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Abstract—Software evolves and thus developers frequently
make changes to systems that are logged in version control
systems. These changes are often poorly documented – often
commit logs are empty or only contain minimal information.
Thus, it is often a challenge to understand why certain changes
are made especially if they were introduced many months or
even years ago. Understanding these changes is important when
pertinent questions are raised during future bug fixing or software
evolution efforts. Thus, there is a need for an automated approach
that can help developers better document changes with little or
minimal effort.

To address this need, we propose a dynamic inference frame-
work that automatically infers change contracts. Recently, change
contract is proposed as a formalism to capture the semantics
of changes. Different from standard program contract, change
contract focuses in expressing the changed behavior between
two versions of software systems. Our system infers candidate
contracts based on actual changes and developers can further
modify these contracts to reflect intended changes. We have
performed a preliminary evaluation of our dynamic inference
framework on a set of 15 real bug fixing changes from AspectJ
with promising results.

I. INTRODUCTION

Developing software is an evolving task. In the midst
of constant changes of software, developers often want to
compare two different versions of code (e.g., the previous code
vs. the updated code) to understand and debug a program or
for other reasons. When comparing the two versions of code,
what developers want to see is beyond the lexical/syntactic dif-
ferences. It is often semantic differences that developers want
to see ultimately. For example, when debugging a program,
developers often want to know how a function or a method
behaves differently (e.g., returns different values) between two
versions. It is desirable that such semantic differences are
described in a succinct and comprehensible way, so that they
can be easily understood.

Semantic differences are also commonly used as one of
information sources when mining software repositories (MSR).
For example, Thung et al. categorize different kinds of bugs
in machine learning systems by analyzing semantic differ-
ences [20]. To extract semantic differences from software
repositories, metadata such as commit messages and bug re-
ports are typically used. However, commit messages are often
minimal and even empty in many cases. Also, bug reporting is
not mandatory. Even in cases where commit messages and bug
reports are available, the kinds and the preciseness of semantic
differences that can be mined from those metadata are limited.

To meet the need for information about semantic dif-
ferences, we propose an approach that automatically infers
semantic differences between two versions. We use software
change contracts recently introduced by Qi et al. [19], [23]

which are program-like specifications used as the represen-
tation of semantic differences. A change contract can be at-
tached to a method to describe semantic behavioral differences
between the previous and updated version of the method.
Inferred change contracts can be provided for developers as the
summary of semantic changes. By looking at such a summary,
not only can developers understand semantic changes at the
high level, but they can also handily compare inferred change
contracts with the intended changes they want to make. In
case the inferred changes do not match the intended changes,
developers could make the necessary corrections. Inferred
change contracts can also be used by MSR researchers to
recover semantic differences automatically especially when
information provided in commit logs and bug reports is in-
sufficient.

To infer change contracts, we take a dynamic analysis
approach where two versions of a program are instrumented
and monitored to gather necessary program states at various
program points: entry and exit points of relevant methods
and when exceptions are thrown. By comparing the resultant
program state logs for the previous and updated version, a
change contract can be constructed.

We have performed a preliminary evaluation of our ap-
proach on a set of 15 real bug fixing changes from AspectJ.
The initial results are promising; in majority of cases (9
cases), the accuracy of an inferred change contract is over
60% (see Section IV for the definition of accuracy). We have
also compared our approach with DeltaDoc by Buse and
Weimer [5] which can also be used to document changes. We
find that our approach outperforms DeltaDoc on each one of
the 15 bug fixing changes.

In the remainder of this paper, we describe change contract
in Section II. We elaborate our proposed technique in Sec-
tion III. We present our preliminary experiments in Section IV.
We discuss related studies in Section V. We conclude and
mention future work in Section VI.

II. CHANGE CONTRACT

Qi et al. introduced change contracts to capture intended
changes programmers want to make [19], [23]. Similar to Java
Modeling Language (JML) contract [4] that describes program
behavior at method boundaries through pre/post conditions,
change contracts can describe how a method behaves differ-
ently (e.g., returns different values) between two versions.

The change contract language is an extension of JML.
It is customized to express changes between versions in a
concise and intuitive way. Most notably, the change contract
language can describe a property like “whenever out > 0

holds, out′ == out + 1” where out and out′ denote output of
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the previous and the updated program version, respectively.
The additional flexibility of relating the program outputs
across program versions often leads to concise and intuitive
change contract specifications. The grammar of the language
is described in [19], [23]. Here, we just illustrate it by means
of an example.

An example of a change contract is shown below:

public class C {
/∗@ changed behavior

@ requires i == 0;
@ when signaled (Exception e)
@ e.getMessage( ) . contains ( ” Inconsistent State ” ) ;
@ signals (Exception e) false ; @∗/

in t foo( in t i , boolean b) ;
}

Suppose that the above is the change contract for changes
made between revision r1 and r2 of C.java. Then, the above
change contract mandates the following behavioral changes
between r1 and r2 when the method foo is called with its
parameter i set to zero (see the requires clause): whenever
method foo of r1 signals (or raises) an Exception which
contains a message “Inconsistent State”, method foo of r2
should not raise any exception.

As another example, if behavioral changes should occur
when the above method foo of r1 terminates normally without
signaling an exception, say returning 0, then one can replace
the above when signaled clause with: “when ensured \result

== 0;”. If the new behavior is that the method returns 1, then
one can replace the above signals clause with: “ensures \result

== 1;”.

III. PROPOSED APPROACH

In our approach, the main idea is to capture differences
in the dynamic behaviors of two versions of a code to infer
software change contracts. Our framework captures differences
in dynamic behaviors of the two software versions by utilizing
test cases where the previous and updated versions return
different outputs. For example, these test cases might cause the
previous version to throw an exception or return unexpected
results, but no such problems are observed for the updated
version when running these test cases.

Figure 1 depicts the overall process of how we infer change
contracts. Our approach takes as inputs two versions of a
software program referred to as the previous and updated
version respectively. From these versions, we can know the
files that are changed. Next, we instrument the changed files
in the previous and updated version to record the behaviors
of these versions when test cases are run. We instrument each
version such that program states are output at entry and exit
of relevant methods, and when exceptions are raised in the
relevant methods during the executions of the test cases. After
we run the test cases, we would have two logs of program
states – one for the previous version, and another for the
updated version. Each of the logs contains program states for
every invocation of changed methods in the changed files.

Finally, we compare program states in these logs to
construct software change contracts. If no change contract
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Fig. 1: Overall Process

can be constructed, we expand our search by instrumenting
neighboring uninstrumented methods that call the current set
of instrumented methods. We do this since at times differences
in behavior are exhibited at the caller of a buggy method rather
than at the buggy method itself. For example, a buggy method
can wrongly return an invalid value (e.g., null), but the problem
(e.g., null pointer exception) only occurs when this value
is used in other methods. We instrument these neighboring
methods and collect additional program states by re-running
the test cases. The process is repeated until at least one change
contract is constructed.

In our process, there are two primary steps: instrumentation
and contract construction. We describe each of these steps in
the following paragraphs.

a) Instrumentation: We develop our own instrumenta-
tion technique that stores program states into files at particular
execution points. By using the Eclipse JDT technology, our
technique automatically inserts statements to capture program
states at entry points and exit points of selected methods.
Furthermore, our instrumentation technique also injects try-
catch statements to capture program states when exceptions are
raised. Table I shows an example of an instrumented method.

A program state captured at an execution point contains
concrete values of objects and their fields belonging to the
Java class containing the execution point. For an object, if the
types of its internal fields are not primitive data types, we
continue to explore and capture internal values of these fields
recursively until reaching fields with primitive data types.

b) Contract Construction: After an instrumented ver-
sion is run, a program state log is created for each instrumented
method. A program state log for a method M is a list of
program states that are logged at various invocations of M .
Program states are recorded at M ’s entry and exit or when an
exception is raised during an invocation of M . Given program
states for two invocations of method M (one in the previous
and another in the updated version), a change contract for M
is constructed if the program states satisfy one of the two
scenarios illustrated in Figure 2.

In the first scenario, the program states at the entries of
the two method invocations match, but the program states at
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TABLE I: Example of Instrumented Code

public Object foo(Object a, Object b) {

Instrumentation instrumenter = new

Instrumentation("foo");

//print program state at entry point

instrumenter.printState();

try {

if (...) {

//print program state at exit point

instrumenter.printState();

return ...;

}

//print program state at exit point

instrumenter.printState();

return ...;

}

catch (RuntimeException e) {

//print program state

//when an exception is raised

instrumenter.printState();

throw e;

}

}

Fig. 2: Scenarios For Change Contract Construction

the exits of the two method invocations are different. In the
second scenario, the program states at the entries of the method
invocations match, but one of the invocations (i.e., invocation
of M in the previous version) throws an exception. These two
scenarios indicate that the behavior of method M has changed.
Thus, we create a change contract when either one of the two
scenarios occurs.

Algorithm 1 shows the procedure to infer a change contract
for method M given two program state logs. It iterates through
invocations of method M (in previous and updated versions)
and check if any of the two scenarios occurs. If either one
occurs, the procedure constructs a change contract as follows:

1) If the first scenario occurs, a change contract is con-
structed with a requires, a when ensured, and an en-

sures clause. The requires clause contains predicates
corresponding to the values in the program state at the
entry point of M (e.g., i == 0). The when ensured clause
contains a predicate corresponding to the return statement
at the exit point of M in the previous version (e.g.,

Algorithm 1: Contract Construction

Input: Method M

callp(M): Invocations of method M in the previous version
callu(M): Invocations of method M in the updated version

Output: Change contract of method M or {}
foreach cp in callp(M) do

foreach cu in callu(M) do
// Check whether program states at M’s

entry point match or not

if matched(cp.entry,cu.entry) is true then
// Scenario 1

if matched(cp.exit,cu.exit) is false then
Construct and output a change contract

// Scenario 2

if cp.exception == null and

cu.exception <> null then
Construct and output a change contract

return {}

\result == 0). The ensures clause contains a predicate
corresponding to the return statement at the exit point
of M in the updated version (e.g., \result == 1).

2) If the second scenario occurs, a change contract is
constructed with a requires, a when signaled, and a
signals clause. The requires clause contains predicates
corresponding to the values in the program state at the
entry point of M . The when signaled clause contains
a predicate that specifies the message of the exception
that is raised in the previous version. The signals clause
contains a predicate that specifies that the exception is no
longer raised, i.e., signals (Exception e) false.

The output of Algorithm 1 is a set of inferred change con-
tracts for method M . Change contracts that are syntactically
the same are merged into one. Note that in this preliminary
study we only construct change contracts of specific formats.
In the next section, we investigate how close the inferred
contracts are to the ideal ones.

IV. PRELIMINARY EXPERIMENT

Dataset & Evaluation Metric. We use AspectJ as our subject
program. AspectJ is a compiler for the aspect-oriented exten-
sion of Java and it contains about 75k lines of code. In our
preliminary experiments, we consider 15 bug fixing changes
of AspectJ extracted from the iBugs dataset [6]. We apply
our approach to automatically infer change contracts from
these changes, focusing on methods whose signatures remain
unchanged, and compare the inferred change contracts with
ground truth change contracts that we manually construct. To
construct each ground truth change contract, we investigate
the versions of the code before (previous version) and after
(updated version) the change. We also execute test cases that
are used to reproduce the bug in the previous and updated
versions and analyze the resultant execution traces. Next, we
manually craft the change contract based on our analysis of
the change and execution traces.

To compare the inferred and ground truth change contracts
we extract predicates (e.g., “result == FuzzyBool.NO”, “in-
ParameterizedType == true”, etc.) that appear in the contracts
and see how many of them are the same. These predicates
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can appear in various clauses in the change contracts, e.g.,
when signaled, signals, ensures, etc. In our experiment, pred-
icates in these clauses are usually expressions with “==”
and “!=” binary operators where the left and right hand side
are identifiers or expressions directly extracted from program
source code, change contract special symbols (e.g., \result,
etc.), or concrete values. Based on the common predicates, we
use the following formula to measure the accuracy of each
inferred contract:

Acc =
| Predicatesinferred ∩ Predicatesground−truth |

| Predicatesinferred ∪ Predicatesground−truth |

In the above formula, Predicatesinferred is the set of all
predicates in the various clauses of an inferred change contract.
Predicatesground−truth is the set of all predicates in the
various clauses of a ground-truth change contract.

Results. Our approach infers change contracts for 18 methods
from the 15 AspectJ changes. Table II shows the accuracy of
our approach for each of the 15 changes. For changes where
multiple change contracts are inferred for different methods,
we report the average accuracy across the contracts.

From the table, we find that we can achieve an accuracy of
up to 77.78%. Also, for the majority of the changes (9 out of
the 15 changes), the accuracy is 60% or higher. However for
two changes, the accuracy is less than 50%. Thus, the result is
promising although there is room for further improvement. By
manually inspecting inferred change contracts, we find that
the inaccuracies of change contracts are mostly caused by
generated predicates in requires clauses as these predicates
capture concrete values rather than generalizations of these
values.

TABLE II: Accuracy of Change Contracts Inferred by Our
approach vs. Accuracy of Change Documentations Inferred by
DeltaDoc.

Our Approach DeltaDoc

Bug ID
# Change Average # Change Average
Contracts Accuracy Documentations Accuracy

132349 1 77.78% 0 0.00%

87376 1 66.67% 1 15.38%

120474 1 66.67% 1 33.33%

121616 1 66.67% 0 0.00%

125475 1 66.67% 0 0.00%

131933 1 66.67% 1 33.33%

158624 1 66.67% 0 0.00%

109614 1 62.50% 0 0.00%

100227 1 60.00% 1 25.00%

88652 3 58.99% 0 0.00%

173602 1 57.14% 0 0.00%

130869 1 54.55% 0 0.00%

133307 2 52.78% 0 0.00%

128237 1 57.14% 0 0.00%

122742 1 33.33% 0 0.00%

Comparison with DeltaDoc. Buse and Weimer propose a tool
named DeltaDoc to document changes [5]. It can be obtained
from https://code.google.com/p/deltadoc/. We apply DeltaDoc
to document the 15 AspectJ bug fixing changes, and evaluate it
using the same accuracy formula. Table II shows the accuracy
of change documentations inferred by DeltaDoc.

From the table, the accuracy of DeltaDoc inferred change
documentations are non zero for only 4 of the 15 AspectJ
changes. The highest accuracy is only 33.33%. For 4 of the
15 AspectJ change, the accuracy is zero as DeltaDoc inferred
change documentations are either empty or trivial and do not
capture intended behavioral changes. For 7 of the 15 AspectJ
changes, the accuracy is zero as DeltaDoc cannot complete
the inference process (e.g., out of memory error). DeltaDoc
employs symbolic execution which is expensive and often does
not scale for large programs due to path explosion problem.
The experiment results show that our approach outperforms
DeltaDoc since it is able to document all of the AspectJ
changes and its accuracy is higher than that of DeltaDoc.

Threats to Validity. We need to acknowledge several threats
to the validity of our experiment results. Threats to internal
validity relates to errors in our experiments. We derive the
ground truth change contracts manually. We have carefully in-
fer these contracts. However, there might be errors that we did
not notice. Due to the lack of available ground truth, authors
of many past studies also infer ground truth data manually
by themselves, e.g., [9]. Threats to external validity relates
to the generalizability of our findings. In this preliminary
study, we have only investigated 15 bug fixing changes from
one software system. In the future, we want to reduce this
threat further by investigating more changes from additional
software systems. Threats to construct validity relates to the
suitability of our evaluation metric. In this paper, we make use
of accuracy, which is a standard metric used before in many
studies [10].

V. RELATED WORK

The most related work is DeltaDoc proposed by Buse
and Weimer [5]. It also infers semantic differences between
two program versions at the method level, and report those
differences, as in the following example where ϕ represents
an input condition:

// An inferred DeltaDoc of method m:

When calling m(), If ϕ, return 1 Instead of return 0.

Despite the syntactic similarity between a change contract
and a DeltaDoc, they are not directly exchangeable due to
their different semantics. As mentioned in Section II, a change
contract can describe a property like

whenever result == 0 holds, result′ == result+ 1

where result and result′ denote the return value of the previous
and the updated program version, respectively. Notice that such
additional ability of describing an output-output relationship
simplifies the description; the input condition ϕ can be greatly
simplified, and often can even be removed entirely, as in this
example. Meanwhile, DeltaDoc, lacking in such ability, uses
ad hoc heuristics to simplify ϕ, in exchange for losing the
preciseness of an inferred DeltaDoc.

Also, the current DeltaDoc inference system cannot cover
a pattern such as “exceptions unexpectedly thrown in the
previous version are resolved in the updated version”, which
can be detected by our system. This is mainly because the
DeltaDoc inference system compares the behaviors of two
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versions at the statement level – e.g., how the path condition
of the return statement changes across versions – while we
perform comparison outside the method body.

There are a number of studies on specification mining and
inference. The most popular specification mining technique is
Daikon which infers invariants at program entries and exits and
specific program points of interest [7]. Many other studies infer
specifications in the form of a finite state machine, e.g., [1],
[13], [18], [16], [3], [2]. Ammons et al. is one of the pioneers
that infer specifications in the form of finite state machines [1].
They collect execution traces from programs and make use
of an algorithm named sk-string to construct a finite state
machine that abstracts the execution traces. One of the latest
works is the work by Beschastnikh et al. which propose a
framework named InvariMint that unifies various specification
mining techniques that extract specifications in the form of
finite state machines [2]. There are also other specification
mining techniques that infer specifications in the form of rules,
e.g., [12], [22], [21], [17]. Li et al. extract rules from source
code methods by employing a combination of lightweight
static analysis and data mining [12]. Their proposed technique
converts each method into a multi-set of program elements
(e.g., method calls) and use these multi-sets to infer rules
that govern the invocations of these program elements (e.g.,
close must be called after open). One of the latest works
is the work by Lo et al. which mines specifications in the
form of temporal rules, expressible in Linear Temporal Logic,
enriched with Daikon invariants [17]. Yet, other studies infer
specifications in the form of sequence diagrams, e.g., [15],
[24], [14], [11], [8]. Kumar et al. infer specifications in the
form of Message Sequence Chart (MSC) graph from traces of
distributed systems [11]. One of the latest works is the work by
Fahland et al. which infers sequence diagrams in the format of
branching-time Live Sequence Charts [8]. A specification min-
ing technique recovers specifications for a particular version
of a code. Different from specification mining techniques, we
recover specifications of changes from one version of a code
to another. Thus, our work is orthogonal and complements
existing specification mining studies.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a dynamic analysis approach to
infer change contracts. Change contract is recently proposed
as a formalism to capture behavioral changes between two
versions of a code. To infer change contracts from two versions
of a code (previous and updated version), we instrument the
two versions, execute test cases, and collect program states
at input and output of relevant methods and when exceptions
are raised in these methods. Program states for the previous
version and those for the updated version are then compared to
construct change contracts. We have performed a preliminary
experiment to evaluate the effectiveness of our approach on 15
real AspectJ bug fixing changes. Our experiments show that we
can infer change contracts with an accuracy of up to 77.78%.
Also, for the majority of the changes (9 out of the 15 changes),
the accuracy is 60% or higher. Furthermore, the accuracy of
our approach outperforms that of DeltaDoc, a state-of-the-art
change documentation inference approach, for each change.

In the future, we plan to improve the effectiveness of our
approach to achieve a higher accuracy. In this preliminary

study, a method can have multiple inferred contracts and we
only merge contracts that are syntactically the same; in the
future, we plan to develop a technique that can semantically
merge and simplify non-conflicting contracts. Also, we are
investigating ways to combine symbolic execution with dy-
namic analysis to mine contracts more accurately. We are
also interested in integrating automated test case generation
methods to our approach in order to generate change contracts
without the availability of test cases. We also plan to perform
additional experiments on more real changes from various
systems. Furthermore, we plan to investigate whether it is
possible to evaluate contracts generated by our approach using
other accuracy metrics (e.g., contract subsumption metric).
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