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Abstract—Software code review is a process of developers
inspecting new code changes made by others, to evaluate their
quality and identify and fix defects, before integrating them to the
main branch of a version control system. Modern Code Review
(MCR), a lightweight and tool-based variant of conventional code
review, is widely adopted in both open source and proprietary
software projects. One challenge that impacts MCR is the
assignment of appropriate developers to review a code change.
Considering that there could be hundreds of potential code
reviewers in a software project, picking suitable reviewers is not
a straightforward task. A prior study by Thongtanunam et al.
showed that the difficulty in selecting suitable reviewers may
delay the review process by an average of 12 days.

In this paper, to address the challenge of assigning suitable
reviewers to changes, we propose a hybrid and incremental
approach TIE which utilizes the advantages of both Text mIning
and a filE location-based approach. To do this, TIE integrates
an incremental text mining model which analyzes the textual
contents in a review request, and a similarity model which
measures the similarity of changed file paths and reviewed file
paths. We perform a large-scale experiment on four open source
projects, namely Android, OpenStack, QT, and LibreOffice,
containing a total of 42,045 reviews. The experimental results
show that on average TIE can achieve top-1, top-5, and top-10
accuracies, and Mean Reciprocal Rank (MRR) of 0.52, 0.79, 0.85,
and 0.64 for the four projects, which improves the state-of-the-
art approach REVFINDER, proposed by Thongtanunam et al.,
by 61%, 23%, 8%, and 37%, respectively.

Index Terms—Modern Code Review, Recommendation System,
Text Mining, Path Similarity

I. INTRODUCTION

Software code review has been the best practice in both
open source and industrial software projects [11]. It is the
process where developers inspect code changes made by others
to evaluate the quality of the changes and identify and fix
defects before integration. Previous studies show that formal
inspections of code with in-person meeting can help reduce
the number of post-release defects [11], and improve the
overall quality of software systems [5], [7]. Unfortunately,
the cumbersome and time-consuming nature of conventional
formal code inspection impedes its adoption in practice [25],
[31].

Modern Code Review (MCR), an informal, lightweight, and
tool-based variant of conventional formal code review, has
been widely used in companies such as Microsoft, Google,
Facebook, and many open source software projects [8]. In
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MCR, typically a developer submits a code change (aka. patch)
to a code review system, e.g., Gerrit1, and recommends a set
of developers to review the change. Then, the reviewers would
discuss the change, provide comments, and suggest fixes to the
change. Next, the developer improves the change according to
the comments. The code change would be integrated into the
main branch of the version control system when the reviewers
approve it.

To effectively speed up the code review process, the devel-
oper should find appropriate code-reviewers who are expert
in the related source code, and are able to inspect the code
well to find bugs (if they exist) [7], [23], [28]. Thongtanunam
et al. found that 4% - 30% of the reviews suffer from a
code-reviewer assignment problem, and these reviews require,
on average, an additional of 12 days to get completed [28].
Moreover, considering the large amount of review requests
submitted daily (e.g., there are 74.4 review requests sub-
mitted daily to QT’s Gerrit from 2011 – 2012), manually
assigning appropriate code-reviewers can be tedious and time-
consuming. Thus, an automated code-reviewer recommenda-
tion tool could help to relieve developer workload and speed
up the code review process.

In this paper, we propose a hybrid and incremental approach
TIE which utilizes the advantages of both Text mIning and
a filE location-based approach to address the code-reviewer
recommendation problem. A typical review has two important
fields, i.e., the description field which describes the details
of the change (i.e., patch), and the file location field which
records the paths of modified files, and TIE effectively makes
use of both fields. TIE first builds an incremental text mining
model by analyzing the textual contents in the description field
of the reviews, and a similarity recommendation model by
measuring the similarity of the paths of the changed files and
paths of files historically reviewed by various developers. The
similarity of a pair of paths is computed based on the number
of common directory and file names between them. Next, these
two models are blended to achieve a better performance. TIE
is an incremental approach, which can be updated with new
training data as new code changes are reviewed by developers.

Our goal is to improve the state-of-the-art approach
REVFINDER which was recently proposed by Thongtanunam
et al. [28]. REVFINDER uses the file paths in the reviews

1https://code.google.com/p/gerrit/



to recommend code reviewers. It measures the similarity
of two paths by using four string comparison techniques,
i.e., longest common prefix, longest common suffix, longest
common substring, and longest common subsequence. TIE’s
similarity model also uses the file paths, however it measures
the similarity of two paths in a different way, i.e., by measuring
the number of common directory and file names between them.
Different from REVFINDER, TIE also has a text mining model
that considers the textual contents in the description field of
review requests to recommend reviewers. Furthermore, TIE
merges the text mining and similarity models to achieve better
performance.

We evaluate our approach on 4 datasets from different
software communities: Android [1], OpenStack [3], QT [4],
and LibreOffice [2]. In total, we analyze 42,045 code reviews.
We measure the performance of our approach and a competing
baseline in terms of top-1, top-5, and top-10 recommendation
accuracies, and Mean Reciprocal Rank (MRR) [9]. The exper-
imental results show that TIE achieves average top-1, top-5,
and top-10 accuracies, and Mean Reciprocal Rank (MRR) of
0.52, 0.79, 0.85, and 0.64 for the four projects, which improves
REVFINDER by 61%, 23%, 8%, and 37%, respectively. The
individual models of TIE also outperform REVFINDER for
almost all of the datasets and evaluation measures.

The main contributions of this paper are:

• We propose a hybrid and incremental approach TIE,
which integrates both text mining and a file location-
based approach, to recommend code-reviewers.

• We experiment on a broad range of datasets containing a
total of 42,045 reviews to demonstrate the effectiveness
of TIE. We show that TIE outperforms REVFINDER by
a substantial margin.

The remainder of the paper is organized as follows. Sec-
tion II presents the motivation of our approach TIE. Section III
describes an overview of TIE’s architecture. Section IV elab-
orates on the details of TIE. Section V presents the results
of our comparative evaluation of TIE. Section VI surveys the
related work. Finally, Section VII concludes the paper.

II. MOTIVATION

A typical review contains a number of fields including
its upload time, description, file paths, and reviewers. The
upload time field provides the time when a review request was
submitted. The description field contains textual information
explaining the change to be reviewed. The file path field lists
the locations of files that are modified in the change. The
reviewer field specifies a set of developers who are assigned
to the review.

Figure 1 presents an example code review taken from the
Gerrit’s system of the QT project2. A developer Stephen
Kelly made a code change and submitted it for review on
May 2, 2012. The change avoided “the macro re-definition
warning for QT NO EXCEPTIONS”, and modified the file

2https://codereview.qt-project.org/#/c/25000

Fig. 1. Review 25000 from the Gerrit system of the QT project.

Upload Time: May 2, 2012 7:16 PM
Textual Content: Avoid undefined macro warning for

GXX EXPERIMENTAL CXX0X .
The GCC use of this is already correct.
File Path: src/corelib/global/qcompilerdetection.h
Reviewers: Thiago Macieira

Fig. 2. Review 25001 from the Gerrit system of the QT project.

Upload Time: May 11, 2012 6:18 PM
Textual Content: clang: Use has feature() to detect C++11 features
Apple’s clang version is often reported as the next official clang version, but
Apple clang does not support all the features that the final official clang
does. Instead of using version based feature detection, use the

has feature() built-in instead, so that we correctly #define the various
Q COMPILER * macros.
File Path: src/corelib/global/qcompilerdetection.h
Reviewers: Thiago Macieira

Fig. 3. Review 25002 from the Gerrit system of the QT project.

Upload Time: May 19, 2012 12:08 AM
Textual Content: Remove STL from qfeatures.txt
QT NO STL is now no longer available
File Path: src/corelib/global/qfeatures.txt
Reviewers: Thiago Macieira

Fig. 4. Review 26572 from the Gerrit system of the QT project.

“src/corelib/global/qcompilerdetection.h”. Thiago Macieira re-
viewed the change, and approved it. Finally, Qt Sanity Bot
verified the change, and integrated it into the main branch.

Figures 2, 3, and 4 present reviews 250013, 259924, and
265725 in the Gerrit’s system of the QT project, respec-
tively. Due to space limitation, we only show the values
of some fields in the reviews. The change reviewed in re-
view 25001 is to avoid the undefined macro warning for
“ GXX EXPERIMENTAL CXX0X ”, the change in review
25002 is to correctly define various Q COMPILER * macros
by using the “ has feature()” function, and the change in

3https://codereview.qt-project.org/#/c/25001
4https://codereview.qt-project.org/#/c/25992
5https://codereview.qt-project.org/#/c/26572
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Fig. 5. Overall architecture of TIE.

review 26572 is to remove STL from “qfeatures.txt’. We notice
that all of these changes were reviewed by the same person,
Thiago Macieira.

Observations and Implications. From the above four reviews,
we make the following observations:

1) The textual contents in the description field are good
indicators to recommend appropriate reviewers. For ex-
ample, the textual contents of the description field of re-
views in Figures 1, 2, and 3 specify that the changes are
about macros – the changes in review 25000 and 25001
are to avoid re-defined and undefined macro warnings,
while the change in review 25992 is to correctly define
the various Q COMPILER * macros.

2) The file paths could also help to recommend suitable
reviewers. The same reviewer is likely to review multiple
changes which modify the same files or files located in
similar locations. For example, changes described in the
reviews shown in Figures 1, 2, and 3 modify the same
file “src/corelib/global/qcompilerdetection.h”. Also, the
change described in the review shown in the Figure 4
modifies the file “src/corelib/global/qfeatures.txt” which
is located in a similar location as files modified in the
reviews shown in Figures 1, 2, and 3. All of these
4 reviews were assigned to the same person (Thiago
Macieira).

3) A reviewer who reviews a code change at a particular
time point is likely to review other changes in the
near future. We refer to this property as the temporal
locality of the reviewers. For example, all of the above
four changes are submitted for reviews within a 17-day
interval (May 2-19 2012), and Thiago Macieira reviewed
all of them.

The above observations tell us that textual contents and file
paths provide some useful and yet hidden information that
can help us recommend reviewers. Text mining techniques
that mine hidden information from a large text corpus, could
potentially be used to solve the recommendation problem.
Similarly, a file location-based approach which measures the
similarity of the changed file paths with file paths of files
reviewed in the past, could also be used to solve the problem.
The last observation informs us that to improve efficiency, we
can leverage the temporal localness property and only analyze
the most recent code reviews.

In the following section, we describe the details of TIE,
which is based on the above observations; it combines an
incremental text mining technique and a time-aware file
location-based approach to recommend reviewers. The file
location-based approach potentially needs to compare a large
number of file paths (especially for projects with a long
history of code reviews) and thus we make it time-aware to
improve its efficiency while not reducing its effectiveness in
recommending correct reviewers.

III. TIE ARCHITECTURE

Figure 5 presents the overall architecture of TIE, which con-
tains three phases: model construction, recommendation, and
model update. In the model construction phase, a composite
model TIECOMPOSER is built from historical reviews with
known reviewers. In the recommendation phase, the model is
used to recommend a set of reviewers for a new review request.
In the model update phase, the model is updated by using
additional reviews with known reviewers. To simulate real-
life usage of our tool, we allow the model to be updated. In
practice, new review requests would be submitted and assigned
to reviewers periodically; these new reviews can be used to
update the model.

In the model construction phase, TIE first collects vari-
ous information from a set of training reviews with known
reviewers, i.e., the textual contents in the description field
(Step 1) and the file paths and upload time (Step 2). For the
textual contents in the reviews, TIE tokenizes them, removes
stop words, stems each token (i.e., reduces it to its root
forms, e.g., “wrote” and “written” are reduced to “writ”),
and represents the stemmed non-stop-word tokens as a bag of
words, c.f., [29], [32], which is then converted into a vector
of weights following the vector space model [9]. Next, TIE
builds a text mining model based on the processed text by
leveraging a text classification technique (Step 3). The intuition
of the text mining model is that the same reviewers are likely
to review changes containing similar terms (words). TIE also
uses a time-aware file location-based approach which builds
a similarity model which measures similarities of the new
and historical reviews (Step 4). The similarity is computed
by measuring the similarities of changed file paths (i.e., paths
of files modified in the new review request) and reviewed file
paths (i.e., paths of files reviewed in historical reviews). The
intuition of the file location-based approach is that the same



reviewers are likely to review changes to the same files or
files in similar locations. Next, these two models are blended
to construct the TIECOMPOSER model (Step 5).

In the recommendation phase, TIE is used to recommend a
ranked list of reviewers to a new unassigned review request.
TIE first extracts the change description, file paths, and upload
time from the review (Steps 6 and 7). Then, it processes the
textual contents in the description and inputs them into the text
mining model built in the model construction phase (Step 8).
It also inputs the file paths and upload time into the similarity
model built in the model construction phase (Step 9). These
two models will output two lists of reviewers, and these two
lists are combined by leveraging the TIECOMPOSER model
constructed in the model construction phase (Step 10). In
practice, a developer will check the list of potential reviewers,
and eventually assign the new review request to a set of
reviewers. In the model update phase, we update TIE by using
newly assigned reviews (Step 12).

IV. OUR PROPOSED APPROACH

In this section, we present the details of the main compo-
nents of TIE; the text mining model, the similarity model, and
our method to blend the text mining and similarity models.

A. Text Mining Model

The intuition of the text mining model is that similar
changes are often described in a similar way, and a developer
often reviews similar changes. To build a text mining model
that can predict the best reviewers to assign to a review
request, we make use of a text classification technique. Since
TIE contains a model update phase, we should select a text
classification technique which is incremental and produces
an updatable model. In this paper, we leverage naive Bayes
multinomial [17] to build the text mining model, as it is a fast
and effective algorithm for text classification [17], and can be
used as an incremental learning algorithm. For many other text
mining algorithms, e.g., decision tree and SVM, they take a
long time to be run on a raw text dataset which has a large
number of features (every processed word is a feature), and
the models built using these algorithms can not be updated
with new reviews (the models have to be re-constructed with
new reviews).

1) Model Construction Phase: Let us consider that there
exists l potential reviewers in a project and denote the jth

reviewer as Dj . TIE first duplicates the training dataset into l
binary datasets, one for each reviewer. Let us denote the ith

review in the jth dataset as Revji . Each review consists of two
parts: the textual contents in the review (Texti), and a binary
value Rj

i that indicates whether Dj reviews it (Rj
i = 1) or not

(Rj
i = 0). Following vector space modeling [9], we represent

the text in the ith review as a vector of term weights denoted
by Texti = 〈w1, w2...wv〉. The weight wj denotes the number
of times the jth term tj appears in the textual content of the
ith review.

Next, we construct l prediction models based on the l
binary datasets by leveraging the naive Bayes multinomial

algorithm. The ith model consists of a prior probability that
Di reviews a change (denoted as P (Di = 1)) and a set of
conditional probabilities that term tj occurs in the reviews
which are reviewed by Di (denoted as P (tj |Di = 1)). The
prior probability P (Di = 1) is computed as the ratio of
the number of reviews reviewed by Di and the total number
of reviews. The conditional probability P (tj |Di = 1) is
computed as:

P (tj |Di = 1) =
TDi=1,tj∑
t∈v TDi=1,t

(1)

where TDi=1,tj denotes the number of times term tj appears
in the reviews which are reviewed by Di.

2) Recommendation Phase: In the recommendation phase,
for a new review Rnew, we first input it into the l prediction
models, and each prediction model Pi would output a confi-
dence score ConfText(Rnew, D

i) that indicates the likelihood
that Di reviews it. The confidence score ConfText(Rnew, D

i)
is computed as:

ConfText(Rnew, D
i) = P (Di = 1)×

v∏
j=0

P (tj |Di = 1) (2)

In the above equation, P (Di = 1) represents the prior
probability that Di reviews a change, P (tj |Di = 1) represents
the conditional probability that term tj occurs in the reviews
which are reviewed by Di. Next, we rank reviewers based
on these confidence scores, and output the reviewers with the
highest scores.

3) Model Update Phase: For a newly assigned review, we
could use them to update our text mining model. For each
reviewer Di and each term tj in the newly assigned review,
we update the prior probability P (Di = 1) and the conditional
probability P (tj |Di = 1).

B. Similarity Model

The intuition of the similarity model is that the same
reviewers are likely to review changes to the same files or
files in similar locations. Given a new unassigned change, our
similarity model compares the file paths in the change with
the file paths in the previous reviewed changes to recommend
reviewers. Thus, our similarity model is a lazy model [13],
i.e., we do not need to train an explicit model.

1) Model Construction Phase: In the model construction
phase, for each review Ri, our similarity model stores its
upload time, file paths, and reviewers. We denote the up-
load time of Ri as Timei, its file paths as FilePathsi =
{Path1, Path2, · · ·Pathni} where ni represents the number
of file paths changed in Ri, and its reviewers as Di =
{D1, D2, · · ·Dri} where ri represents the number of reviewers
who are assigned to Ri.

2) Recommendation Phase: Given a new review Rnew, let
us denote its upload time as Timenew, and its file paths as
FilePathsnew. In this phase, we will first compare the new
review with existing reviews that have been gathered in the
model construction phase. To leverage the temporal locality
of reviewers, and reduce the amount of comparisons needed,



TIE only compares the new review request with the previous
assigned reviews whose upload time is within the past M days
before Timenew. By default, we set M=100. We denote the
set of historical reviews to compare Rnew with as HSet.

Algorithm 1 presents the detailed steps to compute the
similarity score between Rnew and a past assigned review Ri

in HSet. This similarity score is denoted as RevSim(Rnew,
Ri). Our approach computes the similarity score of the two
reviews by comparing their file paths (i.e., the paths of files
that are modified in the change that is to be/was reviewed).
Let us denote the sets of file paths for Rnew and Ri as
FilePathsnew and FilePathsi, respectively. The similarity
between these sets of paths is the average of the similarities
of each possible pairings of paths, one from each set.

Algorithm 1 Compute similarity between two reviews.
1: RevSim(Rnew , Ri)
2: Input:
3: Rnew : The new unassigned review.
4: Ri: A past assigned review.
5: Output: Similarity score of the two input reviews.
6: Method:
7: SumScore = 0;
8: for all Pathn ∈ FilePathsnew , and Pathi ∈ FilePathsi do
9: DFNamesn = Set of directory and file names in Pathn;

10: DFNamesi = Set of directory and file names in Pathi;
11: Common = DFNamesn

⋂
DFNamesi;

12: SumScore += |Common|
Max(|DFNamesn|,|DFNamesi|)

;
13: end for
14: Return SumScore

|FilePathsnew|×|FilePathsi|
.

To compute the similarity between a path Pathn ∈
FilePathsnew, and a path Pathi ∈ FilePathsi, our
approach first computes, for each path, a set of di-
rectory and file names in it (Lines 9–10). For exam-
ple, let P1 = “src/corelib/global/qcompilerdetection.h”; it-
s set of directory and file names is {“src”, “corelib”,
“global”, “qcompilerdetection.h”}. Also let P2 = “sr-
c/corelib/local/compiler/qcompilerdetection.h”; its set of direc-
tory and file names is {“src”, “corelib”, “local”, “compiler”,
“qcompilerdetection.h”}. Next, our approach computes the
number of common directories between Pathn and Pathi
(Line 11). For example, the common directory and file names
between P1 and P2 are “src”, “corelib”, and “qcompilerdetec-
tion.h”. Then, the similarity score between Pathn and Pathi
is computed as the ratio of the number of common directory
and file names and the maximum number of directory and
file names in Pathn and Pathi (Line 12). For example, the
similarity score for path P1 and P2 is 3

max(4,5) = 0.6.

We will sum up the similarity scores of all possible pairs
of paths from FilePathsnew and FilePathsi, and finally
compute the average similarity score by dividing the sum with
the number of possible pairs (Line 14). The average similarity
score of all possible pairings of paths is the similarity score
of the two reviews: Rnew and Ri.

After we have computed the similarity scores between Rnew

and each review in the set of historical reviews HSet, for

each reviewer Di, we compute its confidence score, denoted
as ConfPath(Rnew, D

i), as follows:

ConfPath(Rnew, D
i) =

∑
Rj∈HSet

RevSim(Rnew, Rj)

×Exist(Di, Rj) (3)

In the equation above, Exist(Di, Rj) = 1 if Di reviewed Rj ,
and Exist(Di, Rj) = 0 otherwise.

3) Model Update Phase: Similar to the model construction
phase, in the model update phase, our approach simply adds up
newly assigned reviews to our repository of historical reviews
and stores their upload time, file paths, and reviewers.

C. TIECOMPOSER: A Composite Approach

In TIE, we have two prediction models: text mining model
and similarity model. Each of the prediction model would
recommend a ranked list of reviewers. In this section, we
propose TIECOMPOSER, which combines these two prediction
models by assigning weights to them.

Given a new review Rnew, for each reviewer Di, the text
mining model and similarity model would output the confi-
dence scores ConfText(Rnew, D

i) and ConfPath(Rnew, D
i).

TIECOMPOSER first normalizes these two scores to compute
NConfText(Rnew, D

i) and NConfPath(Rnew, D
i) as fol-

lows:

NConfText(Rnew, D
i) = ConfText(Rnew,Di)∑

Dj∈AllRev

ConfText(Rnew,Dj)

NConfPath(Rnew, D
i) = ConfPath(Rnew,Di)∑

Dj∈AllRev

ConfPath(Rnew,Dj) (4)

In the above equations, AllRev refers to the set of all review-
ers in a software project. Next, TIECOMPOSER combines the
normalized scores for each reviewer Di as follows:

Composer(Rnew, D
i) = α×NConf Text(Rnew, D

i) +

(1− α)×NConf Path(Rnew, D
i)(5)

In the above equation, α ∈ [0, 1]. If α = 0, the TIECOM-
POSER model is the same as the similarity model, and if
α = 1, the TIECOMPOSER model is the same as the text
mining model. The value of α can be empirically determined.
By default, we set the value of α as 0.3.

Given a new review Rnew, for each reviewer Di, we com-
pute its TIECOMPOSER score (i.e., Composer(Rnew, D

i).
Then, we rank the reviewers according to their TIECOMPOSER
scores, and finally output the reviewers with the highest scores.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of TIE. The
experimental environment is a 64-bit, Intel Xeon 2.00GHz
server with 80GB RAM running Windows Server 2008.

A. Experiment Setup

We use the datasets provided by Thongtanunam et al. [28]
which contain a total of 42,045 reviews. The status of each of
these reviews is either “merged” or “abandoned”, and each
of them has at least one file path (i.e., at least one file
is changed and reviewed) [28]. Since the datasets collected



TABLE I
STATISTICS OF THE COLLECTED DATA.

Projects Time Period # Revi. # Re. # Files # Avg.Re.
Android 2008-10 – 2012-01 5,126 94 26,840 1.06

OpenStack 2011-07 – 2012-05 6,586 82 16,953 1.44
QT 2011-05 – 2012-05 23,810 202 78,401 1.07

LibreOffice 2012-03 – 2014-06 6,523 63 35,273 1.01

by Thongtanunam et al. do not contain any textual content
information, we also crawl the projects’ respective Gerrit
systems to extract the contents of the description field of
each of the reviews in the datasets. We use WVTool [30] to
remove stop words, do stemming, and produce vector space
models from the textual contents of the reviews. We remove
terms (words) which appear only once since these terms are
likely not to have significantly contributions for code-reviewer
recommendation.

Table I presents the statistics of the collected data. The
columns correspond to the project name (Project), the time
period of collected reviews (Time Period), the number of
collected reviews (# Revi.), the number of unique reviewers
(# Re.), the number of unique modified files (# Files), and the
average number of code-reviewers per review (# Avg. Re.).

To simulate the usage of our approach in practice, we use
the same longitudinal data setup used by Thongtanunam et
al. [28]. The reviews extracted from each review repository in
Table I are first sorted in chronological order of their upload
time. The process proceeds as follows: first, we train a TIE
model by using the first review, and test the trained model
by using the second review, then we update the TIE model
by using the second review (with its ground truth reviewers).
Next, we test using the third review, and update the TIE model
by using the third review, and so on. We then compute the
average accuracy which is defined as the ratio between the
total number of correct predictions and the total number of
predictions (i.e., the total number of reviews minus one).

The default parameters of TIE are as follows: we set the
number of past days in the similarity model M as 100, and the
α value in the TIECOMPOSER component as 0.3. We compare
our approach with REVFINDER proposed by Thongtanunam
et al. [28]. Since we use the same datasets and the same
experiment setup as Thongtanunam et al.’s, we use the results
reported in their paper.

B. Evaluation Metrics

To evaluate TIE, we use the top-k prediction accuracy
and the Mean Reciprocal Rank (MRR) [9], which are the
same evaluation metrics used to evaluate REVFINDER, and
are commonly used in evaluating recommendation systems in
the software engineering literature [21], [27], [33], [36].

1) Top-k Prediction Accuracy: Top-k prediction accuracy
is the percentage of reviews where their ground truth code-
reviewers are ranked in the top-k positions in the returned
ranked lists of reviewers. Given a review r, if at least one
of its top-k code-reviewers actually reviews r, we consider
the reviewers are correctly recommended, and set the value
isRecomm(r, top-k) to 1; else we consider the reviewers are

wrongly recommended, and set the value isRecomm(r, top-
k) to 0. Given a set of reviews Reviews, the top-k prediction
accuracy Top@k is computed as:

Top@k =

∑
r∈Reviews isRecomm(r, top–k)

|Reviews|
(6)

The higher the metric value, the better a code-reviewer rec-
ommendation technique performs. In this paper, we set k = 1,
3, 5, and 10.

2) Mean Reciprocal Rank (MRR): MRR is a popular metric
used to evaluate an information retrieval technique [9]. Given
a query (in our case: a review r), its reciprocal rank is the
multiplicative inverse of the rank of the first correct document
(in our case: code-reviewer) in a rank list produced by a rank-
ing technique (in our case: a code reviewer recommendation
technique). Mean Reciprocal Rank (MRR) is the average of
the reciprocal ranks of reviews in a set of reviews. The MRR
of a set of reviews Reviews is computed as:

MRR(R) =
1

|Reviews|
∑

r∈Reviews

1

rank(r)
(7)

In the above equation, rank(r) refers to the rank of the
first correctly recommended code-reviewer in the ranked list
returned by a code-reviewer recommendation technique for
review r.

C. Research Questions

RQ1: How effective is TIE in recommending code-
reviewers? How much improvement can it achieve over
the state-of-the-art approach?
Motivation. The more accurate TIE is, the more benefit TIE
would give to its users. Thus, in this research question, we
evaluate the effectiveness of TIE and compare it with the state-
of-the-art approach.
Approach. To answer RQ1, we compare TIE with REVFIND-
ER proposed by Thongtanunam et al. [28]. We evaluate them
by using the longitudinal data setup, and record the top-k
prediction accuracies (k = 1, 3, 5, and 10), and MRR.
Results. Tables II presents the top-k prediction accuracies (k
= 1, 3, 5, and 10) and MRR values of TIE and REVFINDER.
We notice that TIE outperforms REVFINDER by a substantial
margin. On average across the 4 projects, TIE achieves top-
1, top-3, top-5, and top-10 prediction accuracies, and MRR
values of 0.52, 0.73, 0.79, 0.85, and 0.64, which outperform
REVFINDER results by 61%, 33%, 23%, 8%, and 37%,
respectively.

For LibreOffice, we notice TIE achieves the most improve-
ment over REVFINDER; it improves REVFINDER by 217%,
94%, 58%, 30%, and 110% in terms of top-1, top-3, top-
5, and top-10 prediction accuracies, and MRR respectively.
Upon closer inspection, we find that the textual contents in
the description field of LibreOffice’s reviews provide useful
information to recommend suitable reviewers. These textual
contents are ignored by REVFINDER.

For QT, we notice that REVFINDER achieves better perfor-
mance than TIE in terms of top-10 prediction accuracy. Upon



TABLE II
TOP-K PREDICTION ACCURACIES (K = 1, 3, 5, AND 10) AND MRR OF TIE COMPARED WITH REVFINDER (REV.).

Project Top-1 Top-3 Top-5 Top-10 MRR
TIE Rev. %Imp TIE Rev. %Imp TIE Rev. %Imp TIE Rev. %Imp TIE Rev. %Imp

Android 0.57 0.46 24% 0.81 0.71 14% 0.87 0.79 10% 0.92 0.86 7% 0.70 0.60 17%
OpenStack 0.43 0.38 13% 0.73 0.66 11% 0.83 0.77 8% 0.91 0.87 5% 0.60 0.55 9%

QT 0.30 0.20 50% 0.45 0.34 32% 0.52 0.41 27% 0.62 0.69 -10% 0.41 0.31 32%
LibreOffice 0.76 0.24 217% 0.91 0.47 94% 0.93 0.59 58% 0.96 0.74 30% 0.84 0.40 110%
Average. 0.52 0.32 61% 0.73 0.55 33% 0.79 0.64 23% 0.85 0.79 8% 0.64 0.47 37%

TABLE III
TOP-K PREDICTION ACCURACIES (K = 1, 3, 5, AND 10) AND MRR VALUES OF TIE COMPARED WITH THE TEXT MINING MODEL (TEXT.) AND THE

SIMILARITY MODEL (SIM.). THE BEST TOP-K ACCURACIES AND MRR VALUES ARE IN BOLD.

Project Top-1 Top-3 Top-5 Top-10 MRR
TIE Text. Sim. TIE Text. Sim. TIE Text. Sim. TIE Text. Sim. TIE Text. Sim.

Android 0.57 0.48 0.51 0.81 0.70 0.77 0.87 0.78 0.84 0.92 0.86 0.91 0.70 0.61 0.65
OpenStack 0.43 0.27 0.48 0.73 0.50 0.75 0.83 0.61 0.84 0.91 0.76 0.92 0.60 0.42 0.64

QT 0.30 0.28 0.17 0.45 0.45 0.32 0.52 0.53 0.40 0.62 0.64 0.54 0.41 0.40 0.29
LibreOffice 0.76 0.88 0.31 0.91 0.94 0.53 0.93 0.95 0.64 0.96 0.97 0.78 0.84 0.91 0.46

Average. 0.52 0.48 0.37 0.73 0.65 0.59 0.79 0.72 0.68 0.85 0.81 0.78 0.64 0.59 0.51

closer inspection, different from the other datasets, for QT,
we find that the top-10 lists recommended by the text mining
and similarity models of TIE are substantially different (they
contain only a few common candidate reviewers), and thus
when we combine these two lists, the top-10 accuracy of TIE
is not optimal. However, considering that the average number
of code-reviewers per review of QT is 1.07, in practice, top-1,
top-3, and top-5 accuracies would be more reasonable metrics
to evaluate the performance of TIE and REVFINDER.
RQ2: What is the performance of the text mining model
and similarity model in TIE? And what is the benefit of
our TIECOMPOSER?
Motivation. TIE has two prediction models (text mining
model and similarity model). In this RQ, we would like to
investigate the performance of each of them. We want to see
whether the combination of the two prediction models can
achieve better result than the individual prediction models.
Approach. To answer RQ2, we compare TIE with its two
prediction models: text mining model and similarity model.
We evaluate these approaches by using the longitudinal data
setup, and record the top-k prediction accuracies (k = 1, 3, 5,
and 10), and MRR.
Results. Table III presents the top-k prediction accuracies (k =
1, 3, 5, and 10) and MRR values of TIE, the text mining model
and the similarity model. On average across the 4 projects, TIE
improves the text mining model by 8%, 12%, 10%, 5%, and
8%, and the similarity model by 41%, 24%, 16%, 9%, and
25% in terms of top-1, top-3, top-5, and top-10 prediction
accuracies, and MRR, respectively. Thus, the combination of
text mining model and similarity model helps to improve the
effectiveness of the individual models.

From Table III, we notice for OpenStack, TIECOMPOSER
performs better than the text mining model, and worse than
the similarity model. And for LibreOffice, TIECOMPOSER
performs better than the similarity model, and worse than the
text mining model. In practice, since we do not know which
prediction model would perform better, and the combination
of these two models (i.e., TIECOMPOSER) would typically at
least perform better than one of the prediction models, it is best
to use TIECOMPOSER. Also, the weight α can be empirically

tuned. For OpenStack, we can set α to 0, while for LibreOffice,
we can set α to 1. Thus, we recommend developers to use
TIECOMPOSER instead of one of the two prediction models
in practice.

To gain more insight why the text mining model is
more accurate than the similarity model (or vice versa) for
some datasets, we manually read some reviews from the
four datasets. For QT and LibreOffice, terms in description
fields of reviews are often good indicators to find suitable
reviewers. For example, a LibreOffice developer “Fridrich”
always reviews changes that contain terms “graph” and “jpeg”.
Similarity, for Android and OpenStack, file paths are of-
ten good indicators. For example, an Android developer
“David Turner” reviews 295 changes to files in path “tool-
s/emulator/opengl/host/libs/Translator”.

Moreover, we notice that in general the performance of the
text mining model and the similarity model (used alone) are
better than REVFINDER. On average across the 4 projects, the
text mining model outperforms REVFINDER by 30%, 10%,
6%, 4%, and 16% in terms of the top-1, top-3, top-5, and top-
10 prediction accuracies, and MRR, and the similarity model
outperforms REVFINDER by 16%, 7%, 6%, -1%, and 9%,
respectively.
RQ3: How does the performance of TIE vary for various
settings of parameter α ?
Motivation. By default, we set the α value in Equation 5 as
0.3. α is used to assign the weights of the text mining model
and the similarity model. We would like to investigate the
performance of TIE for various α values.

Approach. To address RQ3, we increase α values from 0 to
1 with an interval of 0.1. We evaluate TIE with different α
values by using the longitudinal data setup, and record the
top-k prediction accuracies (k = 1, 3, 5, and 10), and MRR.

Results. Figure 6 presents the top-k prediction accuracies (k =
1, 3, 5, and 10) and MRR values of TIE for various α values
for Android, OpenStack, QT, and LibreOffice, respectively.
For Android, we notice that TIE’s top-k prediction accuracies
and MRR values slightly increase when we increase α from
0 to 0.3, and slightly decrease when we increase α from
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Fig. 6. Top-k prediction accuracies (k = 1, 3, 5, and 10) and MRR values of TIE for various α values.

0.3 to 1. For OpenStack, its top-k prediction accuracies and
MRR values slightly decrease when we increase α from 0
to 0.9, and they decrease quickly when we increase α from
0.9 to 1. For QT, its top-k prediction accuracies and MRR
values increase quickly when we increase α from 0 to 0.1,
and slightly increase when we increase α from 0.1 to 1. For
LibreOffice, its top-k prediction accuracies and MRR values
increase quickly when we increase α from 0 to 0.4, and
slightly increase when we increase α from 0.4 to 1.

This is consistent with our findings to answer RQ2: in
QT and LibreOffice, the text mining model shows better
performance than the similarity model, thus the increase of
α will increase the performance of TIE. On the other side,
in Android and OpenStack, the similarity model shows better
performance than the text mining model, thus the increase of
α will decrease the performance of TIE.

RQ4: How does the effectiveness and efficiency of TIE vary
for various settings of the number of past days M in the
similarity model? And what is the benefit of considering
the reviews in the past M days?
Motivation. By default, we set the number of past days M in
the similarity model as 100. We would like to investigate the
effect of varying the number of past days M . We are also in-
terested to investigate whether it is beneficial to consider only
reviews in the past M days (i.e., whether the improvement in
efficiency comes with a large reduction in effectiveness) or to
consider all previous reviews.
Approach. To answer RQ4, we set M to 50, 100, 150,
200, 250, and denote TIE with each setting as TIE(50),
TIE(100), TIE(150), TIE(200), and TIE(250). We also evaluate
the effectiveness and efficiency of TIE without considering
the number of past days and denote it as TIE(ALL), i.e., we
consider all previous reviews. We evaluate TIE with different
M values by using the longitudinal data setup, and record the
top-k prediction accuracies (k = 1, 3, 5, and 10), MRR and
recommendation time. Note that the model construction time
of all of the above variants are the same.
Results. Figure 7 presents the top-k prediction accuracies (k =
1, 3, 5, and 10) and MRR values of TIE for various M values
for the Android, OpenStack, QT, and LibreOffice datasets,
respectively. We notice that in general, the performance of TIE
is stable for various M values. For example, for Android, the
top-5 prediction accuracies, and MRR values are varied only
between 0.86 – 0.87, and 0.69 – 0.70. For LibreOffice, except

TABLE IV
RECOMMENDATION TIME PER REVIEW OF TIE(100) COMPARED WITH

TIE(ALL) (IN SECONDS).

Project TIE(100) TIE(ALL)
Android 0.21 0.42

OpenStack 0.22 0.44
QT 0.25 0.45

LibreOffice 0.28 0.48

Average. 0.24 0.45

for top-1 prediction accuracy and MRR, the performance of
TIE remains stable as M is increased.

Table IV presents the recommendation time per review of
TIE(100), the default setting of TIE, compared with that of
TIE(ALL) (in seconds). On average across the 4 projects, to
recommend a list of reviewers to a change, TIE(100) needs
0.24 seconds while TIE(ALL) needs 0.45 seconds.

D. Threats to Validity

Threats to internal validity relates to errors in our code
and experiment bias. We have double-checked our code, still
there could be errors that we did not notice. Also, in this
paper, we use a longitudinal data setup to simulate the actual
usage of TIE. In practice, we can only use reviews submitted
before to build a model, and update the model with newly
assigned reviews. Threats to external validity relate to the
generalizability of our results. We have analyzed 42,045 re-
views from four open source projects. In the future, we plan to
reduce this threat further by analyzing even more reviews from
additional projects. Threats to construct validity refer to the
suitability of our evaluation measures. We use top-k prediction
accuracies and MRR which are also used by past studies to
evaluate the effectiveness of a code-reviewer recommendation
technique [28], and various automated software engineering
techniques [21], [27], [33], [36]. Thus, we believe there is
little threat to construct validity.

VI. RELATED WORK

Studies on Code Review. Thongtanunam et al. study code-
reviewer recommendation problems in four open source
projects [28]. They find that review requests with a reviewer
assignment problem take on average an additional 12 days to
get approved, and they propose REVFINDER, a file location-
based approach to recommend code-reviewers. Our work
extends their work in the following ways:

1) Our work considers more features than REVFINDER.
Besides the file paths in the reviews, we also leverage
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Fig. 7. Top-k prediction accuracies (k = 1, 3, 5, and 10) and MRR values of TIE for various past M days settings.

the textual contents in the description fields of reviews
to recommend code-reviewers.

2) We propose a more accurate file location-based approach
(our similarity model).

3) We propose a composite model which combines our text
mining model and our similarity model to achieve a
better performance.

There are a number of studies that investigate code review
practice [8], [10], [12], [15], [18], [20], [22]. Rigby et al.
perform an empirical study on the code review practice fol-
lowed by an open source project; they analyze a repository
of Apache server’s code reviews and investigate the review
process, frequency of reviews, level of participation, review
interval, and quality of reviews [22]. Baysal et al. study the
influence of non-technical factors (e.g., patch size, priority)
on code reviews of the WebKit project [10]. Jiang et al. em-
pirically investigate the relationship between accepted patches
and reviewing time on Linux [15]. McIntosh et al. study the
impact of code review coverage and code review participation
on the quality of several software systems, e.g., QT, VTK, and
ITK [18]. Morales et al. investigate the impact of code review
practice on the quality of software design [20]. Bacchelli and
Bird observe, interview, and survey practitioners in Microsoft
and manually categorize review comments made by various
teams in Microsoft to investigate the motivations, challenges,
and outcomes of the code review process [8]. Gousios et al.
analyze projects in GitHub and find that various factors such
as developer contribution history, size of a project, and test
coverage would affect code review time [12]. Our work is
orthogonal to the above studies: we focus on code-reviewer
recommendation, which is a different problem than the ones
addressed in the above studies.

Studies on Developer Recommendation. There have been a
number of studies on developer recommendation in software
engineering literature. Mockus and Herbsleb propose a tool
that uses data from change management systems to recom-
mend developers with relevant expertise in geographically
distributed software projects [19]. Surian et al. analyze a
developer collaboration network extracted from SourceForge
to recommend suitable developers to join project teams [26].
Anvik et al. propose the usage of machine learning tech-
niques such as Naive Bayes, support vector machine, and
decision tree to recommend fixers to bug reports of Eclipse,
Firefox, and GCC projects [6]. Kagdi et al. propose an

approach to recommend developer for a change request by
leveraging feature location techniques [16]. Shokripour et al.
propose a two-phase approach to recommend fixers to bug
reports [24]. Their approach first determines candidate bug
locations, and then uses a simple term weighting scheme to
recommend potential bug fixers. Xia et al. propose DevRec
which integrates a bug report-based analysis and a developer-
based analysis to recommend developers who could help to
resolve bug reports [34], [35]. Hossen et al. propose iMacPro
that integrates source code authors, maintainers, and change
proneness to assign a developer to a change request [14].

Our approach addresses a different problem (code review-
er recommendation) than those considered in the above-
mentioned past studies (expert developer recommendation, and
bug fixer recommendation). Code reviews have a different set
of characteristics than change history data and bug reports
analyzed in these prior studies, e.g., in code review, we know
exactly the files that are going to be reviewed. Our approach
leverages the two characteristics of code reviews, file paths and
short descriptions, to accurately recommend code-reviewers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid and incremental approach
TIE which utilizes the advantages of text mining and a file
location-based approach to recommend code-reviewers. TIE
integrates an incremental text mining model which analyzes
the textual contents in the description field of reviews, and
a similarity model which measures the similarity of new-
ly changed files’ paths and past reviewed files’ paths. To
investigate the benefits of TIE, we perform a large-scale
experiment on four open source projects containing a total
of 42,045 reviews. The experimental results show that TIE
can achieve average top-1, top-5, and top-10 accuracies, and
MRR of 0.52, 0.79, 0.85, and 0.64 across the four projects,
which outperforms the results achieved by the state-of-the-art
approach REVFINDER, by a substantial margin.

In the future, we plan to evaluate TIE with more reviews
from more software projects, and develop a better technique
that can recommend code-reviewers with higher accuracy.
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