genetic algorithm, to tune the weights that govern

contributions of the constituent models in our final model.
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