
Will Fault Localization Work For These Failures ?
An Automated Approach to Predict Effectiveness of Fault Localization Tools

Tien-Duy B. Le and David Lo

School of Information Systems,
Singapore Management University, Singapore

{btdle.2012,davidlo}@smu.edu.sg

Abstract—Debugging is a crucial yet expensive activity to
improve the reliability of software systems. To reduce debug-
ging cost, various fault localization tools have been proposed. A
spectrum-based fault localization tool often outputs an ordered
list of program elements sorted based on their likelihood to
be the root cause of a set of failures (i.e., their suspiciousness
scores). Despite the many studies on fault localization, unfortu-
nately, however, for many bugs, the root causes are often low in
the ordered list. This potentially causes developers to distrust
fault localization tools. Recently, Parnin and Orso highlight
in their user study that many debuggers do not find fault
localization useful if they do not find the root cause early in
the list.

To alleviate the above issue, we build an oracle that could
predict whether the output of a fault localization tool can
be trusted or not. If the output is not likely to be trusted,
developers do not need to spend time going through the list
of most suspicious program elements one by one. Rather,
other conventional means of debugging could be performed.
To construct the oracle, we extract the values of a number of
features that are potentially related to the effectiveness of fault
localization. Building upon advances in machine learning, we
process these feature values to learn a discriminative model
that is able to predict the effectiveness of a fault localization
tool output. In this preliminary work, we consider an output
of a fault localization tool to be effective if the root cause
appears in the top 10 most suspicious program elements. We
have experimented our proposed oracle on 200 faulty programs
from Space, NanoXML, XML-Security, and the 7 programs
in Siemens test suite. Our experiments demonstrate that we
could predict the effectiveness of fault localization tool with a
precision, recall, and F-measure (harmonic mean of precision
and recall) of 54.36%, 95.29%, and 69.23%. The numbers
indicate that many ineffective fault localization instances are
identified correctly, while only very few effective ones are
identified wrongly.

I. INTRODUCTION

Despite the advancement in software tools and processes,

bugs are prevalent in many systems. In 2002, it was reported

that software bugs cost US economy more than 50 billion

dollars annually [34]. Software testing and debugging cost

itself is estimated to account for 30-90% of the total labor

spent on a project [4]. Thus there is a need to develop

automated means to help reduce software debugging cost.

One important challenge in debugging is to localize the

root cause of program failures. When a program fails, it

is often hard to locate the faulty program elements that are

responsible for the failure. The root cause could be located

far from the location where the failure is exhibited, e.g.,

the location where a program crashes or produces a wrong

output.

In order to address the high cost of debugging in general,

and help in localizing root causes of failures in particular,

many spectrum-based fault localization tools have been

proposed in the literature, e.g., [19], [1], [24]. These tools

typically take in a set of normal execution traces and another

set of faulty execution traces. Based on these set of program

execution traces, these tools assign suspiciousness scores to

various program elements. Next, program elements could be

sorted based on their suspiciousness scores in descending

order. The resultant list of suspicious program elements can

then be presented to a human debugger to aid him/her in

finding the root cause of a set of failures.

An effective fault localization tool would return a root

cause at the top of a list of suspicious program elements.

Although past studies have shown that fault localization tools

could be effective for a number of cases, unfortunately, for

many other cases, fault localization tools are not effective

enough. Root causes are often listed low in the list of

most suspicious program elements. Parnin and Orso pointed

out in their user study that many developers do not find

fault localization useful if they do not find the root cause

early in the list [26]. This unreliability of fault localization

tools potentially cause many developers to distrust fault

localization tools.

In this work, we plan to increase the usability of fault

localization tools by building an oracle to predict if a

particular output of a fault localization tool is likely to be

effective or not. We define an output of a fault localization

tool to be effective if the faulty program element or root

cause is listed among the top-10 most suspicious program

elements. With our tool, the debuggers could be better

informed whether he can trust or distrust the output of a fault

localization tool run on a set of program execution traces.

The following scenarios illustrate the benefits of predicting

the effectiveness of a fault localization output:

Scenario 1 - Without Oracle: Tien-Duy had 10 bugs to fix.

2013 IEEE International Conference on Software Maintenance

1063-6773/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSM.2013.42

310

He ran a fault localization tool for the 10 bugs. He followed

the tool recommendations, however he only found 2 of the

10 recommendations to be effective. He wasted much time

following 8 bad recommendations given by the tool.

Scenario 2 - With Oracle: Tien-Duy had 10 bugs to fix. He

ran a fault localization tool for the 10 bugs and he had an

oracle that can predict which fault localization outputs are

likely to be effective. The oracle predicted that 3 outputs are

likely to be effective. For 2 out of the 3 outputs, the fault

localization outputs are indeed effective and saved Tien-

Duy much time. Tien-Duy only wasted time following 1

bad recommendation.

To build the oracle, we extract values of important features

from the execution traces and outputs of fault localization

tools. These feature values extracted from a training data

are then used to build a discriminative model leveraging

a machine learning solution. The resultant discriminative

model serves as an oracle and could be used to predict the

effectiveness of a fault localization tool on other inputs.

We have experimented our approach on 200 faulty ver-

sions from NanoXML, XML-Security, Space, and the 7

programs in the Siemens test suite. We investigate a well

known spectrum-based fault localization tool namely Taran-

tula [19] which was also studied by Parnin and Orso [26].

Our experiments show that we can predict whether a fault

localization tool is effective or not by a precision, recall,

and F-measure (i.e., harmonic mean of precision and recall)

of 54.36%, 95.29%, and 69.23%. We also investigate if our

tool is effective to help two other fault localization tools,

i.e., Ochiai [1], and Information Gain [24], with promising

results.

In this work, our contributions are as follows:

1) We define a new research problem namely predicting

the effectiveness of a fault localization tool given a

set of execution traces. Solving this problem would

help developers to better trust the output of a fault

localization tool.

2) We present a machine learning framework to tackle the

research problem. We propose a novel set of features

that are relevant for predicting the effectiveness of a

fault localization tool. We build upon and extend a

state-of-the-art machine learning solution for the pre-

diction problem by addressing the issue of imbalanced

data. The issue of imbalanced data occurs since many

outputs of Tarantula are ineffective.

3) We have evaluated our approach on 200 faulty pro-

grams from NanoXML, XML-Security, Space, and the

7 programs from the Siemens test suite. We show that

we could achieve a precision, recall, and F-measure of

54.36%, 95.29%, and 69.23%. This shows that many
ineffective and almost all effective outputs of Tarantula

are detected correctly.

The structure of this paper is as follows. In Section II,

Table I
SPECTRA NOTATIONS

Symbol Definition
n Total number of test cases in the test suite
ne Number of test cases that executes a program element e
ns Number of test cases that pass
nf Number of test cases that fail
ne
s Number of test cases that execute e and pass

ne
f Number of test cases that execute e and fail

we describe preliminary materials on spectrum-based fault

localization and an intuition how effectiveness prediction

could be solved. In Section III, we present a birds-eye-

view of our proposed framework. Section IV outlines what

features are extracted from the execution traces and output

of the fault localization tool. Section V elaborates our ap-

proach to learn a discriminative model using a classification

algorithm and how we address the problem of imbalanced

data. We present our experiment settings, datasets, and

results which answer a number of research questions in

Section VI. We discuss related studies in Section VII. We

finally conclude and mention future work in Section VIII.

II. PRELIMINARIES & PROBLEM DEFN.

In this section, we first introduce fault localization. We

then define the problem of effectiveness prediction and give

some intuitions on how this could be solved.

A. Fault Localization

Fault localization takes as input a faulty program, along

with a set of test cases, and a test oracle. The faulty program

is instrumented such that when a test case is run over it, a

program spectra is generated. A program spectra records

certain characteristics of a particular program run and thus

it becomes a behavioral signature of the run [28]. This

program spectra could constitute a set of counters which

record how many times different program elements (e.g.,

statement, basic block, etc) are executed in a particular

program run [14]. Alternatively, the counter could record

a boolean flag that indicates whether a program element

is executed or not. The test oracle is used to decide if a

particular program run is correct or faulty. Faulty runs or

executions are also referred to as failures. Fault localization

task is to analyze program spectra of correct and faulty runs

with the goal of finding program elements that are the root

causes of the failures (i.e., the faults or errors).

Various spectra have been proposed in past studies [14].

In this study, we use block-hit spectra; we instrument every

block of a program and collect information on which blocks

are executed in a run. Block-hit spectra is suitable as all

statements in a basic block have the same execution profile.

It has also been shown in the literature that the cost of

collecting block-hit spectra is relatively low and the resultant

spectra could be used for fault localization [1], [14].

Figure 1 shows an example code with several program

spectra. The identifiers of the basic blocks are shown in the

first column. The statements located in the basic blocks are

311

Figure 1. Four Block-Hit Program Spectra

shown in the second column. There is a bug in the example

code at basic block three; the condition of the if statement

should be “count >= 1” instead of “count > 1”. Columns

3 to 6 show the program spectra that are produced when

four test cases are run. Three of the test cases do not expose

the bug, i.e., running them result in correct executions. The

fourth test case exposes the bug, i.e., running it result in

a faulty execution. A cell marked by a • indicates that a

particular basic block is executed when a particular test case

is run. An empty cell indicates that a particular basic block

is not executed when a particular test case is run.

To identify the faulty program elements (e.g., basic block

3 in Figure 1), we compute the suspiciousness scores of

each of the program elements. There are various ways to

define suspiciousness. In this work, we primarily consider a

well-known suspiciousness score defined by Jones and Har-

rold, named Tarantula [19]. Considering several notations in

Table I, Tarantula’s suspiciousness score can be defined as

follows:

Tarantula(e) =

ne
f

nf

ne
s

ns
+

ne
f

nf

Tarantula considers an element more suspicious if it

occurs more frequently in failed executions than in correct

executions. Considering the example shown in Figure 1,

the suspiciousness score of block 1 is: 1
(1+1) = 0.5. The

suspiciousness scores of block 2, 4, and 5 are zeros since the

numerator of Tarantula (i.e.,
ne
f

nf
) is zero. The suspiciousness

score of block 3 is: 1
(2
3+1)

= 0.6. Thus using Tarantula,

the most suspicious block is block 3, followed by block

1, followed by blocks 2, 4, and 5. We could sort the basic

blocks based on their suspiciousness scores and the debugger

could check the blocks one-by-one from the most to the least

suspicious block. Following Tarantula’s recommendation,

the fault could be found after one basic block inspection.

B. Effectiveness Prediction

The goal of our work is to predict if a particular fault

localization tool is effective for a particular set of execution

traces. We refer to the process where a fault localization tool

is used to process a set of execution traces and output a list of

suspicious program element as a fault localization instance.

We define a fault localization instance to be effective if

the root cause is located among the top-10 most suspicious

program elements. Ties are randomly broken; this means that

for example, if the top-20 program elements have the same

suspiciousness scores, we randomly select 10 out of the 20

to be the top-10. Also, in case the root cause spans more

than one program element (i.e., basic block) as long as one

of the program elements is in the top-10, we consider the

fault localization instance to be an effective one.

Various information could be leveraged to predict if a fault

localization tool is effective given a set of program execution

traces. We could investigate the execution traces. If there are

very few failing execution traces, then it is likely to be harder

for a spectrum based fault localization tool to differentiate

faulty from correct program elements. In the extreme case,

when there are no test cases that expose the fault (no failing

execution traces), then the output of a fault localization tool

cannot be effective. We could also investigate the output

of the fault localization tool. In the special case where all

program elements are given the same suspiciousness score,

there is a very low likelihood that the fault localization tool

will be effective for those execution traces.

III. OVERALL FRAMEWORK

The goal of our framework is to build an oracle that is able

to predict if a fault localization instance is effective or not.

To realize this, our framework, illustrated in Figure 2, works

on two phases: training and deployment. The training phase

would output a model that is able to differentiate effective

and ineffective fault localization instances. The deployment

phase would apply this model to a number of unknown fault

localization instances and output if the cases are likely to be

effective or not. Let us describe these two phases in more

detail.

In the training phase, we take in a set of fault localization

instances. Some of these cases are effective and some others

are ineffective. Each of these cases is represented by the

following:

1) Program spectra corresponding to correct and faulty

execution traces.

2) A list of suspiciousness scores that are assigned by the

fault localization tools to the program elements.

3) An effectiveness label: effective (if the root cause is in

the top-10) or ineffective (otherwise).

The training phase consists of two processes: feature

extraction, and model learning. During feature extraction,

based on a training data, we extract some feature values

312

Figure 2. Proposed Framework

that shed light into some important characteristics that

potentially differentiate effective from ineffective instances.

In the model learning step, the feature values of each of

the training instances along with the effectiveness labels are

then used to build a discriminative model which is able to

predict whether an unknown fault localization instance is

effective or not. This discriminative model is output to the

deployment stage.

The deployment stage consists of two blocks: feature

extraction, and effectiveness prediction. We extract feature

values from unknown instances whose labels, effective or

ineffective, are to be predicted. These values are then fed to

the discriminative model learned in the training phase. The

model would then output a prediction.

We elaborate the feature extraction block in Section IV.

The model learning and effectiveness prediction blocks are

elaborated in Section V.

IV. FEATURE EXTRACTION

We extract values of a number of features from input

execution traces and from the outputs of a fault localization

tool. Table II shows these features. We have in total 50

features. Fifteen of the features are extracted from input

execution traces and the remaining thirty five features are

extracted from the suspiciousness scores output by the tool.

The first fifteen input features capture information about

program execution traces and program elements covered by

these execution traces. Features T1 to T5 capture informa-

tion on the number of execution traces available for fault

localization. Too few number of traces might cause poor

fault localization performance especially if there are too

few failing traces. In the worst case where the number of

failing traces is zero, the fault localization tool reduces to

random guess. Features PE1 to PE4 capture the information

on program elements that are covered by the execution

traces. The more the number of program elements, the more

difficulty a fault localization tool is likely to have as it

needs to compare and differentiates more elements. With

more program elements, the more likely a faulty program

element to be assigned the same or lower suspiciousness

scores as other program elements. Feature PE5 captures

cases where some program elements only appear in faulty

but not correct executions. Intuitively, the chance for such

cases to be effective is likely to be high. Feature PE6

captures the opposite which might indicate omission errors:

some program elements that should be executed are not

executed. Features PE7 to PE10 capture the two highest

proportions of failures that passed by one program element.

Intuitively, the higher the proportion of failures that passes

a program element, the more likely it is the root cause.

The next thirty five output features capture the suspicious-

ness scores that are output by the fault localization tool.

Features R1 to R10 capture the top-10 suspiciousness scores.

If the suspiciousness scores are too low, intuitively it is less

likely for a fault localization instance to be effective. Fea-

tures SS1 to SS6 compute some simple statistics of the top-

10 suspiciousness scores. They serve as statistical summary

of the scores. Features G1 to G11 and C1 to C8 are aimed to

capture a “break” or gap in the top-10 suspiciousness scores.

This “break” shows that the localization tool is able to

differentiate some program elements to be significantly more

suspicious than the others. That might indicate that some of

the top-10 program elements are probably to be the root

cause. If the fault localization tool is unable to differentiate

program elements, it is less likely to be effective. In the worst

case, if it is unable to distinguish all program elements, fault

localization again turns into random guess.

V. MODEL LEARNING & EFFECTIVENESS PREDICTION

We first describe our model learning process. Next, we

describe how we apply the model to effectiveness prediction.

A. Model Learning

As inputs to this process, we have a set of training

instances with their effectiveness labels. Each of the instance

is represented as 50 feature values (aka. a feature vector)

produced by the feature extraction process described in

Section IV. The goal of the model learning process is to

convert these set of feature vectors into a discriminative

model that could predict the effectiveness label of a fault

localization instance whose effectiveness is unknown.

We build upon and extend a state-of-the-art classification

algorithm namely Support Vector Machine (SVM) [13].

SVM has been used in many past software engineering

research studies, e.g., [2], [33], [25], [35], [36]. We first

313

Table II
LIST OF FEATURES (50 FEATURES)

ID Description
Input: Traces (5 Features)

T1 Number of traces
T2 Number of failing traces
T3 Number of passing traces
T4 T3 − T2

T5
T2
T3

Input: Program Elements (10 Features)
PE1 Number of program elements covered in the failing

execution traces
PE2 Number of program elements covered in the correct

execution traces
PE3 PE2 − PE1

PE4
PE1
PE2

PE5 Number of program elements that appear only in failing
execution traces

PE6 Number of program elements that appear only in correct
execution traces

PE7 Highest proportion of failing execution traces that pass
by one program element

PE8 Second highest proportion of failing execution traces
that pass by one program element

PE9 PE7 − PE8

PE10
PE8
PE7

Output: Raw Scores (10 Features)
R1 Highest suspiciousness score
R2 Second highest suspiciousness score

Ri ith highest suspiciousness score, where 3 ≤ i ≤ 10
Output: Simple Statistics (6 Features)

SS1 Number of distinct suspiciousness scores in
{R1, . . . , R10}

SS2 Mean of {R1, . . . , R10}
SS3 Median of {R1, . . . , R10}
SS4 Mode of {R1, . . . , R10}
SS5 Variance of {R1, . . . , R10}
SS6 Standard deviation of {R1, . . . , R10}

Output: Gaps (11 Features)
G1 R1 −R2

G2 R2 −R3

Gi Ri −R(i+1), where 3 ≤ i ≤ 9
G10 Max1≤i≤9(Gi)
G11 Min1≤i≤9(Gi)

Output: Relative Differences (8 Features)
C1

(R2−R10)
(R1−R10)

Ci
(R(i+1)−R10)

(R1−R10)
, where 2 ≤ i ≤ 8

describe standard off-the-shelf SVM. We then describe our

extended SVM that handles the issue of imbalanced data

caused since there are more ineffective fault localization

instances than effective ones.

1) Off-the-Shelf SVM: SVM solves the classification

problem by looking for a linear optimal separating hyper-

plane, which separates data instances of one class from

another [37]. The chosen hyperplane is called maximum
marginal hyperplane (MMH) in which the separation be-

tween two classes are maximized. For example, consider

a training dataset in form of (�xk, yk), where �xk is the

feature vector of the kth training data instance. Each yk
represents class label of data instance (yk ∈ {+1,−1}).
The problem of searching for a separating hyperplane with

maximal margin could be reduced to finding the minimal

value of 1
2‖�w‖ = 1

2

√
w1

2 + · · ·+ wn
2 which satisfies the

constrains: yk(�w· �xk+b) ≥ 1∀k, where �w is perpendicular to

the separating hyperplan, n is the number of attributes, and

b is a constant number indicates position of the hyperplan

in multi-dimensional space. In this study, we use SVMlight

version 6.021 with linear kernel.

2) SVMExt: Imbalanced training data is one of the issues

that we encounter during the course of our study. There are

more ineffective than effective fault localization instances.

Thus we build upon standard off-the-shelf SVM to address

this imbalanced data problem. We call our solution SVMExt.

The pseudo-code of our proposed SVMExt is shown in

Figure 3. The algorithm takes as input a set of effective

and ineffective fault localization instances - EI and II .

We first check if there are more ineffective than effective

localization instances (Line 1). If there are, we perform a

data balancing step (Lines 2-8). We would like to duplicate

effective instances that appear close to the hyperplane –

these are effective instances that are close to one of the in-

effective instances. In order to find these effective instances,

we compute the similarity between each effective instance

with each of the ineffective instances (Line 2). Each fault

localization instance could be viewed as a 50-dimensional

vector; each dimension is a feature and a localization

instance is represented by the values of the 50 features

described in Section IV. To measure the similarity between

two instances we compute the Cosine similarity [29] of their

representative vectors. Consider two vectors (a1, . . . , a50)
and (b1, . . . , b50). The Cosine similarity of these two vectors

is defined as: ∑50
i=1(ai × bi)√∑50

i=1(ai)
2 ×

√∑50
i=1(bi)

2

Next, for each effective instance, we calculate its highest

similarity with an ineffective instance (Line 3). We sort the

effective instances based on their highest similarities with

ineffective instances (Line 4). We then insert these instances

from the most similar to the least similar to the collection of

effective instances EI until the number of effective instances

matches that of ineffective ones (Lines 5-8). We then proceed

to learn a model using off-the-shelf SVM and output the

resultant model (Lines 9-10).

B. Effectiveness Prediction

The discriminative model learned in the model learning

phase would be able to predict if an unknown instance

(i.e., a fault localization instance whose effectiveness is

unknown) is effective or not. The unknown instance needs

to be transformed to a set of feature values using the feature

extraction process described in Section IV. These feature

values (aka. a feature vector) are then compared with the

model and a prediction would be output. The feature vector

is compared with the hyperplane that separates effective

1http://svmlight.joachims.org/

314

Procedure SVMExt

Inputs:
EI: Effective fault localization instances
II: Ineffective fault localization instances
Output: Discriminative model
Method:
1: If (|EI| < |II|)
2: Let Sj

i = Similarity between EI[i] (i.e., the ith effective

instance) with II[j] (i.e., the jth ineffective instance)

3: Let Mi = Maxj∈{0,...,|II|−1}S
j
i

4: Let MOSTSIM = Sorted EI (sorted in descending
order of Mi)

5: Let idx = 0
6: While(|EI| < |II|)
7: Add MOSTSIM [idx%|MOSTSIM |] to EI
8: idx++
9: Let Model = Model learned with off-the-shelf SVM with

EI and II as training data
10: Output Model

Figure 3. SVMExt

and ineffective training instances. Based on which side of

the hyperplane the feature vector lies, the corresponding

unknown instance is assigned either effective or ineffective

prediction label.

VI. EXPERIMENTS

In this section we first describe our dataset, followed by

our evaluation metrics, research questions, and results.

A. Dataset

We analyze 10 different programs. These include

NanoXML, XML-Security, Space, and the 7 programs from

the Siemens test suite [17]. These programs have been

widely used in past studies on fault localization and thus

could collectively be used as a benchmark [19], [27], [22],

[1]. Table III provides the details on the programs.

NanoXML is an XML parsing utility written in

Java. We download NanoXML from Software Infrastruc-

ture Repository (SIR) [8]. SIR contains 5 variants of

NanoXML: NanoXML v1, NanoXML v2, NanoXML v3,

NanoXML v4, and NanoXML v5. Each of the variants con-

tains faulty versions except NanoXML v4. We downloaded

all 32 faulty versions of these variants. We exclude two of

the faulty versions as there are no failure-inducing test cases

that expose the bugs. Thus, for NanoXML, in total, we ana-

lyze 30 faulty versions. XML-Security is a digital signature

and encryption library written in Java. There are 3 variants

of XML-Security in SIR: XMLSec v1, XMLSec v2, and

XMLSec v3. For each variant, several faulty versions are

provided. In total, we downloaded 52 faulty versions from

these variants; we analyze 16 of them, as there are no failure-

inducing test cases that expose the other bugs. Space was

used in European Space Agency and is an interpreter for

Array Definition Language (ADL) written in C. All 35 faulty

versions of Space downloaded from SIR are used for our

experiments. For these 3 programs, in total we analyze, 81

faulty versions.

Table III
DATASET DESCRIPTIONS: NAME, LINES OF CODE, PROG. LANGUAGE,

NUMBER OF FAULTY VERSIONS, AND NUMBER OF TEST CASES.

Dataset LOC Language # Faulty # Tests
print token 478 C 5 4130
print token2 399 C 10 4115
replace 512 C 31 5542
schedule 292 C 9 2650
schedule2 301 C 9 2710
tcas 141 C 36 1608
tot info 440 C 19 1051
space 6,218 C 35 13,585
NanoXML v1 3,497 Java 6 214
NanoXML v2 4,007 Java 7 214
NanoXML v3 4,608 Java 9 216
NanoXML v5 4,782 Java 8 216
XML security v1 21,613 Java 6 92
XML security v2 22,318 Java 6 94
XML security v3 19,895 Java 4 84

Siemens programs are originally created for a study

on test coverage adequacy performed by researchers from

Siemens Corporation Research [17]. Each of the seven pro-

grams has many faulty versions derived “by seeding realistic

faults ” [17]. Each faulty version contains one bug that may

span more than one program element (i.e., basic block).

It comes with test cases and bug free versions. Siemens

programs have been used in many fault localization studies

including [19], [27], [22], [1]. The Siemens test suite2

include the following programs: print tokens, print tokens2,

replace, schedule, schedule2, tcas, and tot info. There are

a total of 132 versions in the test suite. We instrumented

each blocks in the versions. We exclude versions that are

seeded by bugs residing in variable declarations as our

instrumentation cannot reach these declarations. Thus, we

exclude the following versions: version 12 of replace, ver-

sions 13, 14, 15, 36, 38 of tcas, and versions 6, 10, 19, 21 of

tot info. Versions 4 and 6 of print token are also excluded

because they are identical with the bug free version. We

exclude version 9 of schedule2 as running all test cases

only produces correct executions – no test case is a failure-

inducing one. In total, we include 119 faulty versions from

Siemens test suite for our experiment. Adding the 81 faulty

versions from the 3 other programs, we have in total 200

faulty versions.

B. Evaluation Metrics & Experiment Settings

We evaluate the accuracy of our solution in terms of

precision, recall, and F-measure. These metrics have been

frequently used to evaluate various prediction engines [13].

We first define the concepts of true positives, false positives,

true negatives, and false negatives:

True Positives (TP): Number of effective fault local-

ization instances that are pre-

dicted correctly

False Positives (FP): Number of ineffective fault lo-

calization instances that are pre-

dicted wrongly

2We use the variant at: www.cc.gatech.edu/aristotle/Tools/subjects

315

True Negatives (TN): Number of ineffective fault lo-

calization instances that are pre-

dicted correctly

False Negatives (FN): Number of effective fault local-

ization instances that are pre-

dicted wrongly

Based on the above concepts, we can define precision,

recall, and F-measure as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F-Measure =
2× Precision×Recall

Precision+Recall
(3)

There is often a trade-off between precision and recall.

Higher precision often results in lower recall (and vice

versa). To capture whether an increase in precision (or recall)

outweighs a reduction in recall (or precision), F-measure is

often used. F-measure is the harmonic mean of precision

and recall and it combines the two measures together into a

single summary measure.

We perform ten-fold cross validation to evaluate the effec-

tiveness of our proposed approach. Ten-fold cross validation

is a standard approach in data mining to estimate the

accuracy of a prediction engine [13]. Its goal is to assess

how the result of a prediction engine generalizes to an

independent test data. In ten-fold cross validation, we divide

the dataset into ten groups. We use nine of the groups for

training and one of the groups for testing. We repeat the

process 10 times using different groups as the test group.

We aggregate all the results and compute the final precision,

recall, and F-measure.

C. Research Questions

We would like to answer the following research questions.

The research questions capture different aspects that measure

how good our proposed approach is.

RQ1. How effective is our approach in predicting the

effectiveness of a state-of-the-art spectrum-based fault lo-

calization tool ?

We evaluate the accuracy of our tool in predicting the

effectiveness of Tarantula which has been demonstrated to

be one of the most accurate fault localization tools.

RQ2. How effective is our extended Support Vector Machine

(SVMExt) compared with off-the-shelf Support Vector Ma-

chine (SVM) ?

To learn a discriminative model, we extend SVM to ad-

dress the data imbalance issue. We would like to investigate

if this extension is necessary to make our framework work.

RQ3. What are some important features that help in discrim-

inating if a fault localization tool would be effective given

a set of input traces ?

We investigate which of the 50 features that we use

are more dominant and thus more effective to help us

achieve higher prediction accuracy. In the machine learning

community, Fisher score is often used to measure how

dominant or discriminative a feature is [9], [11]. We compute

the Fisher score of every feature as follows:

FS(j) =

∑#class
class=1(x̄

(class)
j − x̄j)

2

∑#class
class=1(

1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j)2)

In the equation, FS(j) denotes the Fisher score of the

jth feature. nclass is the numbers of data points (i.e., fault

localization instances) with label class (i.e., effective or

ineffective). x̄j denotes the average value of the jth feature

of all data points. x̄
(class)
j is the average value of the jth

feature of class-labeled data points. x
(class)
i,j denotes the

value of the jth feature of the ith class-labeled data point.

Fisher score ranges from 0 to 1. A Fisher score of 0 indicates

that a feature is not discriminative, while a Fisher score of

1 indicates that a feature is very discriminative.

RQ4. Could our approach be used to predict the effective-

ness of different types of spectrum-based fault localization

tool ?

There are different spectrum-based fault localization tools

proposed in the literature. We would like to investigate if our

approach also works for different spectrum-based fault local-

ization tools. We consider two other well known spectrum-

based fault localization tools: Ochiai [1], and Information

Gain [24].

RQ5. How sensitive is our approach to the amount of

training data ?

We use ten-fold cross validation to evaluate our approach.

In ten-fold cross validation, we use 90% of the data for

training, and the remaining 10% for testing. In this research

question, we investigate the impact of reducing the number

of training data on the accuracy of the proposed approach.

RQ6. Could data from one software program be used to

train a discriminative model used to predict effectiveness

of a fault localization tool on failures from other software

programs ?

To answer this research question, we use data from N-1

(i.e., 9) software programs to build a model. This model is

then used to predict the effectiveness of a fault localization

tool on the remaining one software program. We refer to

this process as N-fold cross-program validation.

D. Results

In this section, we answer our research questions one at a

time by performing a set of experiments. For all research

questions except RQ2, we use the default setting of our

proposed framework presented in previous sections.

316

1) RQ1: Overall Accuracy: To answer our first research

questions, we simply run Tarantula on the 200 faulty ver-

sions. We then predict if Tarantula is effective or not for each

of the 200 faulty versions using SVMExt. We perform ten-

fold cross validation and aggregate the result for the final

precision, recall, and F-measure. For Tarantula, 85 of the

localization instances are effective and 115 of the instances

are ineffective. Thus, the data is imbalanced.

The result of our experiment is shown in Table IV. The

result shows that we can achieve a precision of 54.36%.

This means that we can correctly identify many ineffective

fault localization instances (i.e., 47 out of the 115 ineffec-

tive instances). We can also achieve a recall of 95.29%.

This means that we correctly identify almost all effective

instances (i.e., 81 out of the 85 effective instances). F-

measure, the harmonic mean of precision and recall, is often

used to gauge on how effective a prediction engine is. Our

F-measure is 69.23%. Comparing with many other studies

performing other prediction tasks in software engineering

research literature, e.g., [31], [32], our F-measure is compa-

rable or higher.
Table IV

PRECISION, RECALL, AND F-MEASURE OF OUR PROPOSED APPROACH

Precision 54.36%
Recall 95.29%

F-Measure 69.23%

2) RQ2: SVMExt vs. SVM: Next, we compare our ex-

tended SVM (SVMExt) with standard off-the-shelf SVM.

The precision, recall, and F-measure of using SVMExt and

SVM is shown in Table V. SVMExt clearly outperforms

SVM with respect to precision, recall, and F-measure. We

also compute the relative improvement of SVMExt over

SVM by the following formula:

Relative Improvement

=
(SVMExt Result− SVM Result)

SVM Result

We find that SVMExt outperforms SVM in terms of

precision, recall, and F-Measure by 6.50%, 65.29%, and

27.87% respectively. SVM is not able to handle imbalanced

data. The imbalanced data causes SVM to predict more

unknown instances with the majority label that it sees in

the training data (i.e., ineffective). This reduces the number

of true positives and increases the number of false negatives,

which causes a significant reduction in recall.

Table V
PRECISION, RECALL, AND F-MEASURE OF SVMExt AND SVM

SVMExt SVM Relative Improve.
Precision 54.36% 51.04% 6.50%

Recall 95.29% 57.65% 65.29%
F-Measure 69.23% 54.14% 27.87%

3) RQ3: Important Features: Next, we investigate which

features are important. We use Fisher score to rank the

features. Table VI shows the list of top-10 most important

features. Interestingly, we find that the top-10 features in-

clude input and output features. Both input execution traces

and suspiciousness scores generated by a fault localization

tool are important to predict the effectiveness of a fault

localization instance.

Relative-difference features, i.e., C7, C8, C6, C5, and C1,

are the most discriminative (5 out of the top-10 features).

These features can capture a “break” or gap in the top-10

discriminative scores. This “break” signifies that the fault lo-

calization tool is able to differentiate some program elements

to be significantly more suspicious than the others. Three of

the top-10 features are related to program elements, i.e., PE1,

PE2, and PE4. They capture the number of program elements

covered in execution traces. The more program elements are

covered, the harder it is to get effective fault localization

as the fault localization tool needs to differentiate more

program elements to find the root cause. The other two

of the top-10 features are the highest suspiciousness score

(R1) and the number of distinct suspiciousness scores in the

top-10 scores (SS1). These are intuitively related to fault

localization effectiveness: the higher a suspiciousness score

is, the more likely a program element is the root cause; the

more the number of distinct suspiciousness scores, the more

that a fault localization tool differentiates program elements.

Table VI
TOP-10 MOST DISCRIMINATIVE FEATURES2

Rank Feature Rank Feature
1 C7 6 SS1
2 C8 7 C5
3 C6 8 C1
4 PE1 9 PE4
5 PE2 10 R1

4) RQ4: Different Fault Localization Tools: We also

investigate if our approach could be generalized to other

spectrum-based fault localization tools aside from Tarantula.

We use the same set of 200 faulty versions and perform the

same ten-fold cross validation using SVMExt to evaluate

two other spectrum-based fault localization tools: Ochiai [1],

and Information Gain [24]. Table VII shows the precision,

recall, and F-measure when we predict the effectiveness of

Tarantula, Ochiai, and Information Gain.

We note that a similar precision, recall, and F-measure can

be achieved for predicting the effectiveness of Ochiai and

Information Gain. Our framework can achieve an F-measure

of more than 75% for Ochiai and Information Gain. This is

higher than the accuracy of our framework for Tarantula.

Table VII
PRECISION, RECALL, AND F-MEASURE FOR VARIOUS FAULT

LOCALIZATION TOOLS

Tool Precision Recall F-Measure
Tarantula 54.36% 95.29% 69.23%
Ochiai 63.23% 97.03% 76.56%
Information Gain 64.47% 93.33% 76.26%

2Please refer to Table II for the description of the features.

317

5) RQ5: Different Amount of Training Data: In ten-fold

cross validation, we use 90% of the data for training on only

10% for testing. To answer this research question, we vary

the amount of training data from 10% to 90% and show

the resultant precision, recall, and F-measure. We randomly

pick the data that we use for training. We show the result

in Table VIII. Note that as we randomly resample the 90%

data, the result is different with that of RQ1. We find that the

performance of our framework does not degrade too much

(F-measure > 60%) if there is sufficient data for training

(30-90%), the performance degrades significantly if there is

too little training data (10-20%).

Table VIII
PRECISION, RECALL, AND F-MEASURE FOR VARIOUS AMOUNT OF

TRAINING DATA

Amount of Data Precision Recall F-Measure
90% 61.54% 100.00% 76.19%
80% 51.52% 100.00% 68.00%
70% 58.14% 100.00% 73.53%
60% 50.77% 97.06% 66.67%
50% 53.33% 95.24% 68.38%
40% 51.02% 98.04% 67.11%
30% 46.77% 98.31% 63.39%
20% 55.56% 36.76% 44.25%
10% 48.78% 26.32% 34.19%

6) RQ6: Cross-Program Setting: We perform N-fold

cross-program validation to answer this research question.

The result is shown in Table IX. The result shows that our

approach could be used in cross-program setting with an F-

measure of 63%, which is lower than our result for RQ1 (i.e.,

69.23%). This is as expected as the programs are diverse

and each program might have its own characteristics. It is

thus harder to predict fault localization effectiveness for one

program using training data from other programs.

Table IX
PRECISION, RECALL, AND F-MEASURE IN CROSS-PROGRAM SETTING

Precision 46.4%
Recall 100.00%

F-Measure 63.43%

E. Threats to Validity

We consider three kinds of threats to validity: internal,

external, and constructing validity. Threats to internal valid-

ity corresponds to experimenter bias. In our experiments,

we use the programs that are manually instrumented by

Lucia et al. [24]. Due to the manual instrumentation process,

there might be some basic blocks that are missed (i.e., no

instrumentation code is added for them). Threats to external

validity corresponds to the generalizability of our findings.

In this study, we have analyzed 10 different programs. These

programs are widely studied in past fault localization studies

and thus collectively they can be used as a benchmark. We

have also analyzed programs written in two programming

languages: C and Java. Still, more programs can be analyzed

to reduce the threat further. We plan to do this in a future

work. Threats to construct validity corresponds to the suit-

ability of our metrics. We use standard metrics of precision,

recall, and F-measure. These are well known metrics in data

mining, machine learning, and information retrieval and have

been used in many past studies in software engineering,

e.g., [16], [25], [2]. Thus with respect to these metrics, we

believe there is little threat to construct validity. Another

threat to construct validity is our definition of effective fault

localization instance. In this preliminary study, we consider

an instance is effective if at least one of the root cause

is in the top-10 most suspicious program elements. Other

definitions of effective fault localization could be considered,

e.g., the root cause must be in the top-1 most suspicious

program elements for an instance to be effective, etc. We

leave the consideration of other definitions of effective fault

localization for future work.

VII. RELATED WORK

In this section, we highlight a number of studies in

spectrum-based fault localization which analyze program

traces or their abstractions which capture the runtime be-

haviors of program.

Many spectrum-based fault localizations studies analyze

two sets of program spectra: one set corresponding to

correct executions, and another set corresponding to faulty

executions [19], [1], [40], [21], [22], [30], [6], [23], [10],

[20], [24], [3]. Based on these inputs, these studies would

typically compute likelihood of different program elements

to be the root cause of the faulty executions (aka. fail-

ures). Jones and Harrold propose Tarantula that computes

the suspiciousness scores of various program elements by

following this intuition: program elements that are executed

more frequently by faulty executions rather than correct

executions are deemed to be more suspicious [19]. Abreu

et al. propose a different formula to compute suspiciousness

scores [1]. They show that their proposed formula named

Ochiai is able to outperform Tarantula. Zeller proposes Delta

Debugging which compares a faulty execution and a correct

execution and find the minimum state differences [40]. Liblit

et al. compute predicates whose true evaluation correlates

with failures [21]. This work is extended by Chao et al.

which propose a work, named SOBER, that considers the

repeated outcomes of predicate evaluations in a program

run [22]. Santelices et al. use multiple program spectra to

localize faults [30]. Cheng et al. propose an approach to

mine a graph-based signatures, referred to as bug signatures,

that differentiates correct from faulty executions [6]. Lo et al.

extend the work of Cheng et al. by minimizing signatures

and fusing minimized signatures to capture the context of

program errors better [23]. Gong et al. after that propose a

test case prioritization technique to reduce the number of

test cases with known oracles for fault localization [10].

Gong et al. propose interactive fault localization where a

fault localization tool iteratively updates its recommendation

318

as it receives feedback from end users [20]. Lucia et al.

investigate many association measures and adapt them for

fault localization [24]. They find that information gain per-

forms the best. Wang et al. employ search-based algorithms

to combine various association measures and existing fault

localization algorithms [38]. Artzi et al. use test generation

for fault localization [3].

Other spectrum-based fault localizations analyze only one

set of program spectra, i.e., faulty executions [41], [12],

[18]. These techniques typically modify program runtime

states systematically to localize faulty program elements. In

this work, we focus on fault localization tools that compare

correct and faulty executions.

VIII. CONCLUSION AND FUTURE WORK

In this study, to address the unreliability of fault localiza-

tion tool, we build an oracle that can predict the effectiveness

of a fault localization tool on a set of execution traces. We

propose 50 features that can capture interesting dimensions

that potentially differentiate effective from ineffective fault

localization instances. Values of these features from a train-

ing set of faulty localization instances can be used to build

a discriminative model using machine learning. This model

is then used to predict if unknown instances are effective

or not. We have evaluated our solution on 200 faulty

versions from NanoXML, XML-Security, Space, and the 7

programs in the Siemens test suite. Our solution can achieve

a precision, recall, and F-measure of 54.36%, 95.29%, and

69.23%, respectively. We have also tested different aspects

of our solution including its ability to handle cross-program

setting and the results are promising.

As future work, we plan to improve the precision and

F-measure of our proposed approach further. We plan to

perform an in-depth analysis of cases where our proposed

approach is less effective and design appropriate extension

to the approach. We would also like to extend our approach

to predict the effectiveness of other fault localization tech-

niques, e.g., [6], [38], [30], [7]. We also plan to investigate

the effectiveness of and incorporate some findings from

recent studies on learning from imbalanced data performed

in the data mining community [15] to further improve our

SVMExt. It is also interesting to leverage other information

aside from execution traces; some failures come with textual

descriptions [42], and it would be interesting to employ

advanced text mining solutions [5], [39] to identify whether

fault localization tools would be effective on such failures.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the Accuracy of
Spectrum-based Fault Localization,” in TAICPART-MUTATION, 2007.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in ICSE,
2006, pp. 361–370.

[3] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation for effective
fault localization,” in ISSTA, 2010.

[4] B. Beizer, Software Testing Techniques, 2nd ed. Boston: International Thomson
Computer Press, 1990.

[5] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” J. Machine
Learning Research, vol. 3, pp. 993–1022, 2003.

[6] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug signatures
using discriminative graph mining,” in ISSTA, 2009.

[7] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani, “HOLMES:
Effective statistical debugging via efficient path profiling,” in ICSE, 2009.

[8] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Empirical Software Engineering, vol. 10, no. 4, pp. 405–435, 2005.

[9] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-Interscience
Publication, 2001.

[10] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Diversity maximization speedup for
fault localization,” in ASE, 2012, pp. 30–39.

[11] Q. Gu, Z. Li, and J. Han, “Generalized fisher score for feature selection,” in
UAI, 2011, pp. 266–273.

[12] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty code using failure-
inducing chops,” in ASE, 2005, pp. 263–272.

[13] J. Han and M. Kamber, Data Mining Concepts and Techniques, 2nd ed.
Morgan Kaufmann, 2006.

[14] M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An empirical
investigation of the relationship between spectra differences and regression
faults.” Software Testing, Verification and Reliability, 2000.

[15] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl.
Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.

[16] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “Autoodc: Automated
generation of orthogonal defect classifications,” in ASE, 2011.

[17] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria,” in Proc.
of ICSE, 1994, pp. 191–200.

[18] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value replace-
ment,” in ISSTA, 2008.

[19] J. Jones and M. Harrold, “Empirical evaluation of the tarantula automatic fault-
localization technique,” in ASE, 2005.

[20] Liang Gong, David Lo, Lingxiao Jiang, and Hongyu Zhang, “Interactive fault
localization leveraging simple user feedback,” in ICSM, 2012, pp. 67–76.

[21] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote
program sampling,” in PLDI, 2003, pp. 141–154.

[22] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: Statistical model-
based bug localization,” in ESEC/FSE, 2005.

[23] D. Lo, H. Cheng, and X. Wang, “Bug signature minimization and fusion,” in
HASE, 2011, pp. 340–347.

[24] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evaluation of association
measures for fault localization,” in ICSM, 2010.

[25] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-G. Guéhéneuc, G. Antoniol,
and E. Aı̈meur, “Support vector machines for anti-pattern detection,” in ASE,
2012.

[26] C. Parnin and A. Orso, “Are automated debugging techniques actually helping
programmers?” in ISSTA, 2011, pp. 199–209.

[27] M. Renieris and S. Reiss, “Fault localization with nearest neighbor queries,”
in ASE, 2003, pp. 141–154.

[28] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem.” in
ESEC/FSE, 1997.

[29] G. Salton and M. McGill, Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[30] R. Santelices, J. Jones, Y. Yu, and M. Harrold, “Lightweight fault-localization
using multiple coverage types,” in ICSE, 2009.

[31] H. Seo and S. Kim, “Predicting recurring crash stacks,” in ASE, 2012, pp.
180–189.

[32] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams, A. E.
Hassan, and K. Matsumoto, “Studying re-opened bugs in open source software,”
Empirical Software Engineering, 2012.

[33] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model
approach for accurate duplicate bug report retrieval,” in ICSE (1), 2010.

[34] G. Tassey, “The economic impacts of inadequate infrastructure for software
testing.” National Institute of Standards and Technology. Planning Report 02-
3.2002, 2002.

[35] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,” in WCRE,
2012.

[36] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identification,” in
CSMR, 2012, pp. 385–390.

[37] V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. Springer-Verlag,
2000.

[38] S. Wang, D. Lo, and L. Jiang, “Search-based fault localization,” in ASE, 2011.

[39] X. Wang, D. Lo, J. Jiang, L. Zhang, and H. Mei, “Extracting paraphrases of
technical terms from noisy parallel software corpora,” in ACL/IJCNLP, 2009.

[40] A. Zeller, “Isolating cause-effect chains from computer programs,” in FSE,
2002, pp. 1–10.

[41] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in ICSE, 2006.

[42] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports,” in ICSE,
2012.

319

