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Abstract—Software developers and maintainers often need to
locate code units responsible for a particular bug. A number
of Information Retrieval (IR) techniques have been proposed to
map natural language bug descriptions to the associated code
units. The vector space model (VSM) with the standard tf-idf
weighting scheme (VSMnatural ), has been shown to outperform
nine other state-of-the-art IR techniques. However, there are
multiple VSM variants with different weighting schemes, and
their relative performance differs for different software systems.

Based on this observation, we propose to compose various
VSM variants, modelling their composition as an optimization
problem. We propose a genetic algorithm (GA) based approach
to explore the space of possible compositions and output a heuris-
tically near-optimal composite model. We have evaluated our
approach against several baselines on thousands of bug reports
from AspectJ, Eclipse, and SWT. On average, our approach
(VSMcomposite ) improves hit at 5 (Hit@5), mean average precision
(MAP), and mean reciprocal rank (MRR) scores of VSMnatural

by 18.4%, 20.6%, and 10.5% respectively. We also integrate
our compositional model with AmaLgam , which is a state-
of-art bug localization technique. The resultant model named
AmaLgamcomposite on average can improve Hit@5, MAP, and
MRR scores of AmaLgam by 8.0%, 14.4% and 6.5% respectively.

I. INTRODUCTION

Maintenance tasks can account for up to 90% of the overall
cost of a software project [1]. It is furthermore estimated that
up to 50% of maintenance cost is incurred to comprehend
the existing code [2], [3], especially for large systems that are
maintained by many developers. To reduce the cost of program
comprehension and software maintenance, various techniques
have been proposed [4]–[11]. One family of techniques is
called bug localization that maps a bug report to relevant buggy
files [5], [12]–[14].

As bug reports are often expressed in natural language,
many Information Retrieval (IR) techniques have been used
to perform bug localization. The vector space model (VSM)
with the standard tf-idf weighting scheme has been shown
to outperform many other non-VSM information retrieval
techniques (e.g., LDA, LSA, etc.) [15]. However, there are
many well-known variants of VSM with different weighting
schemes [16]. In this paper, we leverage this fact by composing
VSMs with different tf-idf weighting schemes into a more
effective composite model. The weaknesses of VSM with
the standard tf-idf thus could be addressed or shadowed by
the strengths of other VSMs with different tf-idf weighting
schemes. This is similar to the boosting and ensemble approach
in data mining [17].

There are various ways to compose multiple VSMs with
various tf-idf weighting schemes. Some compositions may
improve accuracy as compared to the individual models;
while other compositions could perform worse. The various
ways to compose the VSMs with different tf-idf weighting
schemes form a search space, and we would like to find the
composition that gives the highest accuracy within this space.
Unfortunately, this search space is very large, as there are many
ways to compose the various VSMs.

The problem of finding the best composition amounts to
an optimization problem: Given a training dataset, search for
a near-optimal composition that performs best on the training
data. This near-optimal composition can then be used to
localize new bug reports (i.e., find the buggy files). Researchers
in the machine learning and meta-heuristics communities have
proposed various search-based optimization algorithms, e.g.,
simulated annealing [18] and genetic algorithms [19], that
could be used to find a heuristically near-optimal solution.

In this work, we propose a search-based compositional
bug localization engine that works in two phases: training
and deployment. In the training phase, the engine takes in a
training set of bug reports, which are textual documents, along
with the files that are modified to fix the bugs. This training
set is then used to evaluate a particular composition. A good
composition should be able to locate the buggy files of many
bug reports in the training set with a high accuracy. To identify
promising compositions, search heuristics are employed to
traverse the search space to find near-optimal compositions
that perform best on the training set. We compose 15 VSM
variants, each with a different tf-idf weighting scheme, to
form a new composite model. In the deployment phase, the
composite model is used to localize new bugs.

We test our search-based bug localization engine, named
VSMcomposite on thousands of bug reports from three soft-
ware projects, namely AspectJ, Eclipse, and SWT. We give
a bug report as input and use a bug localization tool to
retrieve the relevant buggy files. Our experiment results
show that VSMcomposite outperforms the vector space model
with the standard tf-idf weighting scheme (VSM natural ).
VSMcomposite can improve the hit at 5 (Hit@5), mean average
precision (MAP), and mean reciprocal rank (MRR) scores of
VSMnatural by 18.4%, 20.6%, and 10.5%, respectively. We
also integrate our approach with the state-of-the-art approach
AmaLgam [14] that uses not only the textual descriptions
in bug reports but also other pieces of information, i.e.,
version history, similar reports, and structure. We refer to
the resulting approach as AmaLgamcomposite and demonstrate
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that AmaLgamcomposite improves the Hit@5, MAP, and MRR
scores of AmaLgam by 8.0%, 14.4%, and 6.5%, respectively.

Our contributions are as follows:

1. We propose an approach to compose 15 vector space
models, each with a different tf-idf weighting scheme, by
leveraging a search-based algorithm. For this, we define
the search space of possible compositions and adapt a
genetic algorithm to heuristically find a near optimal
solution.

2. We show that, on average, compared with VSMnatural ,
our approach (VSMcomposite ) could improve Hit@5,
MAP, and MRR of VSMnatural by 18.4%, 20.6%, and
10.5%, respectively.

3. We show that, on average, compared with AmaLgam ,
the enhanced approach AmaLgamcomposite improves
AmaLgam in terms of Hit@5, MAP, and MRR by 8.0%,
14.4%, and 6.5%, respectively.

The structure of this paper is as follows. Section II
describes background information on bug localization and
genetic algorithms. Section III describes the individual vector
space models with various tf-idf weighting schemes, which
serve as the building blocks that our engine combines to
form a composite model. We elaborate on our search-based
composition engine in Section IV. We introduce the details of
AlaLgam and how we integrate it with various VSM models
in Section V. We present our evaluation in Section VI. In
Section VII, we discuss related work. Finally, Section VIII
concludes and mentions future work.

II. BACKGROUND

In this section, we introduce the bug localization problem
and search-based algorithms. We describe how the vector space
model can be used for bug localization and briefly present
genetic algorithms (GA).

A. Bug Localization

The goal of bug localization is to link a particular bug
report to the files that are responsible for the bug. Most bug
localization approaches uses information retrieval techniques
to process a bug report, which is a textual document, and
retrieve the names of files that are likely to contain the bug.

One IR technique that can be used for bug localization
is the vector space model (VSM). VSM has been shown to
outperform many other IR approaches for bug and concern
localization [5], [15]. Many state-of-the-art bug localization
techniques are built on top of VSM [12]–[14]. In Table I, we
show an example of a bug report and the set of files that is
responsible for this bug. VSM looks for files that are similar
to the bug report. In this case, the files “AntEditor.java” and
“AntEditorSourceViewerConfiguration.java” are similar to the
bug report as they contain the words “Ant”, and “editor”. We
now present the vector space model and how it can be used
for bug localization.

Vector Space Model. In the vector space model (VSM), each
document is represented as a vector of values. Each value in
the vector represents the weight of a term in the document.
One popular way to assign weights is to use the concepts

TABLE I. AN ECLIPSE BUG REPORT AND ITS BUGGY SOURCE CODE

FILES

Summary Ant editor not following tab/space setting on shift

right

Description This is from 3.1 M2. I have Ant->Editor-

>Display tab width set to 2, ”Insert spaces for tab

when typing” checked. I also have Ant->Editor-

>Formatter->Tab size set to 2, and ”Use tab char-

acter instead of spaces unchecked . Now when I

open a build.xml and try to do some indentation,

everything works fine according to the above set-

tings, except when I highlight a block and press tab

to indent it. It’s the tab character instead of 2 spaces

that’s inserted in this case.

Fixed Files org.eclipse.ant.internal.ui.editor.AntEditor.java

org.eclipse.ant.internal.ui.editor.AntEditorSourceVi-

ewerConfiguration.java

of term frequency and inverse document frequency (tf-idf).
The standard tf-idf scheme assigns a weight to a term t in
a document d according to the formula:

weight(t, d) = tf (t, d)× idf (t,D)

where t, d, D, tf (t, d), idf (t,D) correspond to a term, a
document, a corpus (i.e., a set of documents), the frequency
of t in d, and the inverse document frequency of t in D,
respectively. Term frequency is the number of times a term
appears in a document – it measures how important the term
is to the document. Inverse document frequency captures the
rarity of a term. A rare term is more useful to differentiate one
document from another. To give more weight to rare terms,
inverse document frequency is calculated as the logarithm of
the reciprocal of the document frequency (df ). The document
frequency of a term t in corpus D is the number of documents
in D that contain t. Besides the above definition of weight,
numerous well-known variants have been proposed, depending
on how term frequency and inverse document frequency are
computed [16]. We present 15 variants in Section III.

Given a query and a corpus, VSM first converts the query
and each document in the corpus to bags of words after
doing some pre-processing steps: tokenization, identifier split-
ting, stop word removal, and stemming. Tokenization breaks
a document into word tokens. Identifier splitting breaks a
source code identifier into multiple words (e.g., the identifier
“getMethodName” becomes “get”, “method”, and “name”).
We use a simple CamelCase splitter [20]. Stop word re-
moval deletes words that carry little meaning and are used
in almost every document, e.g., “the”, “is”, etc. We use
the list of stopwords from http://www.textfixer.com/resources/
common-english-words.txt. Stemming refers to the process of
reducing a word to its root form. We use the Porter stemming
algorithm [21]. VSM then converts each bag of words into a
vector of values by calculating the tf-idf weight of each term.
Then, the cosine similarity between a query and all documents
in the corpus is computed based on their representative vectors:

cos(q, d) =

∑
t∈(q

⋃
d)

weight(t, q)× weight(t, d)

√∑
t∈q

weight(t, q)2 ×
√∑

t∈d

weight(t, d)2
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where q and d are a query and a document, respectively. After
computing the above scores for all documents in the corpus,
we sort the documents based on their similarity scores. Finally,
the top k documents are output.

In our setting, a query corresponds to a bug report or
a feature enhancement request that is described in natural
language, possibly including some source code snippets; a
document comprises both the identifiers in the source code
of a file and the comments before and within the file.

B. Search-based Algorithms

Various search-based algorithms have been proposed to
solve optimization problems. Such algorithms search through
the space of possible solutions. Each solution in the search
space is assigned a score based on a particular objective
function. The search space then forms a landscape, where
some points in the landscape (i.e., solutions) are hills (i.e., they
have high scores) and some others are valleys (i.e., they have
low scores). An optimization technique searches for a solution
with the maximal score (maximization problem), or a solution
with the minimal score (minimization problem). The search
space can often be very large, indeed even infinite. Various
heuristics are employed to navigate through a search space to
find a solution that has a good enough score or a near-optimal
solution within a particular computational budget.

We now present a particular family of search-based algo-
rithms: genetic algorithms (GA) [22]. A GA aims to maximize
an objective function.

Genetic Algorithms. A genetic algorithm (GA) is a search-
based algorithm that iteratively refines a set of solutions until
a particular criterion is met. A solution is modeled as a
chromosome, which can be represented as a bit string. A GA
starts with a random population of chromosomes representing
a set of solutions. It then subjects this population to several
iterations of selections, crossovers, and mutations. Selection
refers to the process of eliminating chromosomes with low
objective scores. Crossover takes two chromosomes and swaps
parts of them to produce two new chromosomes. Mutation
randomly flips bits in the bit string representing a chromosome.
At the end of each iteration, a new population of chromosomes
(a.k.a., a new generation) is generated. Many iterations may
be needed until a particular criterion is met - this could be
a particular target objective score, a maximum number of
iterations, a maximum amount of time, etc.

There are many genetic algorithm variants. Figure 1 shows
the pseudocode of the one we use. Its parameters are: the num-
ber of chromosomes in a population, the number of iterations
to be performed, the probability for a mutation to happen, and
the probability for a crossover to happen. The parameters of
such an algorithm are usually empirically determined by some
preliminary experiments.

The time complexity of our GA is given by:

O(NI × (NC × PC ×O(cross) +
NC × PM ×O(mut) +O(sel)))

where NI is the number of iterations, NC is the number
of chromosomes, PC is the crossover probability, PM is the
mutation probability, and O(cross), O(mut) and O(sel) are

Procedure Genetic Algorithm
Inputs: NC : Number of chromosomes

NI : Number of iterations
PC : Crossover probability
PM : Mutation probability

Outputs: Best solution found
Method:
1: Let P = Initial population with NC members
2: Evaluate P ’s members and find the best solution so far
3: Repeat NI times
4: P = Selection(P )
5: P = Crossover(P, PC )
6: P = Mutation(P, PM )
7: Evaluate P and update the best solution so far
8: Output the best solution found

Fig. 1. Genetic Algorithm: Pseudocode

TABLE II. VARIANTS OF TF AND IDF

Term frequency

tf n(t, d) (natural) |{t|t ∈ d}|

tf l(t, d) (logarithm) 1 + log(tf n)

tf L(t, d) (Log ave)
1+log(tfn(t,d))

1+log(avet∈d(tfn(t,d)))

tf a(t, d) (augmented) 0.5 +
0.5×tfn(t,d)

maxt(tfn(t,d))

tf b(t, d) (boolean)

{
1 if tf n(t, d) > 0

0 otherwise

Document frequency

idf n(t,D) (no) 1

idf l(t,D) (standard) log
|D|
df t

idf r(t,D) (ratio) max{0,log
|D|−dft

dft
}

the time complexities of the selection, crossover, and mutation
operations respectively.

The major tasks in employing a GA are to identify a map-
ping from the problem’s potential solutions into chromosomes,
and to provide an appropriate objective function.

III. VARIANTS OF THE TF-IDF WEIGHTING SCHEME

The tf-idf weight for a term in a document is the product
of its term frequency score and its inverse document frequency
score. There are many variants of the standard tf-idf weighting
scheme, depending on how the term frequency (tf) and inverse
document frequency (idf) are measured. Table II lists five
variants of tf and three variants of idf . We investigate the
15 possible combinations, as shown in Table III. We discuss
these tf and idf variants in more detail below.

Term frequency. Various definitions of term frequency have
been proposed [16]. The simplest, tf n(t, d), which we refer
to as the natural term frequency, is to use the raw frequency
of a term in a document, i.e., the number of times that term
t occurs in document d. However, it may be that e.g., ten
occurrences of a term in a document do not truly indicate that
the term is ten times more significant than another term that
only appears once. Thus, other variants have been proposed.
Table II shows four other variants. tf l(t, d) takes the logarithm
of the natural term frequency. tf L(t, d) normalizes tf l(t, d)
by dividing it by the average logarithm of the other terms
in the document d. tf a(t, d) normalizes tf n(t, d) by dividing
it by the frequency of the term appearing the most times in
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TABLE III. VARIANTS OF THE TF-IDF WEIGHTING SCHEME.
THE TF AND IDF VARIANTS ARE DESCRIBED IN TABLE II.

Name Equation

tf n-idf n tf n(t, d) × idf n(t,D)
tf n-idf l tf n(t, d) × idf l(t,D)
tf n-idf r tf n(t, d) × idf r(t,D)
tf l-idf n tf l(t, d) × idf n(t,D)
tf l-idf l tf l(t, d) × idf l(t,D)
tf l-idf r tf l(t, d) × idf r(t,D)
tf L-idf n tf L(t, d) × idf n(t,D)
tf L-idf l tf L(t, d) × idf l(t,D)
tf L-idf r tf L(t, d) × idf r(t,D)
tf a-idf n tf a(t, d) × idf n(t,D)
tf a-idf l tf a(t, d) × idf l(t,D)
tf a-idf r tf a(t, d) × idf r(t,D)
tf b-idf n tf b(t, d) × idf n(t,D)
tf b-idf l tf b(t, d) × idf l(t,D)
tf b-idf r tf b(t, d) × idf r(t,D)

document d. tf b(t, d) ignores the actual term frequency and
only considers whether or not a term appears in a document
(i.e., it is a boolean model).

Inverse document frequency. Inverse document frequency
(idf) is a measure of whether a term is common or rare in
the documents of a corpus. A high idf value implies that
a term is rare. Terms with high idf values are important to
differentiate one document from another. Again, variants have
been proposed [16]. We consider three variants, idf n(t,D),
idf l(t,D), and idf r(t,D), defined in Table II. idf n(t,D),
treats all terms as equally important, i.e., they are given
the same weight. idf l(t,D), is a standard inverse document
frequency, which takes the logarithm of the reciprocal of
the document frequency. idf r(t,D), takes the logarithm of
the ratio of documents not containing the term t and those
containing the term t. The latter two variants are just two
different ways to measure the rarity of a term.

Past work has shown that effective retrieval models tend
to rely on a reasonable way to combine multiple retrieval
signals, such as term frequency (tf) and inverse document
frequency (idf) [23]. A major difficulty in developing an
effective information retrieval model is that the signals (tf, idf)
interact with each other in complicated ways. Thus, finding
the best way to combine these signals is a long-standing
challenge [23]. In this study, we do not try to understand the
subtle interactions between various tf and idf variants. Instead,
we simply consider the product of all the different variants of
tf and idf listed in Table II. As a result, we obtain 15 variants
of tf-idf weighting scheme, VSM 1, VSM 2, . . . , VSM 15, as
shown in Table III. VSM with the tf n-idf l weighting scheme
(VSM 2) is the standard version, which is the most widely
used [16]. We also refer to it as VSM natural .

IV. SEARCH-BASED COMPOSITION ENGINE

Our search-based bug localization process is composed
of two phases: training and deployment. The two phases are
illustrated in Figure 2.

A. Training Phase

The training phase takes as input the vector space models
described in Section III along with the training data. As
training data, we take a set of bug reports, a set of files in
a software project, and the set of files that are modified to fix
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Fig. 2. Proposed Framework: Training and Deployment Phase

the bugs. In practice, this training data could be obtained from
past manual bug localization or feature localization efforts in
one or more systems. Based on the 15 VSMs and the training
data, the search algorithm investigates various compositional
models to find the one that best localizes bugs.

We first define the search space of potential composite
models. Next, we describe how we adapt an existing search
algorithm to the problem of bug localization. The training
phase produces a near-optimal model, which is a composition
of the 15 VSMs that performs well on the training data.

1) Search Space: There are many possible ways to combine
the individual vector space models with various tf-idf weight-
ing schemes. In this work, we create a model that computes a
weighted sum of the outputs of the individual models. Given
the 15 vector space models, VSM 1, VSM 2, . . ., VSM 15, as
described in Section III, a bug report b, and a file f , the
similarity score of b and f is calculated by the composite
model, defined as follows:

MComposite(b, f) =
15∑
i=1

wi × VSM i(b, f)

where wi is the weight of the ith VSM and VSM i(b, f) is
the cosine similarity score computed by vector space model
VSM i, defined in Section III. The search space of all pos-
sible compositions corresponds to the various assignments of
weights, i.e., w1, w2, . . . , w15. These weights are real numbers
whose values range from zero to one.
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2) Objective Functions: Search algorithms require an ob-
jective function to measure how good a candidate solution is.
As introduced in Section II, the goal of a genetic algorithm is
to maximize the value of a given objective function.

Before defining the objective function for our GA, we first
introduce two evaluation metrics that are commonly used to
measure the effectiveness of bug localization techniques [5],
[12]–[14].

Mean Average Precision (MAP): MAP is the most
commonly used IR metric to evaluate ranking approaches.
It considers the ranks of all buggy files. Therefore, MAP
emphasizes all of the buggy files instead of only the first one.
MAP is computed by taking the mean of the average precision
scores across all bug reports. The average precision of a bug
report is computed as:

AP =

M∑
k=1

P (k)× pos(k)

#buggy files
,

where k is a rank in the returned ranked files, M is the
number of ranked files and pos(k) indicates whether the kth

file contains the bug or not. P (k) is the precision at a given
top k files and is computed as follows:

P (k) =
#buggy files among top-k files

k
.

Mean Reciprocal Rank (MRR): The reciprocal rank for a
bug report is the reciprocal of the position of the first buggy file
in the returned ranked files. MRR is the mean of the reciprocal
ranks over a set of bug reports Q and it can be computed by
the following equation:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where ranki is the position of the first file containing the bug
in the returned ranked files for a bug report in Q.

Our goal is to maximize MAP and MRR, as the higher
their values are, the more effective the composite model is.
Thus we define our objective function as:

obj = MAP +MRR

We give an equal weight to MAP and MRR since both of them
are important. MAP is important if a developer is interested
to find all buggy files by reading the recommended files one
by one. MRR is important if a developer is interested in only
finding the first buggy file; based on this file, he can then start
his manual debugging effort to find the other related buggy
files.

3) Adapting Search Algorithm: To use a genetic algorithm
for our problem, we model the search space as described
in Section IV-A1. Each solution (chromosome) in the search
space is represented as an array of floats ranging from 0 to 1.
A genetic algorithm starts with an initial population of chro-
mosomes (i.e., initial solutions) and iteratively produces new
populations by performing selection, crossover, and mutation
operations. We create the initial population randomly. We use
the standard crossover and uniform mutation operations [24]
and adapt only the selection operation. One-point crossover

randomly swaps some genes (i.e., the values of some weights)
between two randomly selected chromosomes. Uniform muta-
tion randomly replaces one of the genes (i.e., the value of one
of the weights) by a real number between zero and one.

The selection operation of our GA selects the best chro-
mosomes, according to a fitness function, to be used as the
population for the next generation. Considering obj to be the
objective function that needs to be maximized, we define the
fitness score of a chromosome Xi in a generation R containing
|R| chromosomes as the chromosome’s relative performance
against other chromosomes, as follows:

Fitness(Xi, R) =

|R|∑
j=1

e10×(obj (Xj)−obj (Xi))

As the values of obj (Xj) and obj (Xi) are often very
similar,1 to compute the fitness of a chromosome, we take
the exponentiation of the differences between obj (Xj) and
obj (Xi) multiplied by ten, to make the differences more
significant. This difference needs to be significant so that
“fitter” chromosomes have significantly more chance when
chromosomes are randomly selected based on their fitness
scores to create the population for the next generation.

Our selection operation first selects top chromosomes based
on three criteria and then randomly selects other chromosomes
based on their fitness scores. We begin with some definitions.

Definition 4.1 (AP c
k Notation): Let AP denote the aver-

age precision. We define APs(c) = {APc
1,AP

c
2, . . . ,AP

c
k}

to denote the APs of the k bug reports, using the composite
VSM constructed based on chromosome c. The compositional
VSM uses the weights specified in chromosome c.

Definition 4.2 (imp(c1, c2) Notation): To compare the ac-
curacy of the composite VSMs generated by two chromosomes
c1 and c2 in terms of the AP value for each bug report, we
also define

imp(c1, c2) = {
AP c1

1
−AP c2

1

AP c1
1

,
AP c1

2
−AP c2

2

AP c1
2

, . . . ,
AP c1

k −AP c2
k

AP c1
k

}

to denote the set of the improvement of c2 over c1 in terms
of AP for each bug report.

Definition 4.3 (compare#wins(c1, c2) Notation): Given
two chromosomes c1 and c2, compare#wins counts the
number of elements in imp(c1, c2) that are larger than 0
(referred to as winCases), and the number of elements in
imp(c1, c2) that are smaller than 0 (referred to as loseCases).
If winCases ≥ loseCases , return “c2 performs at least as
well as c1”; otherwise, return “c1 beats c2”.

Definition 4.4 (comparesum(c1, c2) Notation): Given two
chromosomes c1 and c2, comparesum sums the elements in the
set imp(c1, c2). If the sum ≥ 0, return “c2 performs at least
as well as c1”; otherwise, return “c1 beats c2”.

Based on the notations defined above, we use the following
criteria to select the top chromosomes. We select each chro-
mosome c that satisfies all of the following selection criteria
as one of the top chromosomes:

1Especially for the later iterations when the chromosomes in the population
are getting more similar (i.e., the search space starts to converge).
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1) The fitness score for c is no less than the 90%
percentile of the fitness scores of all chromosomes
in the generation.

2) c performs at least as well as the best chromosome
found so far, cbest , as measured by compare#wins

(cbest , c).
3) c performs at least as well as the best chromosome

found so far, cbest , as measured by comparesum
(cbest , c).

Typically, only a few top chromosomes satisfy all of the
selection criteria selected. The remaining chromosomes to
be included in the next generation are selected using the
roulette wheel algorithm [22]. The roulette wheel algorithm,
also known as fitness proportionate selection, randomly selects
chromosomes where the probability of a chromosome being
selected is proportional to the chromosome’s fitness score. The
pseudocode of the selection operation is shown in Figure 3.

Procedure Selection
Inputs: C: Current generation of chromosomes

P : Size of a population
BC: Best chromosome so far

Outputs: N=Next generation of chromosomes
Method:
1: Initialize N with empty set
2: Let F = set of fitness scores for each chromosome in N
3: For (i = 0; i < P ; i++)
4: Calculate fitness score F [i] for chromosome C[i]
5: For (i = 0; i < P ; i++)
6: If (C[i] satisfies the selection criteria)
7: N [i] = C[i]
8: Else
9: N [i] = Randomly select from C based on

the roulette wheel algorithm
10: Output N

Fig. 3. Selection Algorithm: Pseudocode

A small-scale initial experiment is used to fine-tune the
GA’s parameters (NC , NI , PM , and PC in Figure 1). We set
the values of NC , NI , PM , and PC to 50, 200, 0.01, and 0.6,
respectively.

B. Deployment Phase

During deployment, the composite model learned in the
training phase is used to localize new bug reports. Given a
set of files and a target bug report to be localized, the model
is used to assign similarity scores to the files. The files are
then ranked based on their similarity scores. We illustrate this
process in Figure 2.(b). The resulting ranked list of files is
then output to the developers.

V. AMALGAM

The composite VSM algorithm that we have developed
so far is suitable for comparing bug reports to a collection
of potentially buggy files. Nevertheless, recent work on bug
localization has obtained better results by taking into account
multiple sources of information. In this section, we first
introduce AmaLgam which is a state-of-art bug localization
approach incorporating version history, structure, and similar
bug reports [14]. We then present one strategy for combining
our compositional VSM with AmaLgam.

A. AmaLgam

AmaLgam incorporates three components to localize bugs
in systems: version history, structure, and similar bug report.

The version history component takes as input commit
logs collected from the version control system and outputs a
list of files with their suspiciousness scores. The general idea
of this component is that the files that have contained more
bugs in the past are more likely to be buggy in the future. The
suspiciousness score scoreH(b, f) of file f for a given bug
report b is calculated with following equation:

scoreH(b, f) =
∑

c∈R∧f∈c

1

1 + e12(1−((k−tc)/k))

where R is the set of bug fixing commits that were made in
the last k days before bug report b was submitted, and tc is
the number of days that have elapsed between a commit c and
bug report b. We set k to 15 which is the default setting used
in previous experiments with AmaLgam [14].

The structure component takes as input the source code
corpus and a given bug report and returns a list of files with
their suspiciousness scores. It categorizes the terms in the
bug report as being from the summary or description fields
and categorizes the terms in the source code files as being
class names, method names, variable names or comments. The
suspiciousness score scoreS(f, b) of file f for a given bug
report b is computed as:

scoreS(b, f) =
∑
fp∈f

∑
bp∈b

sim(fp, bp)

where fp is a category from file f , bp is a category from bug
report b, and sim(fp, bp) is the cosine similarity of the vector
representations of fp and bp, as described in [14]. The output
of the structure component is a set of suspiciousness scores,
one for each file.

The similar report component considers historical bug
reports that have already been fixed. For a given bug report, it
returns a list of files related to the bug report with their suspi-
ciousness scores. The suspiciousness score scoreR(f, b, B) of
file f for a given bug report b considering a set of historical
fixed bug reports B is computed as:

scoreR(b, f, B) =
∑
b′∈B

I(f, b′)×
sim(b, b′)

|b′.Fix |

where I(f, b′) is an indicator function that returns 1 if f is
among the set of files that were modified to fix bug report b′

and it returns 0 otherwise, sim(b, b′) is the similarity of bug
report b and a historical fixed bug report b′ in B, b′.Fix is the
set of files that are modified to fix bug report b′, and |b′.Fix |
is the size of the set b′.Fix . sim(b, b′) is calculated using the
procedure described in [12]. Using this equation, the more
frequently a file f was changed to fix historical reports that are
similar with the given report b, the higher f ’s suspiciousness
score will be.

AmaLgam combines the three components to assign a
new suspiciousness score to each file. It first merges the
structure and similar report components. The resulting merged
component is then merged with the history component. In
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TABLE IV. DATASET DETAILS

Project Description Period #Fixed

Bugs

#Source

Files

AspectJ Aspect-oriented

extension of Java

07/2002-

10/2010

286 6485

Eclipse Open source IDE 10/2004-

03/2011

3075 12863

SWT Open source wid-

get toolkit

10/2004-

04/2010

98 484

the merging process, a set of constants, whose values are
empirically determined, are used to determine the relative
importance of each component. Files in a code base are then
sorted based on their final suspiciousness scores (in descending
order) and output for developer inspection.

B. Compositional Model: AmaLgamcomposite

We combine the VSM models with different tf-idf weight-
ing schemes, and the above three components of AmaLgam
as follows. Given a bug report b and a set of historical
fixed bug reports B, we compute the suspiciousness score
MComposite(b, f) of file f as follows:

15∑
i=1

wi × VSM i(b, f) +

J∈H,R,S∑
J

wj × scoreJ(b, f)

In the above equation, to compute the suspiciousness score of
a file we take a weighted sum of the suspiciousness scores
computed by the different VSM models and the three com-
ponents of AmaLgam. We use a genetic algorithm following
the same procedure that is presented Section IV to get a semi-
optimal compositional model. In this case, each chromosome
contains three more real numbers, which correspond to the
weights of the three components of AmaLgam. We refer to
this compositional model as AmaLgamcomposite .

VI. EMPIRICAL EVALUATION

In this section, we first describe our experimental setting
and then present our evaluation results.

A. Experimental Setting

1) Datasets: We use three datasets containing a total of
3,459 bug reports from three popular open source projects,
AspectJ, Eclipse, and SWT. The details of these datasets are
shown in Table IV. These bug reports were also used to
evaluate AmaLgam [14]. In the work on AmaLgam, another
small dataset ZXing was also used; however there are only
20 bug reports in this dataset, making it too small for our
approach to learn a near-optimal compositional model. In
practice, for many large systems, which benefit more from
a bug localization solution, a large number of historical fixed
bug reports are available, and they can be used by our approach
to learn a semi-optimal compositional model.

2) Effectiveness Calculation: We use the components of
our objective function, MAP (Mean Average Precision) and
MRR (Mean Reciprocal Recall), defined in Section IV-A2, to
evaluate the effectiveness of our solution. We also use Hit@N,
as in past studies [12]–[14]2. Hit@N is defined as follows:

2Hit@N is referred to as Top N in [12].

Hit@N: This metric calculates the number of bug reports
where one of its buggy files appears in the top N ranked files.
Given a bug report, if at least one of its relevant files is in
the top N ranked files, we consider the report is successfully
located (i.e., a hit). The higher the value of this metric is, the
better is the performance of an bug localization technique.

3) Cross Validation: We perform a three-fold cross valida-
tion (i.e., 2/3 of the dataset is used for training and 1/3 is used
for testing) [17] on each dataset to evaluate our compositional
bug localization approach. We randomly split the bug reports
into 3 buckets. In three-fold cross validation, three separate
iterations are performed. In each iteration, we keep one of
the buckets as the test set and use the other two buckets for
training. Unless otherwise stated, the results reported in the
following subsections are based on the average of the three
iterations of the cross validation process.

B. Research Questions

RQ1 How effective is our search-based compositional
approach VSMcomposite as compared to VSMnatural?

VSMnatural is a widely used vector space model variant
and it has been shown to outperform many IR-based ap-
proaches that are not based on VSM [15]. In this research ques-
tion, we would like to investigate whether our search-based
compositional approach is useful to improve VSMnatural .
Accordingly, we evaluate VSMcomposite and VSMnatural on
three datasets. We measure the effectiveness of the approaches
using Hit@1, Hit@5, Hit@10, MAP, and MRR.

RQ2 Does our compositional model AmaLgamcomposite
improve AmaLgam?

In this research question, we would like to test whether our
approach could be integrated into an existing state-of-the-art
approach to improve its performance. To answer this question,
we perform experiments on the three datasets and compare the
effectiveness of AmaLgamcomposite and AmaLgam .

RQ3 How generally applicable is a compositional model
trained from a set of software projects?

In this RQ, we want to test the reusability of a composi-
tional model by investigating whether a compositional model
trained on bug reports from one set of software projects can be
used to localize bug reports from a different project. For this,
we do a |P |-fold cross-project validation, where |P | is now
the number of software projects. Each bucket now contains
bug reports from one software project. During each of the
|P | iterations of the cross-validation process, bug reports from
|P | − 1 software projects are used as the training set, while
bug reports of the remaining project are used as the test set.3

C. Evaluation Results

1) RQ1: VSMcomposite vs. VSMnatural : Table V presents
the results for all software projects. When only the top 1
file is inspected, on average, VSMcomposite localizes 16.2%
more bug reports than VSMnatural . When up to 5 and 10
files are inspected, on average VSMcomposite localizes 18.4%

3This is different from the cross validation procedure used in the previous
research questions. For the other RQs, we perform cross validation per dataset;
thus, the training and test sets come from the same software project.
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TABLE V. PERFORMANCE COMPARISONS. AmaL = AmaLgam .
AmaLcompo. = AmaLgamcomposite .

Project Approach Hit@1 Hit@5 Hit@10 MAP MRR

AspectJ
VSMnatural 25 (8.7%) 43 (15.0%) 65 (22.3%) 0.05 0.13

VSMcompo. 33 (11.5%) 55 (19.2%) 67 (23.4%) 0.07 0.16

AmaL 127 (44.4%) 187 (65.4%) 209 (73.1%) 0.33 0.54

AmaLcompo. 145 (50.7%) 211 (73.8%) 227 (79.4%) 0.43 0.61

Eclipse
VSMnatural 116 (3.8%) 456 (14.8%) 709 (23.1%) 0.01 0.01

VSMcompo. 116 (3.8%) 544 (17.7%) 845 (27.5%) 0.01 0.01

AmaL 1060 (34.5%) 1775 (57.7%) 2059 (67.0%) 0.35 0.45

AmaLcompo. 1108 (36.1%) 1905 (62.0%) 2187 (71.2%) 0.39 0.48

SWT
VSMnatural 12( 50.7%) 37 (73.8%) 49 (79.4%) 0.21 0.24

VSMcompo. 14 (50.7%) 40 (73.8%) 53 (79.4%) 0.23 0.26

AmaL 61 (62.2%) 80 (81.6%) 88 (89.8%) 0.62 0.71

AmaLcompo. 62 (63.2%) 83 (82.6%) 88 (89.8%) 0.63 0.71

and 10.1% more bug reports respectively. In terms of MAP
and MRR, on average, VSMcomposite achieves a 20.6% and
10.5% improvement over VSMnatural respectively. We take
the results for all bug reports and perform Wilcoxon signed-
rank tests [25] to test whether the improvements obtained by
VSMcomposite over VSMnatural are significant. We find that
the MAP and MRR improvements are significant (p-value <
0.05).4

2) RQ2: AmaLgamcomposite vs. AmaLgam: Table V
also compares AmaLgamcomposite and AmaLgam . Averaging
across the three datasets, AmaLgamcomposite localizes 6.8%
more bug reports than AmaLgam when only the top 1 file
is inspected. When the top 5 and top 10 files are inspected,
averaging across the datasets, AmaLgamcomposite improves
AmaLgam by 8.0% and 5.0% respectively. In terms of MAP
and MRR, on average, AmaLgamcomposite achieves a 14.4%
and 6.5% improvement over AmaLgam respectively. We take
the results for all bug reports and perform Wilcoxon signed-
rank tests [25] to investigate whether the improvements ob-
tained by AmaLgamcomposite over AmaLgam are significant.
We find that the MAP and MRR improvements are significant.

3) RQ3: General Applicability of AmaLgamcomposite :
We want to investigate whether our approach outperforms
a baseline considering the |P |-fold cross-project validation.
We compare the performance of AmaLgamcomposite with
AmaLgam which is the best performing baseline. Aggregating
across the three datasets, 1,257, 2,070, and 2,379 bugs can
be localized by just inspecting the top 1, 5, and 10 files re-
turned by AmaLgamcomposite respectively. The average MAP
and MRR scores of AmaLgamcomposite are 0.46 and 0.59
respectively. On the other hand, aggregating across the three
datasets, 1,248, 2,042, and 2,356 bugs can be localized by just
inspecting the top 1, 5, and 10 files returned by AmaLgam
respectively. The average MAP and MRR scores of AmaLgam
are 0.43 and 0.57 respectively. Comparing the two sets of
scores, AmaLgamcomposite improves the results of AmaLgam
by 0.7%, 1.4%, 1.0%, 7.0% and 3.5% in terms of Hit@1,
Hit@5, Hit@10, MAP and MRR, respectively.

We take the results for all bug reports and perform
Wilcoxon signed-rank tests [25] to test whether the improve-
ments obtained by AmaLgamcomposite are significant. We
find that the MAP and MRR improvements are significant.
The results show that a compositional bug localization model

4We cannot perform Wilcoxon signed-rank tests for Hit@N scores since,
unlike MRR and MAP, each Hit@N score is not a mean of a distribution.

trained on bug reports from one set of software projects is still
effective to localize bugs from another different project.

In practice, there is much data that we can use to train
a compositional bug localization engine. Developers manually
locate many bug reports daily (e.g., during bug fixing), and
their bug localization activities are logged in bug repositories
and version control systems [26]. By constructing a database
that contains a large number of bug reports and the correspond-
ing buggy source code files, it is likely that we can improve
the result further and obtain a more general compositional bug
localization engine that can accurately localize bug reports in
many software projects.

D. Threats to Validity and Discussion

Threats to Validity. Threats to internal validity correspond to
experimental biases. Due to space limitations, we only show
a comparison between VSMcomposite and one of the VSM
variants (i.e., VSMnatural ). We choose VSMnatural since it is
the most widely used [16], it has been used for bug localization
before [5], there is no VSM variant that is consistently better
that the others, and no variant outperforms VSMcomposite .
Another issue is that some of the links between bug reports and
their bug fixing commits may be missing from the repositories.
Also, similar to prior studies, we treat all files that are modified
in a bug fixing commit as buggy files. We did not manually
check that the links are complete or the changed files are really
buggy since we experiment with thousands of bug reports.
This threat is common to other bug localization studies [5],
[12]–[14], [27]. Threats to external validity correspond to the
generalizability of our results. In this study, we have considered
thousands of bug reports from three software projects. We have
also analyzed the generalizability of our composite models
by performing |P |-fold cross-project validation to answer our
third research question. In the future, we plan to reduce this
threat further by experimenting with more bug reports from
more projects.

Efficiency. Because multiple iterations are involved, genetic
algorithms are known to be time-consuming. Indeed, in our
experiments, the training phase requires up to 3 hours on a
quad core Intel Core i5-2300 2.80GHz PC with 4GB main
memory (using only one core). Although training takes some
time, this step only needs to be performed once and the result-
ing compositional model can be used subsequently to localize
many bug reports. Occasionally, if a substantial amount of
new training data is obtained, e.g., from new successful bug
localization efforts, a new compositional model can be learned.

Learned Weights. The weights of the compositional model
learned by GA could vary from one dataset to another.
This is the case as GA optimizes the weights for a dataset.
Section VI-C3 demonstrates, however, that even using sub-
optimal weights, learned from a different dataset, the learned
compositional model could improve on AmaLgam, which is
the state-of-the-art approach [14].

Comparison with LDAGA on feature location. We also
compare our approach VSMcomposite with LDAGA proposed
by Panichella et al. [28] on two datasets, ArgoUML and jEdit,
which were used to evaluate LDAGA for feature location.
These datasets are publicly released by Panichella et al. along
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with LDAGA results (i.e., the position of the first relevant
method for each feature).5 We compare the performance of
VSMcomposite on ArgoUML and jEdit with the LDAGA

results. Since Panichella et al. only release the position of the
first relevant method for each feature, we can only compute
Hit@N and MRR. We find that for ArgoUML, VSMcomposite

improves on LDAGA in terms of Hit@1, Hit@5, Hit@10, and
MRR by 100.0%, 55.6%, 46.7% and 79.9% respectively. For
jEdit, VSMcomposite improves on LDAGA in terms of Hit@1,
Hit@5, Hit@10, and MRR by 91.7%, 58.6%, 35.5%, and
46.9%, respectively.

VII. RELATED WORK

Feature and Bug Localization. There are many studies on
feature and bug localization. Feature localization typically
identifies a set of methods that implement a particular feature
given a textual description of the feature. Bug localization
typically identifies a set of files that contain a bug given a
textual description of the bug. We highlight a few of these
studies below. For a complete survey of studies on feature
localization please refer to the survey by Dit et al. [29].

Antoniol et al. [20] apply a vector space model and also
a probabilistic model to recover the links between textual
documents (e.g., manuals) and source code units. Marcus and
Maletic [30] use Latent Semantic Indexing (LSI) to solve the
same problem. Wang et al. [15] systematically investigate the
effectiveness of ten information retrieval techniques (including
LSI, VSM, and various topic models) on hundreds of feature
descriptions. They find that VSM performs best. In this work,
we note that there are many variants of VSM and each of them
performs well on some bug reports but poorly on others. We
propose a search-based technique that combines VSM variants
to build a more accurate composite model.

Search-based LDA, proposed by Panichella et al. [28], uses
a genetic algorithm to find a near-optimal configuration (i.e.,
values of alpha, beta, topic number, and iteration number) of a
topic model, namely Latent Dirichlet Allocation (LDA), based
on a given raw dataset. They then use the configured LDA
to perform feature localization. We use VSM variants with
different weighting schemes and use a GA to search for a
near-optimal combination of those variants.

Lukins et al. employ a well-known topic modeling tech-
nique named Latent Dirichlet Allocation (LDA) to localize
bug reports [31]. Rao and Kak extends Lukins et al.’s study by
investigating a number of information retrieval techniques to
localize bugs [5]. They find that simpler techniques, i.e., VSM
and SUM, outperform many other more complicated solutions.
Sisman and Kak analyze version history to find files that are
more prone to be buggy and use this information to improve
bug localization by creating a history-aware solution [27].
Zhou et al. measure similarities among bug reports and retrieve
similar fixed bug reports to a new report to identify candidate
buggy source code files [12]. Saha et al. improve prior bug
localization techniques by considering the structure of bug
reports and source code files [13]. Wang and Lo combine
the work of Sisman et al., Zhou et al., and Saha et al. by
putting together version history, structure, and similar bug
reports, in a technique named AmaLgam , to achieve better

5http://www.distat.unimol.it/reports/LDA-GA.

performance [14]. In this work, we extend a standard variant
of VSM (i.e., VSMnatural ) and AmaLgam into VSMcomposite

and AmaLgamcomposite respectively. We demonstrate that
VSMcomposite and AmaLgamcomposite significantly outper-
form VSMnatural and AmaLgam respectively.

A number of approaches analyze execution traces in
addition to textual information to perform feature location.
Poshyvanyk et al. locate features using analysis of both natural
language descriptions and execution traces of relevant scenar-
ios that simulate the features [11]. Dit et al. employ a web
mining technique to analyze execution information and merge
it with information retrieval to improve feature location [32].
Our approach does not leverage execution trace information
since often this information is not available in bug reports [33].

Spectrum-Based Fault Localization. Numerous approaches
localize the lines of code responsible for a bug given a
set of correct and failing execution traces [34]–[40]. These
studies ignore textual information, and focus only on execution
information. However, many bug reports include no test cases,
making it hard to collect many correct and failing executions.

Search-Based Software Engineering. Gold et al. use search-
based techniques for concept location [41]. They map concepts
(each of which is a word, e.g., “file”, “write”) to lines in
source code, leveraging a manually constructed knowledge
base mapping concepts to indicators. They use hill climbing
and a genetic algorithm to search for the best assignment
of concepts to segments of code, while allowing overlapping
boundaries among segments. They show that their genetic
algorithm performs better than hill climbing and random search
on 21 COBOL II programs. Our work is orthogonal, in that
we use a search-based algorithm in a different way to solve
a different problem. We search through compositions of VSM
models rather than best ways to segment the code. Also, for
bug localization, our approach takes as input a bug report
rather than a concept, which typically is a single word or a
short phrase. Finally, our approach does not require a manually
constructed knowledge base mapping concepts to indicators.

Li et al. use various search algorithms, including greedy
search, hill climbing, and a genetic algorithm, for test case
prioritization [42]. A number of algorithms have been proposed
to generate test cases that satisfy various criteria for various
programs [43]. Antoniol et al. apply a genetic algorithm to
allocate staff to project teams and to allocate teams to work
packages [44]. Mancoridis et al. use a search-based algorithm
to group software modules into clusters by minimizing cohe-
sion and maximizing coupling [45]. Wang et al. use a genetic
algorithm to improve fault localization, analyzing failing and
correct execution traces to locate faulty basic blocks [46].
Our work considers a different problem (i.e., localizing buggy
source code files from a textual bug description) and a different
technique that composes VSM variants.

VIII. CONCLUSION & FUTURE WORK

Many information retrieval techniques have been proposed
to localize buggy source code files from a bug report. The
vector space model (VSM) with the standard tf-idf weight-
ing scheme has been shown to outperform many non-VSM
IR-based techniques [15]. However there are various VSM
variants with different tf-idf weighting schemes. In this paper,
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we build a solution that combines 15 VSMs with different
tf-idf weighting schemes into an improved composite model,
constructed using a genetic algorithm. We have evaluated our
approach on 3,459 bug reports from AspectJ, Eclipse, and
SWT and demonstrate that our approach can achieve better
performance than VSM with the standard tf-idf weighting
scheme (VSM natural ). Compared with VSM natural , aver-
aging across the 3 datasets, our approach, VSM composite,
improves VSM natural in terms of Hit@5, MAP, and MRR
by 18.4%, 20.6%, and 10.5% respectively. We have also
combined the 15 VSMs with the 3 components of AmaLgam,
which is the state-of-the-art bug localization technique, to
create AmaLgamcomposite. Compared with AmaLgam, aver-
aging across the 3 datasets, AmaLgamcomposite can improve
AmaLgam in terms of Hit@5, MAP, and MRR by 8.0%,
14.4% and 6.5% respectively.

In the future, we plan to reduce the threats to external
validity by investigating additional bug reports from additional
software projects. We also plan to improve the effectiveness
of our approach further. One possible way is by composing
additional IR techniques, e.g., BM25, LSA, etc. [16], to our
compositional model. Another possible way is by adaptively
fine tuning the set of weights assigned to the VSM variants
for each individual project or each individual bug report.
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