
Multi-Abstraction Concern Localization

Tien-Duy B. Le, Shaowei Wang, and David Lo
School of Information Systems,

Singapore Management University, Singapore

{btdle.2012,shaoweiwang.2010,davidlo}@smu.edu.sg

Abstract—Concern localization refers to the process of locating
code units that match a particular textual description. It takes as
input textual documents such as bug reports and feature requests
and outputs a list of candidate code units that need to be changed
to address the bug reports or feature requests. Many information
retrieval (IR) based concern localization techniques have been
proposed in the literature. These techniques typically represent
code units and textual descriptions as a bag of tokens at one
level of abstraction, e.g., each token is a word, or each token
is a topic. In this work, we propose multi-abstraction concern
localization. A code unit and a textual description is represented
at multiple abstraction levels. Similarity of a textual description
and a code unit, is now made by considering all these abstraction
levels. We have evaluated our solution on AspectJ bug reports
and feature requests from the iBugs benchmark dataset. The
experiment shows that our proposed approach outperforms a
baseline approach, in terms of Mean Average Precision, by up
to 19.36%.

I. INTRODUCTION

Developers receive bug reports and feature requests through

issue management systems such as Bugzilla and JIRA daily.

The amount of these reports are often too many for developers

to handle [1]. For each of these reports and requests, devel-

opers need to locate the code units that need to be modified

to fix bugs or be extended to implement a particular feature.

Considering a large code base with thousands or even millions

of files, this task is a daunting one. Much manual effort needs

to be spent to locate relevant code units. Thus, an automated

solution is needed.

A number of approaches have been proposed to link bug

reports and feature requests to the corresponding code units,

e.g., [5], [12]. The bug reports and feature requests could be

viewed as concerns1 and the linking process is referred to as

concern localization. Many past studies on bug localization,

feature location, etc. could be viewed as specific instances of

concern localization.

Many existing studies characterize both concerns (e.g.,

feature requests or bug reports) and code units as a bag (i.e.,

multi-set) of tokens at one abstraction level [5], [12]. A textual

document (i.e., feature request, bug report, or code unit) could

be represented as a set of words that appear in it. Alternatively,

a natural language processing technique, referred to as topic

modeling, e.g., [2], can be applied to infer a set of topics that

appear in the document. A topic is a distribution of words and

1A concern is a concept, requirement, feature, or property related to a
software system [10]. In this work, we focus on bug reports and feature
requests which are subsets of concerns but the proposed approach could be
used for generic concerns.

is a higher level abstraction of the original words. A set of

topics can be inferred from documents and these topics would

represent these documents. Similarities of documents can then

be measured as the similarities of their representations (i.e.,

their set of words, or their set of topics). The code units that

are most similar to the input concerns are output to the end

user.
While many past studies only compare two documents at

one abstraction level, in this work, we compare documents

at multiple abstraction levels. A word can be abstracted at

multiple levels of abstraction. For example, Eindhoven, can

be abstracted to North Brabant, Netherlands, Western Europe,

European Continent, Earth, and so on. Two documents might

not share the same word “Eindhoven” but they might be about

the same province (i.e., North Brabant), the same country (i.e.,

Netherlands), the same region (i.e., Western Europe), and so

on. By viewing a document at multiple levels of abstractions

the similarity or difference of two documents can be better

assessed.
To represent documents in multiple abstraction levels, we

leverage topic modeling. Topic modeling maps words that

appear in a document to topics. Each word is assigned to

one topic. The fewer the number of topics, the higher the

abstraction level. This is the case as a topic now represents

more words. On the other hand, the larger the number of

topics, the lower the abstraction level. Thus we can iteratively

apply topic modeling using different numbers of topics to

create multiple abstraction levels. We can then aggregate these

abstractions to measure the similarity between a concern (e.g.,

a bug report or a feature request) and a code unit.
In the literature, vector space modeling (VSM) has been

shown to outperform many other information retrieval (IR)-

based techniques for concern localization [9], [12]. In this

paper, we extend VSM to consider multi abstraction levels.

We refer to the resultant model as multi-abstraction VSM

(V SMMA). We evaluate our approach on the iBugs dataset [3]

which contains a few hundred of AspectJ concerns (i.e.,

bug reports and feature requests) and their corresponding

code units. To demonstrate that the proposed multi-abstraction

concept works, we compare our approach with the original

VSM. The experiment results show that, in terms of mean

average precision (MAP) [4], our multi-abstraction approach

can outperform the original VSM by 19.36%.
Our contributions are as follows:

1) We propose multi-abstraction concern localization. We

represent a document (i.e., a code unit, bug report, or

2013 IEEE International Conference on Software Maintenance

1063-6773/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSM.2013.48

364

Fig. 1. Overall Framework of Multi-Abstraction Concern Localization

feature request) at multiple abstraction levels.

2) We propose a technique that leverages multiple topic

models to capture representations of documents at dif-

ferent abstraction levels. Our technique then uses these

representations to compute the similarity between a con-

cern and a code unit.

3) We have evaluated our approach on hundreds of AspectJ

concerns from the iBugs dataset. Our experiment shows

that our proposed multi-abstraction concept works. In

terms of MAP, our proposed approach can outperform

the original VSM by 19.36%.

The structure of the paper is as follows. In Section II, we

present the overall framework of multi-abstraction concern

localization. In Section III, we discuss our multi-abstraction

approach namely Multi-Abstraction VSM (V SMMA). We

present our experimental results in Section IV. We review

related work in Section V. We finally conclude and mention

future work in Section VI.

II. OVERALL FRAMEWORK

A. Overview

Figure 1 presents the overall framework of multi-abstraction

concern localization. Our framework takes as input Method
Corpus and Concerns. Method Corpus is a collection of textual

documents where each document corresponds to a method in

the code base. Each document contains identifiers that appear

in the source code of the method and comments (Java or

Javadoc comments) that appear in or written for the method.

Concerns is a collection of textual documents where each

document is either a bug report or a feature request. For each

bug report and feature request, we extract the text that appears

in its title and description. The output of our framework is a

set of ranked methods for each concern.

Our framework contains three processing steps: Prepro-
cessing, Hierarchy Creation, and Multi-Abstraction Retrieval.
The purpose of the Preprocessing step is to convert methods

and bug reports into a standard representation, i.e., a bag

of words. The resultant bags of words are then input to the

Hierarchy Creation step. The Hierarchy Creation step applies

a topic modeling technique a number of times to construct the

abstraction hierarchy. The abstraction hierarchy is a collection

of topic models with various number of topics. Each topic

model is a level in the hierarchy. The abstraction hierarchy
is a part of the Multi-Abstraction Retrieval step. In this step,

we enhance standard retrieval techniques by leveraging the

abstraction hierarchy. The goal of the final processing step is

to compare a concern (a query) and a method (a document in

the Method Corpus) by considering multiple abstraction levels.

We elaborate the first two processing steps in the follow-

ing subsections. Section III discusses the multi-abstraction

retrieval step in more detail.

B. Preprocessing Step

In this step, we first remove common Java keywords such

as public, private, class, extends, etc., as well as punctuation

marks and special symbols. These words are deemed useless

for linking concerns and code units (i.e., methods) as either

they appear in most documents or they carry little meaning.

Thus, we only retain some word tokens and number literals.

We then break identifiers into word tokens by assuming

that identifiers follow Camel casing convention which is the

naming convention adopted by most Java programs. Following

the Camel casing convention, for every class name, each word

starts with a capital letter; for other identifiers, the second

and subsequent words start with a capital letter. We use this

convention to break an identifier into word tokens. We perform

this step to standardize word tokens that are used in Method
Corpus with those that are used in Concerns.

Next, we apply the Porter Stemming Algorithm2 to reduce

English words into their root forms. For example, “models”,

“modeled”, “modeling” are all reduced to the same root word

“model”. We perform this step to standardize words of the

same meaning but are in different forms.

At the end of this step, we create a bag (i.e., a multi-set)

of words for each concern and method.

C. Hierarchy Creation Step

In the hierarchy creation step, we apply a topic modeling

algorithm a number of times. We use Latent Dirichlet Alloca-

tion (LDA) which is a popular topic modeling algorithm [2].

LDA accepts as input the number of topics K and a set of

documents 3 (in bag of words representation). It produces the

following:

1) K topics, where each topic is a distribution of words.

2) For each document d and each topic t, LDA assigns a

probability of topic t to appear in document d.

3) For each word w in document d, LDA assigns a topic to

w. This topic is an abstraction of the word.

Each application of LDA creates a topic model with K
topics. This topic model forms an abstraction level. We repeat

2http://tartarus.org/martin/PorterStemmer/
3We set the other LDA parameters to their default values.

365

this step L times to create L abstraction levels. These L
abstraction levels form an abstraction hierarchy H . Topic

models with fewer topics are higher in the hierarchy while

those with more topics are lower in the hierarchy. We refer

to the number of topic models contained in a hierarchy as the

height of the hierarchy.

At the end of this step, we create an abstraction hierarchy

which is used in the next step: Multi-Abstraction Retrieval.

III. MULTI-ABSTRACTION RETRIEVAL

In this section, we discuss how to combine an abstraction

hierarchy with a text retrieval model (i.e., VSM). A retrieval

method takes a query (i.e., a bug report) and returns a sorted

list of most similar documents in a corpus (i.e., methods).

In standard VSM, a document is represented as a vector

of weights. Each element in a vector corresponds to a word,

and its value is the weight of the word. Term frequency-

inverse document frequency (tf-idf) [4] is often used to assign

weights to words. The following is the tf-idf weight of word

w in document d given a corpus (i.e., a set of documents) D
(denoted as tf-idf(w, d,D)):

tf-idf(w, d,D) = log(f(w, d) + 1)× log
|D|

|{di ∈ D|w ∈ di}|
In the above equation, f(w, d) is the number of times

word w appears in document d, and w ∈ di denotes that

word w appears in document di. Given a query document q,

standard VSM retrieval model would return the most similar

documents in the corpus D. Similarity between two documents

is measured by computing the cosine similarity between the

two documents’ vector representations [4].

In Multi-Abstraction VSM (V SMMA), we integrate ab-

straction hierarchy into standard VSM by extending the vector

that represents a document. We added more elements to

the vector. Each added element corresponds to a topic of a

topic model in the abstraction hierarchy, and its value is the

probability of the topic to appear in the document. The size of

an extended document vector is V +
L∑

i=1

K(Hi), where V is

the size of the original document vector, L is the number of

abstraction levels in the hierarchy, and K(Hi) is the number

of topics of the ith topic model in the abstraction hierarchy H .

Based on this representation, the similarity between a query

q and document d, considering a corpus D, calculated using

cosine similarity, is as follows:

sim(q, d,D)

=

V∑
i=1

tf-idf(wi, q,D)× tf-idf(wi, d,D) +
L∑

k=1

K(Hk)∑
i=1

θHk
q,ti × θHk

d,ti

‖q‖×‖d‖

where

‖q‖=

√√√√ V∑
i=1

tf-idf(wi, q,D)2 +
L∑

k=1

K(Hk)∑
i=1

(θHk
q,ti)

2

and

‖d‖=

√√√√ V∑
i=1

tf-idf(wi, d,D)2 +

L∑
k=1

K(Hk)∑
i=1

(θHk

d,ti
)2

In the above equations, θHk

d,ti
is the probability of topic ti to

appear in document d as assigned by the kth topic model in

the abstraction hierarchy H .

For example, assuming that a bug report br after text

preprocessing has the following 7 words: “suppress”(3),

“warning”(2), “pointcut”(2), “aj”(2), “advice”(1), “lint”(1),

“require”(1). We also have two methods m1 and m2.

Each of them contains 5 words: m1 ={“suppress”(7),
“warning”(4), “pointcut”(3), “lint”(7), “require”(1)} and

m2 ={“suppress”(10), “warning”(10), “aj”(5), “advice”(4),
“lint”(6)}. The number in parentheses is the number of times a

word appears in a document. Let us assume that an abstraction

hierarchy of height 1 is used, and the topic model has 3 topics.

Let us also assume that there are 1000 methods, and terms in

m1 and m2 do not appear in other methods. Considering only

the 7 words, the representative vectors of br, m1, and m2 are:

Vbr = [1.62, 1.291.43, 1.43, 0.90, 0.81, 0.90, 0.26, 0.72, 0.02]

Vm1
= [2.44, 1.89, 1.81, 0.00, 0.00, 2.44, 0.90, 0.00, 0.99, 0.00]

Vm2
= [2.81, 2.81, 0.00, 2.33, 2.10, 2.28, 0.00, 0.57, 0.43, 0.00]

The first 7 entries in each vector are the weights of the

7 words computed using the tf-idf formula, and the last 3

entries are rounded probabilities θH1

d,ti
of topics 1, 2 and 3

respectively in the documents. Finally, we calculate cosine

similarities between bug report br and methods m1 and m2.

The results are sim(br,m1) = 0.82 and sim(br,m2) = 0.84.

Thus, m2 is more relevant to bug report br than m1.

IV. EXPERIMENTS & ANALYSIS

We use AspectJ concerns (i.e., bug reports and feature

requests) from the iBugs dataset [3]. In iBugs, there are

350 AspectJ faulty versions, but some relevant methods in

65 versions cannot be found in the AspectJ codes that are

included in the iBugs dataset. Thus, we exclude 65 concerns

corresponding to these 65 versions. For each concern, we have

its description, along with methods that are responsible for it,

i.e., the method is changed to address the concern.

We measure effectiveness in terms of mean average preci-
sion (MAP) [4]. MAP has been used in past studies, e.g., [9].

A retrieval technique returns a sorted list of documents (i.e.,

methods) given a query (i.e., concern). The MAP of retrieval

results corresponding to a set of queries (i.e., concerns) Q to

retrieve relevant documents (i.e., methods) from a document

corpus D is:

MAP (Q,D) =

∑
q∈Q AvgP (q,D)

|Q| (1)

AvgP (q,D) =

|D|∑
k=1

P@k × rel(k)

Total number of relevant methods

366

TABLE I
ABSTRACTION HIERARCHIES USED IN THE EXPERIMENTS

Hierarchies Number of Topics
H1 50
H2 50, 100
H3 50, 100, 150
H4 50, 100, 150, 200

TABLE II
EFFECTIVENESS OF MULTI-ABSTRACTION VSM OVER STANDARD VSM

MAP Improvement
Baseline (i.e., VSM) 0.0669 0%

H1 0.0715 6.82%
H2 0.0777 16.11%
H3 0.0787 17.65%
H4 0.0799 19.36%

In the above equation, AvgP (q,D) is the average precision
for query q. P@k is the precision at k defined as the proportion

of relevant methods among the top-k methods in the retrieval

results. Also, rel(k) is a function that returns 1 if the method

returned at position k is relevant to the concern, and 0

otherwise.

We experiment with the 4 hierarchies H1, H2, H3, and H4

of heights 1, 2, 3, and 4 respectively (listed in Table I). The

number of topics in the topic model(s) of H1 is 50, H2 are

50 and 100, H3 are 50, 100, and 150, and H4 are 50, 100,

150, and 200. In this preliminary study, we arbitrarily decide

the hierarchy heights and the number of topics.

Our experiment results are shown in Table II. The table

shows that for Multi-Abstraction VSM, for all hierarchy

settings (H1, H2, H3, and H4), the performance is better

than that of the baseline (standard VSM). Moreover, the MAP

improvement for H4 is 19.36%. Furthermore, we note that the

MAP is improved when the height of the abstraction hierarchy

is increased from 1 (H1) to 4 (H4). Table III shows the number

of concerns where the improvements in the average precision
(AveP) are within a particular range for H1 to H4. We note

that for the majority of the concerns the improvements are

positive. For H4, the improvements are positive for 222 out

of the 285 concerns (77.89%).

V. RELATED WORK

A number of past studies have employed various text

retrieval techniques for concern localization [5], [12], [14].

Wang et al. [12] evaluate 10 information retrieval techniques

and discover that VSM has the best performance. Rao and Kak

also investigate the use of LDA with VSM [9]. However, in

their approach, VSM is considered separately from LDA. The

results of the two are combined together using a weighted sum.

The performance of the resulting composite model is worse
than that of VSM. In this work, we integrate LDA and VSM

by constructing a single unified vector and we use a hierarchy

of topic models; the resulting approach performs better than

VSM. Aside from text, other sources of information, e.g., ex-

ecution traces [8], have been used to aid concern localization.

Our technique does not consider execution traces since most

bug reports do not come with execution traces [11].

Petrenko and Rajlich proposes an impact analysis approach

which leverages program dependencies at multiple granulari-

TABLE III
NUMBER OF CONCERNS WITH VARIOUS AveP IMPROVEMENTS

Improvement (p) Number of Concerns
H1 H2 H3 H4

p < −10% 21 27 30 30
−10% ≤ p < 0% 25 22 25 22

p = 0% 18 14 12 11
0% < p ≤ 10% 113 64 42 41

p > 10% 108 158 176 181

ties (i.e., classes, class members, and code fragments) [7]. In

this work, we address a different problem.

VI. CONCLUSION AND FUTURE WORK

In this study, we propose multi-abstraction concern localiza-

tion which combines a hierarchy of topic models with VSM.

Our experiments on 285 AspectJ concerns shows that we can

improve MAP of VSM by up to 19.36%.

In the future, we plan to perform a deeper analysis on

cases where our multi-abstraction approach does not work

well. Also, we want to extend our study by experimenting

with different numbers of topics in each level of the hierarchy,

different hierarchy heights (> 4), and different topic models.

We also want to analyze the effect of document lengths on the

effectiveness of the proposed approach for different number

of topics and hierarchy heights. Furthermore, we plan to

experiment with Panichella et al.’s method [6] to infer good

LDA configurations, and leverage other advanced text mining

solutions, e.g., paraphrase detection [13], to further improve

concern localization results.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in ETX, 2005, pp. 35–39.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[3] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in ASE, 2007, pp. 433–436.

[4] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. Cambridge, 2008.

[5] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in ICSE 2003.

[6] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia, “How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms,” in ICSE, 2013.

[7] M. Petrenko and V. Rajlich, “Variable granularity for improving preci-
sion of impact analysis,” in ICPC, 2009, pp. 10–19.

[8] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” TSE, 2007.

[9] S. Rao and A. C. Kak, “Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models,”
in MSR, 2011.

[10] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, 2007.

[11] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011, pp. 253–262.

[12] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using
information retrieval: An empirical study on linux kernel,” in WCRE
2011.

[13] X. Wang, D. Lo, J. Jiang, L. Zhang, and H. Mei, “Extracting para-
phrases of technical terms from noisy parallel software corpora,” in
ACL/IJCNLP, 2009.

[14] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in ICSE, 2012, pp. 14–24.

367

