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Abstract—Spectrum-based fault localization refers to the pro-
cess of identifying program units that are buggy from two
sets of execution traces: normal traces and faulty traces. These
approaches use statistical formulas to measure the suspiciousness
of program units based on the execution traces. There have been
many spectrum-based fault localization approaches proposing
various formulas in the literature. Two of the best performing
and well-known ones are Tarantula and Ochiai. Recently, Xie
et al. [18] find that theoretically, under certain assumptions, two
families of spectrum-based fault localization formulas outperform
all other formulas including those of Tarantula and Ochiai. In this
work, we empirically validate Xie et al.’s findings by comparing
the performance of the theoretically best formulas against popular
approaches on a dataset containing 199 buggy versions of 10
programs. Our empirical study finds that Ochiai and Tarantula
statistically significantly outperforms 3 out of 5 theoretically best
fault localization techniques. For the remaining two, Ochiai
also outperforms them, albeit not statistically significantly. This
happens because an assumption in Xie et al.’s work is not satisfied
in many fault localization settings.

I. INTRODUCTION

In software systems, bugs are unavoidable. Many bugs are

regularly found and reported to the developers. The amount of

bugs to be fixed is often much larger compared to the size of

the development team [3]. To tackle this problem, researchers

have developed automated approaches to help developers in

fixing bugs. These automated approaches include the many

fault localization techniques proposed in the literature [15],

[9], [1], [19], [13], [14]. The goal of fault localization is to

localize a bug to local regions of the source code. Thus, rather

than the whole program, developers only need to investigate

a much smaller part of the program. This would significantly

reduce the amount of time needed to find the buggy program

elements and fix the bug.

One large family of fault localization techniques is

Spectrum-Based Fault Localization (SBFL) techniques [15],

[9], [1], [19], [13]. SBFL techniques analyze program spectra,

which are program traces collected during the execution of a

program, to correlate failures (i.e., faulty execution traces) with

program elements (e.g., lines, basic blocks) that are responsi-

ble for them. Various SBFL techniques use various formulas

to assign suspiciousness scores to program elements. Program

elements are then ranked based on their suspiciousness scores.

The resulting ranked list is then given to developers to help

them find the root cause of failures. Two well-known SBFL

techniques are Tarantula [9] and Ochiai [1].

Recently, Xie et al. [18] have theoretically investigated

many SBFL formulas. Their study has shown that SBFL

formulas can be grouped into families (or equivalence classes).

Within each family, the formulas have the same effectiveness

to localize bugs under certain assumptions. Also they have

created a partial order which shows which families of SBFL

formulas are better than others. At the top of the partial order

are 2 families of SBFL formulas named ER1 and ER5 which

contain in total 5 SBFL formulas. Xie et al. have theoretically
proven that the 5 SBFL formulas can outperform Tarantula’s

and Ochiai’s SBFL formulas. However, these SBFL formulas

have not been empirically compared with one another on actual

failures and programs.

In this study, we want to inspect the applicability of the

theoretically best SBFL formulas to localize faults in standard

SBFL benchmark dataset. Xie et al. theoretical analysis as-

sumes that the test coverage level is 100%. This assumption

is likely not to hold for many fault localization settings. Thus,

there is a need for an empirical study to demonstrate whether

these theoretically best formulas could outperform popular

formulas in many fault localization settings.

In this empirical study, we use 199 buggy versions of

10 programs: NanoXML, XML-Security, Space, and the 7

programs from the Siemens test suite [8]. We want to answer

the following research questions:

RQ 1 How effective are the popular and theoretically best

SBFL formulas?

RQ 2 Could the theoretically best SBFL formulas outper-

form the popular formulas?

RQ 3 Is the assumption considered by Xie et al. [18]

satisfied in many fault localization settings?

Our empirical study demonstrates that among the 7 SBFL

formulas (5 theoretically best and 2 popular formulas),

Ochiai’s SBFL formula performs the best. Using it, on average,

developers only need to inspect 21.02% of the source code.

Among the theoretically best formulas, the best percentage

is 21.09%. According to the Wilcoxon signed rank test [16],

Ochiai’s SBFL formula statistically significantly outperforms

3 out of the 5 theoretically best SBFL formulas.

The following are our contributions:

1) We empirically evaluate the effectiveness of the theo-
retically best SBFL formulas against popular ones (i.e.,
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TABLE I
RAW STATISTICS FOR SBFL

e Executed e Not Executed

Test Passed ns(e) ns(ē)
Test Failed nf (e) nf (ē)

Tarantula’s and Ochiai’s SBFL formulas). We find that

Ochiai’s SBFL formula statistically significantly outper-

forms 3 out of the 5 theoretically best SBFL formulas.

For the remaining two, Ochiai’s SBFL formula performs

better, although the differences are not statistically sig-

nificant.

2) We highlight that the assumption made by Xie et al. in

their theoretical analysis, that the code coverage level is

100%, is not satisfied in many fault localization settings

which affects the performance of the theoretically best
SBFL formulas.

The following is the structure of the paper. In Section II,

we introduce SBFL and highlight Ochiai, Tarantula, and the

two families of theoretically best SBFL formulas [18]. In

Section III, we describe our empirical study methodology. In

Section IV, we present the answers to the research questions.

We discuss related work in Section V. We conclude and

mention future work in Section VI.

II. BACKGROUND

In this section, we first succinctly introduce SBFL. Next, we

describe the formulas used in two popular approaches namely

Tarantula [9] and Ochiai [1]. We then highlight the formulas

demonstrated by Xie et al. [18] to be theoretically the best.

A. SBFL in a Nutshell

SBFL is a technique to localize a bug to certain parts of the

program by utilizing program spectra collected from software

testing and the result of the tests (pass or fail). Program

spectra, which is a record of which program elements are

executed for each test case, can be collected at different levels

of granularity (e.g., lines, basic blocks, methods, components,

etc.). In this paper, we consider the basic block level gran-

ularity (i.e., each basic block is a program element). SBFL

requires a set of test cases where at least one of the test cases

results in a faulty execution (i.e., the test case fails). For each

program element e, SBFL computes the raw statistics shown

in Table I.

The notation ē means e is not executed, ns(e) denotes the

number of successful test cases that execute e, nf (e) denotes

the number of failing test cases that execute e, ns(ē) denotes

the number of successful test cases that do not execute e, and

nf (ē) denotes the number of failing test cases that do not

execute e.

Based on the statistics, a suspiciousness score for each

program element e is computed. The higher the score is, the

more suspicious the program element is. Thus, a ranked list

of program elements sorted by their suspiciousness scores

is returned. The list can then be investigated by developers,

starting from the most suspicious program element.

B. Popular Approaches: Tarantula and Ochiai

Many approaches have been proposed to compute the sus-

piciousness scores of program elements [9], [1], [13], [18].

Tarantula [9] and Ochiai [1] are among the most popular

approaches. Using the notations in Table I, Tarantula’s SBFL

formula, which assigns a suspiciousness score to a program

element e, is defined as follows:

Tarantula(e) =

nf (e)
nf

ns(e)
ns

+
nf (e)
nf

where nf = nf (e) + nf (ē) and ns = ns(e) + ns(ē).
Ochiai’s SBFL formula is defined as follows:

Ochiai(e) =
nf (e)√

nf (nf (e) + ns(e))

C. Theoretically Best SBFL Formulas

Xie et al. [18] have compared 30 SBFL formulas and theo-

retically prove that two families of SBFL formulas outperform

others, including those of popular approaches like Tarantula

and Ochiai. They refer to these two families as ER1 and

ER5. ER1 has two members: ER1a and ER1b. ER5 has

three members: ER5a, ER5b, and ER5c. Using the notations

in Table I, the following are the definitions of those formulas

which assign a suspiciousness score to a program element e:

ER1a(e) =

{
−1, if nf (e) < nf

ns − ns(e), if nf (e) = nf

ER1b(e) =nf (e)− ns(e)

ns(e) + ns(ē) + 1

ER5a(e) =nf (e)

ER5b(e) =
nf (e)

nf (e) + nf (ē) + ns(e) + ns(ē)

ER5c(e) =

{
0, if nf (e) < nf

1, if nf (e) = nf

III. METHODOLOGY

In this section, we first describe the dataset that we use to

investigate the effectiveness of SBFL approaches. Next, we

describe how we collect traces from this dataset. We then

describe how we measure effectiveness.

A. Dataset

Our dataset consists of buggy versions of 10 programs:

NanoXML, XML-Security, Space, and the 7 programs from

the Siemens test suite [8]. NanoXML is a Java library for XML

parsing. XML-Security is a Java library for encryption and dig-

ital signature. Space is an Array Definition Language (ADL)

interpreter written in C. Siemens test suite is a suite created

by Siemens for research in test coverage adequacy. NanoXML,

XML-Security, and Space are downloaded from the Software

Infrastructure Repository (SIR) [5]. For NanoXML and XML-

Security, we exclude faulty versions that do not have failing
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TABLE II
DATASET DESCRIPTIONS: NAME, LINES OF CODE, PROG. LANGUAGE,

NUMBER OF FAULTY VERSIONS, AND NUMBER OF TEST CASES.

Dataset LOC Language # Faulty # Tests
print token 478 C 5 4130
print token2 399 C 10 4115
replace 512 C 31 5542
schedule 292 C 9 2650
schedule2 301 C 9 2710
tcas 141 C 36 1608
tot info 440 C 19 1051
space 6,218 C 35 13,585
NanoXML v1 3,497 Java 6 214
NanoXML v2 4,007 Java 7 214
NanoXML v3 4,608 Java 8 216
NanoXML v5 4,782 Java 8 216
XML security v1 21,613 Java 6 92
XML security v2 22,318 Java 6 94
XML security v3 19,895 Java 4 84

test cases or the faulty program elements are not executed

by any test case. For Siemens test suite, we exclude versions

where the fault is located in the variable declaration. This is

done since our instrumentation cannot reach it. Each faulty

version contains one bug that may span across multiple

program elements (i.e. basic blocks). Table II shows some

statistics of our dataset. These programs and buggy versions

have been used as a benchmark dataset used to evaluate many

past SBFL studies [1], [9], [15], [12], [13], [10].

B. Collecting Execution Traces

Execution traces are collected at the basic block level. Each

basic block in a program is instrumented by a “print” statement

such that we can detect whether a particular basic block is

executed when a test is run. For each basic block, a matrix

shown in Table I is maintained. Based on the status of a test

(i.e., pass or fail) and whether a basic block is executed when

the test is run, the corresponding element in the matrix is

updated. For example, if the test fails and basic block A is

executed, then nf (A) is increased by 1. The matrices for the

other basic blocks in the program are also updated accordingly.

This process is repeated for each test. In the end, each basic

block will have a matrix reflecting its execution profile.

C. Measuring Effectiveness of SBFL Approaches

In order to evaluate the effectiveness of a SBFL formula,

we count the percentage of executable code that needs to be

inspected to reach the first faulty program element. In the case

that many program elements share the same suspiciousness

score with the faulty program element, we assign the worst

rank to the faulty program element (i.e. the faulty program

element has the largest rank among all program elements with

the same score). This measure is referred to as the EXAM
score [17]. The following is the formula for calculating the

EXAM score:

EXAM score =
Rank of the first faulty program element

Total number of executable program elements

The lower the EXAM score, the better is the performance

of a SBFL formula. To illustrate EXAM score computation,

consider four program elements e1, e2, e3, and e4 in a

TABLE III
EFFECTIVENESS OF THE SBFL FORMULAS

Technique Average % Inspected Standard Dev.
Tarantula 23.37% 23.44%

Ochiai 21.02% 21.96%
ER1a 33.34% 35.22%

ER1b 21.09% 19.48%
ER5a 43.04% 19.63%

ER5b 43.04% 19.63%
ER5c 54.95% 26.83%

program with suspiciousness scores of 1.0, 0.75, 0.75, and 0.5

respectively. Assuming that e2 is the faulty program element,

in the worst case, developers need to inspect 3 program

elements to reach the faulty program element. Thus, the EXAM
score for this example is 3

4 = 75%.

IV. EXPERIMENTS & ANALYSIS

In this section, based on the methodology described in

Section III, we describe the answers to the 3 research questions

that we listed in Section I.

A. RQ1: Effectiveness of SBFL Formulas

The effectiveness of the various SBFL formulas are shown

in Table III. The average percentage of program elements to be

inspected to find the first faulty program element are 23.37%,

21.02%, 33.34%, 21.09%, 43.04%, 43.04%, and 54.95% for

Tarantula, Ochiai, ER1a, ER1b, ER5a, ER5b, and ER5c

respectively.

B. RQ2: Popular vs. Best Approaches

From Table III, we notice that Ochiai has the lowest EXAM
score. The EXAM score of Tarantula is also lower than

4 out of the 5 theoretically best SBFL formulas. We have

also performed non-parametric statistical tests, i.e., Wilcoxon

signed rank tests [16], with a significance level of 0.05.

We find that the EXAM scores of Ochiai are statistically
significantly better than those of ER5a, ER5b, ER5c.

C. RQ3: Validity of Assumptions

We have also investigated the reason why the theoretically

best SBFL formulas cannot outperform popular techniques

despite the theoretical analysis given in [18]. We investigate

the code coverage of the buggy versions of the 10 programs.

We find that out of the 199 buggy versions, for 135 of them,

the code coverage is not 100%. The average code coverage for

the 199 buggy versions is 84.97%. This highlights the reason

why the theoretical findings in [18] does not hold for many

fault localization settings.

D. Threats to Validity

Threats to internal validity refers to errors or experimental

bias. We have double checked our code and implementation of

the formulas. Still there could be errors that we do not notice.

Threats to external validity refers to the generalizability

of our findings. We have analyzed 199 buggy versions from

10 programs. These programs and buggy versions have been

used to evaluate many past SBFL studies [1], [9], [15], [12],
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[13], [10]. In the future, we plan to reduce this threat to

validity further by investigating more bugs from more software

systems.

Threats to construct validity refers to the suitability of our

evaluation measure. We have used the EXAM score which is

used to evaluate many past SBFL studies [17], [1]. The study

by Xie et al. [18] also theoretically compares the performance

of many SBFL formulas using the EXAM score.

V. RELATED WORK

In the following paragraphs, we first highlight some SBFL

studies. Next, we also briefly discuss other fault localization

approaches that do not rely on program spectrum. Due to the

space constraint, the survey here is by no means complete.

SBFL. Many SBFL approaches have been proposed in the

literature [15], [9], [1], [19], [13]. All these techniques analyze

program spectra which are logs of execution traces generated

when a target program is run. Zeller proposes a technique

named Delta Debugging which finds the minimum state dif-

ference that causes a failure to be generated [2]. Renieris

and Reiss compare a faulty execution with the nearest correct

execution to find suspicious program elements [15]. Jones and

Harrold propose an SBFL technique named Tarantula which

uses a formula to compute suspiciousness of program elements

based on the assumptions that program elements executed

more by faulty executions rather than by correct executions are

more likely to be faulty [9]. Abreu et al. propose another SBFL

technique named Ochiai that uses another formula to compute

suspiciousness of program elements [1]. Lucia et al. investigate

the effectiveness of many association measures for fault local-

ization [13]. Gong et al. propose an interactive SBFL approach

that takes incremental user input into consideration [7]. Gong

et al. also propose another SBFL approach that reduces the

number of test cases with oracles [6]. Cheng et al. mine graph-

based signatures that highlight suspicious program elements

by analyzing program spectra [4]. Duy and Lo propose a

classification-based approach that predicts whether an SBFL

technique would be effective for a particular fault localization

task [11]. Xie et al. theoretically analyze many SBFL formulas

including Tarantula and Ochiai and show that two families of

SBFL formulas (ER1 and ER5) could outperform the others if

a number of assumptions hold [18]. In this work, we compare

the effectiveness of the theoretically best formulas presented

in Xie et al’s work with Tarantula and Ochiai using a standard

SBFL benchmark dataset.

Other Fault Localization Approaches. Aside from SBFL, a

number of past papers have also proposed model-based fault

localization techniques which often use formal models and

employ expensive logic reasoning, e.g., [14]. This limits the

applicability of this family of fault localization approaches

especially on large complicated programs. In this work, we

only consider SBFL approaches.

VI. CONCLUSION AND FUTURE WORK

We have conducted an empirical evaluation of various

SBFL techniques on 199 buggy versions of NanoXML, XML-

Security, Space, and the 7 programs from the Siemens test

suite. We compare the performance of 5 theoretically best
SBFL formulas presented by Xie et al. [18] with popular

SBFL formulas (Tarantula and Ochiai). We find that Ochiai’s

SBFL formula outperforms all, while Tarantula’s SBFL for-

mula outperforms four theoretically best SBFL formulas. For

three out of the five theoretically best formulas, Ochiai and

Tarantula SBFL formulas statistically significantly outperform

them. We highlight that the assumption made by Xie et al.

is not valid for many settings. For many programs, even

though with a large number of test cases, the code coverage

is not 100%. A relatively small reduction in test coverage can

significantly affect the performance of the theoretically best
SBFL formulas.

As a future work, we plan to perform a more in-depth

study on how coverage levels and other factors affect the

effectiveness of various SBFL formulas. We are also interested

in theoretically analyzing the performance of SBFL formulas

under a more relaxed assumption (i.e., less than 100% cov-

erage). Furthermore, we want to reduce the threat to external

validity by investigating more programs and buggy versions.
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