
DRONE: Predicting Priority of Reported Bugs by
Multi-Factor Analysis

Yuan Tian1, David Lo1, and Chengnian Sun2
1Singapore Management University, Singapore
2National University of Singapore, Singapore

{yuan.tian.2012,davidlo}@smu.edu.sg, suncn@comp.nus.edu.sg

Abstract—Bugs are prevalent. To improve software quality,
developers often allow users to report bugs that they found using
a bug tracking system such as Bugzilla. Users would specify
among other things, a description of the bug, the component
that is affected by the bug, and the severity of the bug.
Based on this information, bug triagers would then assign a
priority level to the reported bug. As resources are limited,
bug reports would be investigated based on their priority levels.
This priority assignment process however is a manual one.
Could we do better? In this paper, we propose an automated
approach based on machine learning that would recommend
a priority level based on information available in bug reports.
Our approach considers multiple factors, temporal, textual,
author, related-report, severity, and product, that
potentially affect the priority level of a bug report. These
factors are extracted as features which are then used to train
a discriminative model via a new classification algorithm that
handles ordinal class labels and imbalanced data. Experiments
on more than a hundred thousands bug reports from Eclipse
show that we can outperform baseline approaches in terms of
average F-measure by a relative improvement of 58.61%.

I. INTRODUCTION

Due to system complexity and inadequate testing, many

software systems are often released with defects. To address

these defects and improve the next releases, developers need

to get feedback on defects that are present in released systems.

Thus, they often allow users to report such defects using bug

reporting systems such as Bugzilla, Jira, or other proprietary

systems. Bug reporting is a standard practice in both open

source software development and closed source software de-

velopment (e.g., Windows).

Although bug reporting could potentially improve software

quality, the number of such reports could be too many for

developers to handle. In 2005, it is reported that “everyday

almost 300 bugs appear that need triaging. This is far too

much for only the Mozilla programmers to handle” [2]. Thus

developers often need to prioritize which bugs are to be given

attention first. In Bugzilla there are 5 priority levels: P1, P2,

P3, P4, and P5. P1 is the highest priority and often the software

system can only be shipped if these high priority bugs are

fixed. P5 on the other hand is the lowest priority and bugs

assigned this priority might remain unfixed for a long period

of time.

Prioritizing bugs is a manual process and is time consuming.

Bug triagers need to read the information provided by users

in the new bug reports, compare them with existing reports,

and decide the appropriate priority levels.

To aid bug triagers in assigning priority, we propose a

new automated approach to recommend priority levels of bug

reports. To do so, we leverage information available in the

bug reports. Bug reports contain various information including

short and long descriptions of the issues users encounter while

using the software system, the products that are affected by the

bugs, the dates the bugs are reported, the people that report the

bugs, the estimated severity of the bugs, and many more. We

would like to leverage this information to predict the priority

levels of bug reports.

Our approach predicts the priority level of bug reports

by considering several factors that could affect the prior-

ity of a bug report. These factors include other bug re-

ports that are reported at the same time as the bug re-

port (temporal), the textual content of the bug report

(textual), the author of the bug report (author), related

bug reports (related-report), the estimated severity of

the bug (severity), and the product which the reported

bug affects (product). We extract various features, e.g., the

number of bugs reported in the past 7 days, etc., to capture

each of these factors.

Next, we propose a new machine learning approach, in

particular a new classification algorithm, to create a model

from the features that could predict if a bug report should be

assigned a priority level P1, P2, P3, P4, or P5. We take a

training set of reports along with the priority levels. Feature

values are then extracted from each data point (i.e., bug report)

in this training set. The machine learning algorithm would then

decide the likely priority level of a bug report whose priority

level is to be predicted based on these feature values.

We propose a new framework named DRONE (PreDicting

PRiority via Multi-Faceted FactOr ANalysEs) to aid triagers

in assigning priority labels to bug reports. Inside DRONE,

we include our new classification engine named GRAY

(ThresholdinG and Linear Regression to ClAssifY Imbalanced

Data) which enhances linear regression with our thresholding
approach to handle imbalanced bug report data. Linear re-

gression models the relationship between the values of the

various features and the priority levels (which takes a value

between 1 to 5) of bug reports. Linear regression considers the

priority levels as ordinal values (i.e., P1 is closer to P2 than it

is to P5) rather than categorical values (i.e., P1 is as different

to P2 as it is to P5). It then outputs a real number given

2013 IEEE International Conference on Software Maintenance

1063-6773/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSM.2013.31

200



a set of values of the different features of a new bug report.

Thresholding learns a set of thresholds defining a set of ranges
for the outputs of the linear regression model where each range

corresponds to a priority level. Due to the data imbalance, the

best set of ranges are of unequal sizes and these ranges could

be effectively learned from a set of validation data points, thus

addressing the data imbalance issue.

Closest to our work, is the series of work on bug report

severity prediction by Menzies and Marcus [16], Lamkanfi

et al. [13], [14], and our own previous work [27]. These

studies predict the severity field of a bug report based on

the textual content of the report. Severity however is different

from priority. Severity is assigned from a user perspective

while priority is assigned based on the developers’ perspective.

We have checked with an experienced developer from Eclipse

Project Management Committee, who has fixed hundreds of

bugs in Eclipse. He states that:

Severity is assigned by customers [users] while

priority is provided by developers . . . customer [user]

reported severity does impact the developer when

they assign a priority level to a bug report, but it’s

not the only consideration. For example, it may be

a critical issue for a particular reporter that a bug is

fixed but it still may not be the right thing for the

eclipse team to fix.

Thus our work is different from the work on bug sever-

ity prediction. In this work, we predict the priority of bug

reports by considering the temporal, textual, author,

related-report, severity, and product factors of a

bug report. This holistic view of a bug report is needed for us

to support triagers in assigning priority levels to bug reports.

We experiment our solution on more than a hundred thou-

sand bug reports of Eclipse that span a period of several years.

We compare our approach with a baseline solution that adapt

an algorithm by Menzies and Marcus [16] for bug priority

prediction. Our experiments demonstrate that we can achieve

58.61% improvement on the average F-measure.

The contributions of this work are as follows:

1) We propose a new problem of predicting the priority of

a bug given its report. Past studies on bug report analysis

has only considered the problem of predicting the severity

of bug reports which is an orthogonal problem.

2) We predict priority by considering the different factors

that potentially affect the priority level of a bug report. In

particular, we consider the following factors: temporal,

textual, author, related-report, severity,

and product.

3) We introduce a new machine learning framework, named

DRONE, that would consider these factors and predict

the priority of a bug given its report. We also propose

a new classification engine, named GRAY, which is a

component of DRONE, that enhances linear regression

with thresholding to handle imbalanced data.

4) We have experimented our solution on more than a

hundred thousands bug reports from Eclipse in its ability

to support developers in assigning priority levels to bug

reports. The result shows that DRONE could outperform a

baseline approach, built by adapting a bug report severity

prediction algorithm, in terms of average F-measure, by

a relative improvement of 58.61%.

The structure of this paper is as follows. In Section II,

we describe preliminary information on bug report, text pre-

processing, and measuring similarity of bug reports. In Sec-

tion III, we describe our proposed approach. Section IV

presents the result of our experiments. Next, we discuss

interesting issues in Section V. Related work is presented in

Section VI. Finally, we conclude and discuss future work in

Section VII.

II. PRELIMINARIES & PROBLEM DEFINITION

In this section, we first describe bug reports and bug report

reporting process. Next, we present an approach to pre-process

textual documents. Then, we highlight REP [22], which is a

recently proposed state-of-the-art similarity measure of bug

reports. Finally, we present our problem definition.

A. Bug Reports and Reporting Process

Developers often desire feedback on defects that exist on

released systems. To collect feedback, bug tracking systems

are often employed. Popular bug tracking systems include

Bugzilla, Jira, and other proprietary systems. Utilizing these

systems, users can report issues that they find in the system

and track their progress. Each reported issue is referred to as

a bug report.

Each bug report contains information on how the bug could

be reproduced plus other related information that could help

in debugging. In a bug report, there is information on short

and long descriptions of the bug, and various information on

the product that is affected by the bug, the component that is

affected by the bug, the estimated severity of the bug, the date

that the bug is reported, and many more. All this information

is commonly provided by bug reporters when they submit bug

reports. We provide a description of fields in a bug report that

are of interest to us in Table I.

When a new bug report is submitted into a bug tracking

system, a bug triager would first investigate the fields of

the bug report and potentially other reports. Based on the

investigation, he or she would check the validity of the bug

report and assign an appropriate priority level. Some bugs are

also reported as duplicate bug reports at this point. This is

possible due to the distributed nature of the bug reporting

process – i.e., users from various parts of the world could

encounter the same defect and create different bug reports.

We show some example bug reports from Eclipse in Table II.

Note that bug reports shown in the same box (e.g., 4629 and

4664) are duplicates of one another. After assigning a priority

level to the bug report, bug triager would forward the bug to a

developer to fix it. The developer then works on the bug and

eventually comes up with a resolution.

201



TABLE I
FIELDS OF INTEREST IN A BUG REPORT

Field Description
Summary Summarized description of a bug. Typically this summary only contains a few keywords
Description Long description of a bug. Typically this would include information that would help in the debugging process including the reported

error message, the steps to reproduce the error, etc.
Product The product which is affected by the bug
Component The component which is affected by the bug
Author The author of the bug report
Severity The estimated impact of a bug as perceived by the reporter of the bug. There are several severity labels including blocker,

critical, major, normal, minor, and trivial. Aside from these severity levels, there is one additional severity level that
denotes feature requests, i.e., enhancement. In this study, we ignore bug reports with this severity label as we focus on defects
and not feature requests.

Priority The priority of a bug to be fixed which is assigned by a bug triager. When the bug report is submitted, this field would be blank.
The triager would then decide an appropriate priority level for a bug report. There are five priority levels: P1, P2, P3, P4, and P5.

TABLE II
EXAMPLES OF BUG REPORTS FROM ECLIPSE

ID Summary Product Component Severity Priority

1
4629 Horizontal scroll bar appears too soon in editor (1GC32LW) Platform SWT normal P4
4664 StyledText does not compute correct text width (1GELJXD) Platform SWT normal P2

2
4576 Thread suspend/resume errors in classes with the “same” name JDT Debug normal P1
5083 Breakpoint not hit JDT Debug normal P1

3
4851 Print ignores print to file option (1GKXC30) Platform SWT normal P3
5126 StyledText printing should implement ”print to file” Platform SWT normal P3

B. Text Pre-Processing

Here we present several standard pre-processing techniques

to convert a textual document into a set of features. These

pre-processing techniques include tokenization, stop-word re-

moval, and stemming. We present each of them in the follow-

ing paragraphs.

Tokenization. A textual document contains many words. Each

of such words is referred to as a token. These words are

separated by delimiters which could be spaces, punctuation

marks, etc. Tokenization is a process to extract these tokens

from a textual document by splitting the document into tokens

according to the delimiters.

Stop-Word Removal. Not all words are equally important.

There are many words that are frequently used in many

documents but carry little meaning or useful information.

These words are referred to as stop words. There are many

of such stop words including “am”, “are”, “is”, “I”, “he”,

etc. These stop words need to be removed from the set of

tokens extracted in the previous steps as they might affect

the effectiveness of machine learning or information retrieval

solutions due to their skewed distributions. We use a collection

of 30 stop words and also standard abbreviations including,

“I’m”, “that’s”, etc.

Stemming. Words can appear in various forms; in English,

various grammatical rules dictate if a root word appear in its

singular, plural, present tense, past tense, future tense, or many

other forms. Words originating from the same root word but

are not identical with one another are semantically related. For

example, there is not much difference in meaning between

“write” and “writes”. In the text mining and information

retrieval community, stemming has been proposed to address

this issue. Stemming would try to reduce a word to its ground
form. For example, “working”, “worked”, and “work” would

all be reduced to “work”. There are various algorithms that

have been proposed to perform stemming. In this work, we

use the Porter’s stemming algorithm [21] to process the text

as it is commonly used by many prior studies, e.g., [16], [13],

[14], [29].

C. Measuring Similarity of Bug Reports

Various techniques have been proposed to measure the

similarity of bug reports. A number of techniques model a

bug report as a vector of weighted tokens. Similarity of two

bug reports can then be evaluated by computing the Cosine

similarity of their corresponding two vectors. These include

the work by Jalbert and Weimer [9], Runeson et al. [19], Wang

et al. [29], etc.

The most recent approach proposed to measure the sim-

ilarity of bug reports is REP which is proposed by Sun et

al. [22]. Their approach extends BM25F [18] which is a state-

of-the-art measure for structured document retrieval. In their

proposed approach past bug reports that have been labeled as

duplicate are used as training data to measure the similarity

of two bug reports. Various fields of bug reports are used for

comparison including the textual and non-textual contents of

bug reports. We use an adapted version of REP to measure the

similarity of bug reports. REP includes the comparison of the

priority fields of two bug reports to measure their similarity.

In our setting, we would like to predict the values of the

priority field. Thus, we remove the priority field from REP’s

analysis as they are unknown for bug reports whose priority

levels are to be predicted. We call the resultant REP, REP−.

REP− only compares the textual (summary and description),

product, and component fields of two bug reports to measure

202



Legend

�

�������	�	�

���
��
�	�
��

����
��	�	�

��������

����
���

Classifier Module

���������

	
�����

�
�����

	
�����

Training Phase Prediction Phase

��
���
����������

�
���
���������������
�

������

�	
�����

������

��
���
���

������

Temporal SeverityRelated Report 

AuthorTextual Product

Fig. 1. DRONE Framework

their similarity.

D. Problem Definition

“Given a new bug report and a bug tracking system, predict
the priority label of the new report as either P1, P2, P3, P4,

or P5.”

III. PROPOSED APPROACH

In this section, we describe our proposed framework. First

we present the overall structure of our framework. Next, we

zoom into two sub-components of the framework namely

feature extraction and classification modules. In the feature

extraction module, we extract various features that capture

various factors that potentially affect the priority level of a

bug report. In the classification module, we propose a new

classification engine leveraging linear regression and thresh-

olding to handle imbalanced data.

A. Overall Framework

Our framework, named DRONE (PreDicting PRiority via

Multi-Faceted FactOr ANalysEs), is illustrated in Figure 1. It

runs in two phases: training and prediction. There are two main

modules: feature extraction module and classification module.

In the training phase, our framework takes as input a set of

bug reports with known priority labels. The feature extraction

module extracts various features that capture temporal,

textual, author, related-report, severity, and

product factors that potentially affect the priority level of

a bug report. These features are then fed to the classification

module. The classification module would produce a discrim-

inative model that could classify a bug report with unknown

priority level.

In the prediction phase, our framework takes a set of bug

reports whose priority levels are to be predicted. Features are

first extracted from these bug reports. The model learned in

the training phase is then used to predict the priority levels of

the bug reports by analyzing these features.

Our framework has two placeholders: feature extraction

and classification module. Various techniques could be put

into these placeholders. We describe our proposed feature

extraction and classification modules in the following two

subsections.

B. Feature Extraction Module

The goal of the feature extraction module is to characterize

a bug report in several dimensions: temporal, textual,

author, related-report, severity, and product.

For each dimension, a set of features is considered. For each

bug report BR our feature extraction module processes various

fields of BR and a bug database of reports created prior to the

reporting of BR. It would then produce a vector of values for

the features listed in Table III.

Each dimension/factor is characterized by a set of features.

For the temporal factor, we propose several features that

capture the number of bugs that are reported in the last x
days with priority level y. We vary the values of x and y to

get a number of features (TMP1-12). Intuitively, if there are

many bugs reported in the last x days with a higher severity

level than BR, BR is likely not assigned a high priority level

since there are many higher severity bug reports in the bug

tracking system that need to be resolved too.

For the textual factor, we take the description of the

input bug report BR and perform the text pre-processing steps

mentioned in Section II. Each of the resultant word token

corresponds to a feature. For each feature, we take the number

of times it occurs in a description as its value. Collectively

these features (TXT1-n) describe what the bug is all about

and this determines how important it is for a particular bug to

get fixed.

For the author factor, we capture the mean and median

priority, and number of all bug reports that are made by the

author of BR prior to the reporting of BR (AUT1-3). We

extract author factor features based on the hypothesis that

if an author always reports high priority bugs, he or she might

continue reporting high priority bugs. Also, the more bugs an

author reports, it is likely that the more reliable his/her severity

estimation of the bug would be.

For the related-report factor, we capture the mean

and median priority of the top-k reports as measured using

REP−. REP− is a bug report similarity measure adapted

from the work by Sun et al. [22] – described in Section II.

We vary the value k to create a number of features (REP1-

10). Considering that similar bug reports might be assigned

the same priority, we analyze the top-k most similar reports

to a bug report BR to help us decide the priority of BR. For

the severity factor, we use the severity field of BR as a

feature.

For the product factor, we capture features related to

the product and component fields of BR. The product field

specifies a part of the software system that is affected by the

issue reported in BR. The component field specifies more spe-

cific sub-parts of the software system that are affected by the

issue reported in BR. For each of the product and component

fields, we extract 11 features that capture the value of the

field (PRO1,PRO12), some statistics of bug reports made for

203



TABLE III
DRONE FEATURES EXTRACTED FOR A BUG REPORT BR

Temporal Factor

TMP1 Number of bugs reported within 7 days before the reporting of BR

TMP2 Number of bugs reported with the same severity within 7 days before the reporting of BR

TMP3 Number of bugs reported with the same or higher severity within 7 days before the reporting of BR

TMP4-6 The same as TMP1-3 except the time duration is 30 days

TMP7-9 The same as TMP1-3 except the time duration is 1 day

TMP10-12 The same as TMP1-3 except the time duration is 3 days

Textual Factor

TXT1-n Stemmed words from the description field of BR excluding stop words (Specifically, n=395,996 in our experiment).

Author Factor

AUT1 Mean priority of all bug reports made by the author of BR prior to the reporting of BR

AUT2 Median priority of all bug reports made by the author of BR prior to the reporting of BR

AUT3 The number of bug reports made by the author of BR prior to the reporting of BR

Related-Report Factor

REP1 Mean priority of the top-20 most similar bug reports to BR as measured using REP− prior to the reporting of BR

REP2 Median priority of the top-20 most similar bug reports to BR as measured using REP− prior to the reporting of BR

REP3-4 The same as REP1-2 except only the top 10 bug reports are considered

REP5-6 The same as REP1-2 except only the top 5 bug reports are considered

REP7-8 The same as REP1-2 except only the top 3 bug reports are considered

REP9-10 The same as REP1-2 except only the top 1 bug report is considered

Severity Factor

SEV BR’s severity field.

Product Factor

PRO1 BR’s product field. This categorical feature is translated into multiple binary features.

PRO2 Number of bug reports made for the same product as that of BR prior to the reporting of BR

PRO3 Number of bug reports made for the same product of the same severity as that of BR prior to the reporting of BR

PRO4 Number of bug reports made for the same product of the same or higher severity as those of BR prior to the reporting of BR

PRO5 Proportion of bug reports made for the same product as that of BR prior to the reporting of BR that are assigned priority P1.

PRO6-9 The same as PRO5 except they are for priority P2-P5 respectively.

PRO10 Mean priority of bug reports made for the same product as that of BR prior to the reporting of BR

PRO11 Median priority of bug reports made for the same product as that of BR prior to the reporting of BR

PRO12-22 The same as PRO1-11 except they are for the component field of BR.

that particular product/component prior to the reporting of BR
(PRO2-9,PRO13-20), and the mean and median priority levels

of bug reports made for that particular product/component

prior to the reporting of BR (PRO10-11,PRO21-22). Some

products or components might play a more major role in the

software systems than other products or components – for

these products a triager might assign higher priority levels.

We extract these 22 product features to characterize BR’s

product and component for a better prediction of its priority

level.

C. Classification Module

Feature vectors produced by the feature extraction module

for the training and testing data would be fed to the clas-

sification module. The classification module has two parts

corresponding to the training and prediction phases. In the

training phase, the goal is to build a discriminative model that

could predict the priority of a new bug report with unknown

priority. This model would be used in the prediction phase to

assign priority levels to bug reports.

In this work, we propose a classification engine named

GRAY (ThresholdinG and Linear Regression to ClAssifY

Imbalanced Data). We illustrate our classification engine in

Figure 2. It has two main parts: linear regression and thresh-

olding. Our approach utilizes linear regression to capture the

relationship between the features and the priority levels. As

our data is imbalanced (i.e., most of the bug reports are

assigned priority level P3), we employ a thresholding approach

to calibrate a set of thresholds to decide the class labels (i.e.,

priority levels).

We follow a regression approach rather than a standard

classification approach for the following reason. The bug

reports are of 5 priority levels (P1-P5). These priority levels

are not categorical values rather they are ordinal values. This

is so as there is a total ordering among these levels. Level P1 is

higher than level P2, which is in turn higher than level P3, and

so on. To capture this ordering among levels, we use regression

rather than a standard classification approach. Standard clas-

sification approaches, e.g., standard support vector machine,

naive bayes, logistic regression, etc., consider the class labels

to be categorical. Also, many approaches and standard tools

only support two class labels: +ve and -ve.

204



Training 
Features

Testing 
Features 

Model 
Building 

Data  

Validation 
Data 

Linear 
Regression Model

Model 
Application

Thesholding

Thresholds

Predicted Priority

Training Phase

Prediction Phase

Legend

Input Data

�

Process

  

Intermediate
Stored Data

�

Output 

�

Fig. 2. GRAY Classification Engine

Given a training data, a linear regression approach would

build a model capturing the relationship between a set of

explanatory variables with a dependent variable. If the set of

explanatory variables has more than one member, it is referred

to as multiple regression, which is the case for our approach. In

our problem setting, the features form the set of explanatory

variables while the priority level is the dependent variable.

A bug report in the prediction phase would be converted

to a vector of features values, which is then treated as a

set of explanatory variables. The model learned during linear

regression could then be applied to output the value for the

dependent variable which is a real number.

The next step is to convert the value of the dependent

variable to one of the five priority levels. One possibility is

to simply truncate the value of the dependent variable to the

nearest integer and treat this as the priority level. However,

this would not work well for our data as it is imbalanced

with most bug reports having priority 3 – thus many of the

values of the dependent variable are likely to be close to 3.

To address this issue we employ a thresholding approach to

pick four thresholds to be the boundaries of the five priority

levels.

We split the training data into two (by default, a 50-50 split):

model building and validation. The model building training

data is used to train a regression model. The linear regression

model is then applied on the validation data which generates

a linear regression score for each report. The validation

training data is used to infer the four thresholds using our

thresholding approach. The pseudocode of this process which

employs greedy hill climbing to tune the thresholds is shown

in Algorithm 1. The resultant linear regression model and

thresholds are then used to classify bug reports in the testing

data whose priority level is to be predicted based on their

feature vectors.

We first set the 4 thresholds based on the proportion of

bug reports that are assigned as P1, P2, P3, P4, and P5 in

Algorithm 1 Tune Thresholds Using Greedy Hill Climbing

1: Input:
2: VData: Validation Data
3: Output:
4: T : The four thresholds: T1, T2, T3, and T4
5: Method:
6: Initialize T based on the proportion of reports assigned as P1,

P2, P3, P4, and P5 in VData (see text).
7: Let T0 = minimum regression score of reports in VData .
8: for all Ti ∈ {T1, T2, T3, T4} do
9: Let D = Ti − Ti−1

10: repeat
11: Try to increase Ti by 1%×D, compute new F-measure on

VData
12: Try to decrease Ti by 1% × D, compute new F-measure

on VData
13: Update Ti if the increase or decrease improves F-measure

and T0 < T1 < T2 < T3 < T4
14: until Ti is not updated
15: end for
16: return Tuned thresholds T

the validation data (Line 6). For example, if the proportion

of bug reports belonging to P1 in the validation data is only

10%, then we sort the data points in the validation data based

on their linear regression scores, and set the first threshold as

the regression output of the data point at the 10th percentile.

Next, we modify each thresholds one by one to achieve higher

F-measure (Lines 8-15). For each threshold level, we try to

increase it or decrease it by a small step, which is 1% of the

distance between a threshold level to the previous threshold

level (Lines 9, 11-12). At each step, after we change the

threshold level, we evaluate if the resultant threshold levels

could increase the average F-measure for the validation data

points or not. If it is, we will keep the new threshold level

otherwise we will discard the new threshold level (Line 13).

We continue the process until we can no longer improve

the average F-measure by moving a threshold level, with a

constraint that a threshold cannot be moved beyond the next

threshold level or under the previous threshold level, i.e., the

second threshold cannot be set higher than the third threshold

(Line 14).

IV. EXPERIMENTS & ANALYSIS

In this section, we first describe the datasets that we use

to investigate the effectiveness of DRONE. Next, we present

our experimental setting and evaluation measures. Finally, we

present our research questions followed by our findings.

A. Dataset

We investigate the bug repository of Eclipse. Eclipse is an

integrated development platform to support various aspects of

software development. It is a large open source project that is

supported by and used by many developers around the world.

We consider the bug reports submitted from October 2001

to December 2007 and download them from Bugzilla1. We

1https://bugs.eclipse.org/bugs/

205



TABLE IV
DATASET DETAILS

Dataset Period REP− Training Reports DRONE Training Reports Testing Reports
From To #Duplicate #All #All #All

Eclipse 2001-10-10 2007-12-14 200 3,312 87,649 87,648

collect only defect reports and ignore those that correspond to

feature requests.

We sort the bug reports in chronological order. We divide the

dataset into three: REP− training data, DRONE training data,

and the test data. The REP− training data is the first N reports

containing 200 duplicate bug reports (c.f. [22]). This data is

used to train the parameters of REP− such that it is better able

to distinguish similar bug reports. We split the remaining data

into DRONE training and testing data. We use the first half of

the bug reports (sorted in chronological order) for training and

keep the other half for testing. We separate training data and

testing data based on chronological order to simulate the real

setting where our approach would be used. This evaluation

method is also used in many other research studies that also

analyze bug reports [7], [17], [19]. We show the distribution

of bug reports used for training and testing in Table IV.

B. Experimental Setting

We compare our approach with an adapted version of Sev-

eris which was proposed by Menzies and Marcus [16]. Severis

predicts the severity of bug reports. In the adapted Severis, we

simply use it to predict the priority of bug reports. We use

the same feature sets and the same classification algorithm

described in the Menzies and Marcus’s paper. Following the

experimental setting described in their paper, we use the top

100 word token features (in terms of their information gain)

as it has been shown to perform best among the other options

presented in their paper. We refer to the updated Severis as

SeverisPrio. We also add severity label as an additional feature

to SeverisPrio and refer to the resultant solution SeverisPrio+.

We compare SeverisPrio and SeverisPrio+ to our proposed

framework DRONE. All experiments are run on an Intel Xeon

X5675 3.07GHz server, having 128.0GB RAM, and running

Windows Server 2008 operating system.

C. Evaluation Measures

Precision, recall, and F-measure, which are commonly used

to measure the accuracy of classification algorithms, are used

to evaluate the effectiveness of DRONE and our baseline

approaches: SeverisPrio and SeverisPrio+. We evaluate the

precision, recall, and F-measure for each of the priority levels.

This follows the experimental setting of Menzies and Marcus

to evaluate Severis [16]. The definitions of precision, recall,

and F-measure for a priority level P are given below:

prec(P ) = Number of priority P reports correctly labeled
Number of reports labeled as of priority level P

recall(P ) = Number of priority P reports correctly labeled
Number of priority P reports

F -measure(P ) = 2 × precision×recall
precision+recall

D. Research Questions

RQ1 How accurate is our proposed approach as

compared with the baseline approaches namely

SeverisPrio and SeverisPrio+?

RQ2 How efficient is our proposed approach as

compared with the baseline approaches namely

SeverisPrio and SeverisPrio+?

RQ3 Which of the features are the most effective in

discriminating the priority levels?

RQ4 What are the effectiveness of various classifi-

cation algorithms in comparison with GRAY in

predicting the priority levels of bug reports?

E. Experimental Results

Here, we present the answers to the four research ques-

tions. The first two compare DRONE with SeverisPrio and

SeverisPrio+ on two dimensions: accuracy and efficiency.

The best approach must be accurate and yet can complete

training and prediction fast. Next, we zoom in to the various

factors that influence the effectiveness of DRONE. In partic-

ular, we inspect the features that are most discriminative. We

also replace the classification module of DRONE with several

other classifiers and investigate their effects on the accuracy

of the resultant approach.

RQ1: Accuracy of DRONE vs. Accuracy of Baselines
The result of DRONE is shown in Table V. We note that

we can predict the P1, P2, P3, P4, and P5 priority levels by

an F measure of 41.76%, 11.64%, 86.85%, 0.43%, and 8.01%

respectively. The F-measures are better for P1, P2, and P3

priority levels but are worse for P4, and P5 priority levels. We

believe in report prioritization high accuracy for high priority

bugs is much more important than high accuracy for low

priority bugs.

TABLE V
PRECISION, RECALL, AND F-MEASURE FOR DRONE

Priority Precision Recall F-Measure
P1 41.15% 42.39% 41.76%
P2 10.92% 12.46% 11.64%
P3 91.36% 82.77% 86.85%
P4 0.24% 1.77% 0.43%
P5 4.97% 20.72% 8.01%

Average 29.73% 32.02% 29.74%

The result for SeverisPrio is shown in Table VI. We note

that SeverisPrio can predict the P1, P2, P3, P4, and P5 priority

levels by an F-measure of 0.00%, 0.00%, 93.76%, 0.00%,

and 0.00% respectively. The F-measures of SeverisPrio are

zeros for P1, P2, P4, and P5 as it does not assign any bug

report correctly in any of these priority levels. Comparing

these with the result of DRONE (in Table V), we note that

we can improve the average of the F measures by a relative

206



TABLE VI
PRECISION, RECALL, AND F MEASURE FOR SEVERISPrio

Priority Precision Recall F-Measure
P1 0.00% 0.00% 0.00%
P2 0.00% 0.00% 0.00%
P3 88.25% 100.00% 93.76%
P4 0.00% 0.00% 0.00%
P5 0.00% 0.00% 0.00%

Average 17.65% 20.00% 18.75%

TABLE VII
PRECISION, RECALL, AND F MEASURE FOR SEVERISPrio+

Priority Precision Recall F-Measure
P1 0.00% 0.00% 0.00%
P2 0.00% 0.00% 0.00%
P3 88.25% 100.00% 93.76%
P4 0.00% 0.00% 0.00%
P5 0.00% 0.00% 0.00%

Average 17.65% 20.00% 18.75%

improvement of 58.61% (i.e., (29.74−18.75)/18.75×100%).

Thus, clearly DRONE performs better than SeverisPrio.

The result for SeverisPrio+ is shown in Table VII. We note

that the result of SeverisPrio+ is the same as SeverisPrio.

Thus, our proposed approach DRONE also outperforms

SeverisPrio+.

RQ2: Efficiency of DRONE vs. Efficiency of Baselines
We compare the runtime of DRONE with those of

SeverisPrio and SeverisPrio+. The result is shown in Ta-

ble VIII. The four columns refer to the average feature

extraction time (for training data), the model building time,

the average feature extraction time (for testing data), and

the average model application time. We could note that the

time for feature extraction is slower for DRONE than the

two variants of Severis. This is the case as DRONE utilizes

more features than the two variants of Severis. SeverisPrio

only utilizes the textual features of bug reports. SeverisPrio+

only utilizes the textual and severity features of bug reports.

The time for model building however is faster for DRONE

than the two variants of Severis. We compare the efficiency

of the approaches since the required running time determines

the usability of the system for triagers.

TABLE VIII
EFFICIENCY OF SEVERISPrio , SEVERISPrio+ , AND DRONE. FE =

AVERAGE FEATURE EXTRACTION TIME. MB = MODEL BUILDING TIME.
MA = AVERAGE MODEL APPLICATION TIME.

Approach Time (in seconds)
FE (Train) MB FE (Test) MA

SeverisPrio <0.01 812.18 <0.01 <0.01

SeverisPrio+ <0.01 773.62 <0.01 <0.01
DRONE 0.01 69.25 0.02 <0.01

RQ3: Most Discriminative Features
Next, we would like to find the most discriminative features

among the 20,000+ features that we have (including the

word tokens). Information gain [15] and Fisher score [5] are

often used as discriminativeness measures. Since many of the

features are non-binary features, we use Fisher score as it

captures the differences in the distribution of the feature values

TABLE IX
TOP-10 FEATURES IN TERMS OF FISHER SCORE

Rank Feature Name Fisher Score
1 PRO5 0.142
2 PRO16 0.132
3 REP1 0.109
4 REP3 0.101
5 PRO18 0.092
6 PRO10 0.091
7 PRO21 0.088
8 PRO7 0.088
9 REP5 0.087
10 “1663” 0.079

across the classes (i.e., the priority levels).

At times features that are only exhibited in a few data

instances receive high Fisher score. This is true for the word

tokens. However, these are not good features as they appear

too sparsely in the data. Thus we focus on features that appear

in at least 0.5% of the data. For these features, Table IX

shows the top-10 features sorted according to their Fisher

score (the higher the better). We notice that six of them are

features related to product factor and three of them are

features related to related-report factor. It suggests that

the product a bug report is about and existing related reports

influence the priority label assigned to the report.

We notice that the 10th most discriminative feature is a

word token “1663”. This token comes from a line in various

stack traces included in many bug reports which is:
org.eclipse.ui.internal.Workbench.run(Workbench.java:1663)

It is discriminative as it appears in 15% of the bug reports

assigned priority level P5, while it only appears in 0.77%,

1.29%, 0.99%, and 0.00% of the bug reports assigned priority

level P1, P2, P3, and P4 respectively. It seems the inclusion

of stack traces that include the above line enables developers

to identify P5 bugs better.

RQ4: Effectiveness of Various Classification Algorithms
The classification engine of our DRONE framework could

be replaced with other classification algorithms aside from

GRAY. We experiment with several classification algorithms

(SVM-MultiClass [4], RIPPER [3], and Naive Bayes Multino-

mial [15]) and compare their F-measures across the five pri-

ority levels with GRAY. We use the implementation of SVM-

MultiClass available from [24]. We use the implementations

of RIPPER and Naive Bayes Multinomial in WEKA [1]. We

show the result in Table X. We notice that in terms of average

F-Measures GRAY outperforms SVM-MultiClass by a relative

improvement of 58.61%. Naive Bayes Multinomial is unable

to complete due to an out-of-memory exception although we

have allocated more than 9GB of RAM to the JVM in our

server. RIPPER could not complete after running for more

than 8 hours.

V. DISCUSSION

In this section, we first present the threats to validity. Next,

we explain the reasons that might cause the bad performance

of the baseline approaches. Finally, we compare our model

207



TABLE X
COMPARISONS OF AVERAGE F-MEASURES OF GRAY VERSUS OTHER

CLASSIFIERS. CLASS. = CLASSIFIERS. SM = SVM-MULTICLASS. NBM =
NAIVE BAYES MULTINOMIAL. OOM = OUT-OF-MEMORY (MORE THAN

9GB). CC = CANNOT COMPLETE IN TIME (MORE THAN 8 HOURS).

Class. F-Measures
P1 P2 P3 P4 P5 Ave.

GRAY 41.76% 11.64% 86.85% 0.43% 8.01% 29.74%
SM 0% 0% 93.76% 0% 0% 18.75%
RIPPER CC CC CC CC CC CC
NBM OOM OOM OOM OOM OOM OOM

with a trivial approach that simply assigns a bug report to the

most common priority level.

A. Threats to Validity

Threats to construct validity relates to the suitability of our

evaluation measures. We use precision, recall, and F-measure

which are standard metrics used for evaluating classification

algorithms. Also, these measures are used by Menzies and

Marcus to evaluate Severis [16]. Threats to internal validity

relates to experimental errors. We have checked our imple-

mentation and results. Still, there could be some errors that

we did not notice. Threats of external validity refers to the

generalizability of our findings. We consider the repository

of Eclipse containing more than a hundred thousand bugs

which are reported in a period of more than 6 years. Still, we

have only analyzed bug reports from one software system. We

exclude some other Bugzilla datasets from two other software

systems that we have as most of the reports there do not

contain information on the priority field. In the future, we

plan to extend our study by considering more programs and

bug reports.

B. Dismal Performance of Baseline

Results of SeverisPrio and SeverisPrio+ shown in Table VI

and Table VII are poor. This might be due to a few factors:

1) (Treating Ordinal Data as Categorical Data) The RIP-

PER classification algorithm used by Severis considers

the class labels as categorical data. RIPPER, as well as

other standard classification algorithms (e.g., SVM, etc),

does not consider how different a pair of class labels is

as compared to other pairs of class labels. In our setting,

RIPPER simply treats P1, P2, P3, P4, and P5 as different

labels. P1 is as different to P2, as P1 to P5. We know that

this is not the case. Bug reports labeled as P1 are likely to

be more similar to those labeled as P2, than those labeled

as P5.

Our approach that enhances linear regression treats class

labels as ordinal data. Thus, in our setting P1 is closer to

P2 than it is to P5.

2) (Data Imbalance) Data imbalance might also negatively

affect the performance of the baseline approaches. There

are much more bug reports assigned as P3 (74,210 out

of 87,649) in the training data; this might make the

classifier “thinks” that the best label to assign to any bug

report is P3. We solve this problem by a thresholding
approach that varies the ranges of regression output

values, corresponding to each class labels, based on a

set of validation data points.

C. Comparison with a Trivial Approach

Besides comparing our approach and those adapted from a

previous work, we also compare our approach with a trivial

approach. The trivial approach simply labels every bug as

P3 based on the fact that nearly 90% of the bug reports are

assigned P3 priority level. The result of this trivial approach is

the same as those of SeverisPrio and SeverisPrio+ shown in

Tables VI and VII respectively. This means that this trivial

approach can predict the P1, P2, P3, P4 and P5 priority

levels by an F-measure of 0.00%, 0.00%, 93.76%, 0.00% and

0.00% respectively, with an average F-measure of 18.75%.

Thus our model can better predict the priority of bug reports.

In particular, our approach performs much better in predicting

high priority bug reports that are more important than lower

priority ones.

VI. RELATED WORK

Menzies and Marcus are the first to predict the severity

of bug reports [16]. They analyze the severity labels of

various bugs reported in NASA. They propose a technique

that analyzes the textual contents of bug reports and outputs

fine-grained severity levels – one of the 5 severity labels

used in NASA. Their approach extracts word tokens from

the description of the bug reports. These word tokens are

then pre-processed by removing stop words and performing

stemming. Important word tokens are then selected based on

their information gain. Top-k tokens are then used as features

to characterize each bug report. The set of feature vectors from

the training data is then fed into a classification algorithm

named RIPPER [3]. RIPPER would learn a set of rules which

are then used to classify future bug reports with unknown

severity labels.

Lamkanfi et al. extend the work by Menzies and Marcus to

predict severity levels of reports in open source bug reposi-

tories [13]. Their technique predicts if a bug report is severe

or not. Bugzilla has six severity labels including blocker,

critical, major, normal, minor, and trivial. They

drop bug reports belonging to the category normal. The

remaining five categories are grouped into two groups –

severe and non-severe. Severe group includes blocker,

critical and major. Non-severe group includes minor
and trivial. Thus they focus on the prediction of coarse-
grained severity labels.

Extending their prior work, Lamkanfi et al. also try out

various classification algorithms and investigate their effective-

ness in predicting the severity of bug reports [14]. They tried

a number of classifiers including Naive Bayes, Naive Bayes

Multinomial, 1-Nearest Neighbor, and SVM. They find that

Naive Bayes Multinomial perform the best among the four

algorithms on a dataset consisting of 29,204 bug reports.

Recently, Tian et al. also predict the severity of bug reports

by utilizing a nearest neighbor approach to predict fine grained

bug report labels [27]. Different from the work by Menzies and

208



Marcus which analyzes a collection of bug reports in NASA,

Tian et al. apply the solution on a larger collection of bug

reports consisting of more than 65,000 Bugzilla reports.

Our work is orthogonal to the above studies. Severity labels

are reported by users, while priority levels are assigned by

developers. Severity labels correspond to the impact of the bug

on the software system as perceived by users while priority

levels correspond to the importance “a developer places on

fixing the bug” in the view of other bug reports that are

received [20].

Khomh et al. automatically assign priorities to Firefox crash

reports in Mozilla Socorro server based on the frequency and

entropy of the crashes [11]. A crash report is automatically

submitted to the Socorro server when Firefox fails and it

contains a stack trace and information about the environment

to help developers debug the crash. In our study, we investigate

bug reports that are manually submitted by users. Different

from a crash report, a bug report contains natural language

descriptions of a bug and might not contain any stack trace or

environment information. Thus, different from Khomh et al.’s

approach, we employ a text mining based solution to assign

priorities to bug reports.

There are other lines of work that also analyze bug reports;

these include the series of work on duplicate bug report

detection [19], [23], [22], [28], bug localization [31], bug

categorization [6], [8], [26], bug fix time prediction [12], [30],

and bug fixer recommendation [10], [25]. Our work is also

orthogonal to these studies.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose a framework named DRONE

(PreDicting PRiority via Multi-Faceted FactOrs ANalysEs)

to predict the priority levels of bug reports in Bugzilla. We

consider multiple factors including: temporal, textual,

author, related-report, severity and product.

These features are then fed to a classification engine named

GRAY (ThresholdinG and Linear Regression to ClAssifY

Imbalanced Data) built by combining linear regression with

a thresholding approach to address the issue with imbalanced

data and to assign priority labels to bug reports. We have

compared our approach with several baselines based on the

state-of-the-art study on bug severity prediction by Menzies

and Marcus [16]. The result on a dataset consisting of more

than 100,000 bug reports from Eclipse shows that our approach

outperforms the baselines in terms of average F-measure by a

relative improvement of 58.61%.

In the future, we plan to include more bug reports from

more open source projects to experiment with. We also plan

to further improve the accuracy of our approach. For instance,

we can try to construct a linear regression model using only

the most discriminative features and evaluate the resulting

solution. We also plan to analyze the impact of inaccuracies

in the thresholding process on the final result of DRONE.

REFERENCES

[1] “http://www.cs.waikato.ac.nz/ml/weka/,” Weka 3: Data Mining Soft-
ware.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in ETX, 2005.

[3] W. W. Cohen, “Fast effective rule induction,” in ICML, 1995.

[4] K. Crammer and Y. Singer, “On the algorithmic implementation
of multiclass kernel-based vector machines,” Journal of Machine
Learning Research, vol. 2, 2001.

[5] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley
Interscience, 2000.

[6] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in MSR, 2010.

[7] L. Hiew, “Assisted detection of duplicate bug reports,” Ph.D. disser-
tation, The University Of British Columbia, 2006.

[8] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “AutoODC:
Automated generation of orthogonal defect classifications,” in ASE,
2011.

[9] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in DSN, 2008.

[10] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in ESEC/SIGSOFT FSE, 2009.

[11] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy eval-
uation approach for triaging field crashes: A case study of mozilla
firefox,” in WCRE, 2011.

[12] S. Kim and E. J. W. Jr., “How long did it take to fix bugs?” in MSR,
2006.

[13] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in MSR, 2010.

[14] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
CSMR, 2011.

[15] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Infor-
mation Retrieval. Cambridge, 2008.

[16] T. Menzies and A. Marcus, “Automated severity assessment of soft-
ware defect reports,” in ICSM, 2008.

[17] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in ASE, 2012.

[18] S. Robertson, H. Zaragoza, and M. Taylor, “Simple BM25 Extension
to Multiple Weighted Fields,” in CIKM, 2004.

[19] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of du-
plicate defect reports using natural language processing,” in ICSE,
2007.

[20] http://wiki.eclipse.org/Bug Reporting FAQ#What is the
difference between Severity and Priority.3F.

[21] www.ils.unc.edu/∼keyeg/java/porter/PorterStemmer.java.

[22] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011.

[23] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in ICSE,
2010.

[24] http://svmlight.joachims.org/svm multiclass.html.

[25] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set-based automatic bug triaging,” in ICSE, 2011.

[26] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,” in
WCRE, 2012.

[27] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction,” in
WCRE, 2012.

[28] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identifi-
cation,” in CSMR, 2012.

[29] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in ICSE, 2008.

[30] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in MSR, 2007.

[31] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports,” in ICSE, 2012.

209


