
Inferring Semantically Related Software Terms and Their Taxonomy

By Leveraging Collaborative Tagging

Shaowei Wang, David Lo, and Lingxiao Jiang

School of Information Systems, Singapore Management University

{shaoweiwang.2010,davidlo,lxjiang}@smu.edu.sg

Abstract—Many software engineering tasks, such as feature
location and duplicate bug report detection, leverages simi-
larities among textual corpora. However, due to the different
words used by developers to express the same concept, exact
matching of words is insufficient. One document can contain
a particular word while the other document may contain
another word that is semantically related but is not the same.
Such word differences may cause inaccuracies in subsequent
software engineering tasks. Recently, tagging has impacted the
software engineering community. Developers increasingly use
tags to describe important features of a software product.
Many project hosting sites allow users to tag various projects
with their own words. It becomes increasingly important to
understand and relate these tags.

Based on the tags available from software project hosting
websites, we propose a similarity metric to infer semantically
related terms, each of which is a tag, and build a taxonomy that
could further describe the relationships among these terms.
We have built a sample taxonomy from tens of thousands
of projects and their tags. Our user studies show that our
proposed similarity metric for tags are indeed related to the
semantic similarity of the terms, and the resultant semantic
taxonomy among terms is reasonably good.

I. INTRODUCTION

Many software engineering tasks compare and contrast

textual documents. For example, duplicate bug report detec-

tion leverages common terms appearing in two bug reports

to decide if they are duplicates of each other [17]. Feature lo-

cation finds pieces of code that implement a described func-

tionality [15]. Since the same concept can often be expressed

by various words that might either be synonyms or are

semantically related, if only common words are searched for,

certain semantically related documents described in different

terms1 might be missed. This problem has been termed as

the synonym problem in the text retrieval community [4].

Thus, the accuracy of many software engineering tasks may

also be improved if this synonym problem, instantiated in

the software domain, is addressed .

For text retrieval, WordNet [1] has been widely used to

detect synonyms [20]. However, software engineers often

use jargons that either do not appear in WordNet or have

different meanings from normal English. For example, words

1We use “terms”, “words”, and “tags” interchangeably in this paper.

such as “bug” and “beetle” are semantically related in En-

glish, but are very different in software engineering context.

Thus, there is a need to create a better WordNet—a domain

specific one that addresses software engineering needs.

With the advent of Web 2.0, we have seen the proliferation

of tagging on various items ranging from photos on Flickr,

websites on Delicious, software systems on Freecode, etc.

A tag is often used to indicate certain semantic aspect

of related items, such as “Word Processor.” We observe

that such tags could be used to find semantically related

software engineering terms and projects. For example, a

project tagged with “document editor” may be semantically

similar to a “word processor.” With the increasing uses of

tags, it can also be useful for software engineering purposes

to establish a WordNet-like database for software terms.

In this work, we propose a new approach that detects sim-

ilar software tags. We characterize a tag by the documents

and document contents that it tags. We define a similarity

metric between two tags by measuring the similarity among

the documents. The similarity metric is in turn used together

with a clustering algorithm in multiple iterations to build a

hierarchy of tag clusters.

We have performed user studies to evaluate our approach.

Given the similarity scores and the hierarchy of the tags, the

users in general agree that the similarity metric correlates

with the actual semantic relations among the tags and the

tag hierarchy (i.e., taxonomy) is reasonable.

The contributions of this paper are as follows:

1) We propose a new problem of detecting semantically

related software terms.

2) We propose a similarity metric among software tags by

considering the common documents tagged by the tags.

3) We propose a solution based on the k-medoids cluster-

ing algorithm to create a taxonomy of tags.

4) Our user studies show that the similarity metric scores

are closely related to the similarities in the semantic

meanings of pairs of tags, and the taxonomy reasonably

reflects the semantic relations among the tags.

The paper is organized as follows. Section II describes

preliminary materials. Section III details our approach. Sec-

tion IV presents empirical evaluation. Section V discusses

related work. Section VI concludes with future work.

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

604

II. PRELIMINARIES

In this section, we describe preliminary information on

software tagging, and the k-medoids clustering algorithm.

A. Tagging Software Engineering Data

Many project hosting sites, such as Freecode2, allow

developers to tag projects. On Freecode, information about

more than one hundred thousands of applications is pro-

vided. Each application has the link for download, the

description of the application, and tags indicating various

features of the application. Sample project information from

Freecode is shown in Figure 1. One can note that the Java

Apple Computer Emulator is tagged with Major, Bug fixes,

new features, LGPL, and computer emulator.

Figure 1. Project Information in Freecode

Users could create a Freecode account and provide in-

formation for an application. Freecode may be viewed as a

Wiki-like platform for developers to share information about

various applications. Such information provides a good

knowledge base for us to infer semantically related software

terms. In this study, we use the application descriptions and

tags in Freecode for our purpose.

B. K-Medoids Clustering Algorithm

This algorithm splits a set of data points to a pre-set

number (k) of groups (or clusters) so that the square error

is minimized [10]. It is partitional, i.e., each data point is

assigned to one and only one cluster. The algorithm requires

a similarity metric between data points, and it performs

many iterations as follows to decide the best way to split:

1) Randomly pick k points as cluster centers (medoids).

2) Assign each remaining data point (non-medoids) to the

cluster whose medoid is closest. This would form a

configuration (i.e., the initial k clusters).

3) Update the medoid for each cluster: choose the point

in the cluster that has the minimum total distance to all

other points as the new medoid.

4) Repeat steps 2-3 until no more change to the medoids.

III. PROPOSED APPROACH

Our approach mainly consists of two steps. First, we

calculate the similarity between every pair of terms. To this

end, we propose a similarity metric based on the documents

that are tagged by the terms. Second, based on the similarity

metric, we infer a taxonomy of the terms by repeatedly

applying k-medoids clustering on the terms.

2http://freecode.com/

A. Calculation of Similarity Among Terms

Inspired by information retrieval techniques, we use the

documents tagged by the terms to measure the similarity

between terms (i.e., tags). In our setting, each document is

a description of an application (cf. Figure 1). Two terms

can be similar if they tag many common documents. We

call this similarity the document similarity of two terms. In

addition, we measure the similarity of two terms based on

the textual contents of the documents tagged by them. We

call this similarity the textual similarity of two terms.

Let Doc(t) be the set of documents that are tagged with

term t. We define the document similarity of two terms t1
and t2 as dsim(t1, t2) =

Doc(t1)
⋂

Doc(t2)
Doc(t1)

⋃

Doc(t2)
.

For textual similarity, we calculate it as the cosine simi-

larity between the vectors representing the term frequencies

& inverse document frequencies of the words appearing

in the documents tagged by the terms as follows. First,

for each term t, we apply standard text pre-processing

techniques to Doc(t) to remove common stop words, such

as I, you, etc., and reduce words into their root forms

by stemming (e.g., both reading and reads are reduced to

read). The preprocessed set of documents is referred to as

DocP (t). Second, a vector, referred to as V (t), is created:

each element V (t)[w] in V (t) corresponds to one word w

appearing in DocP (t) together with its TF-IDF score (term

frequency & inverse document frequency) [13]. Third, given

two terms t1 and t2 and their word vectors V (t1) and V (t2),
the textual similarity between t1 and t2 is calculated as the

cosine similarity between V (t1) and V (t2):

tsim(t1, t2) =

∑

w∈V (t1)
⋂

V (t2) V (t1)[w] × V (t2)[w]
√

∑

w∈V (t1) V (t1)[w]2 ×
√

∑

w∈V (t2) V (t2)[w]2

Finally, we combine document and textual similarities to

derive the similarity score of terms t1 and t2. It is a weighted

sum of both similarities, where we use 0.5 for w1 and w2:

sim(t1, t2) = w1 × dsim(t1, t2) + w2 × tsim(t1, t2) (1)

B. Taxonomy Inference

We infer the taxonomy of software terms by performing

repeated k-medoids clustering. At each application of k-

medoids, we divide the set of terms into smaller groups.

Each of these groups can then be divided into even small-

er subgroups by applying k-medoids clustering again. K-

medoids clustering requires a similarity metric between two

data points (a data point is a term in our setting). This paper

uses the similarity metric presented in Equation (1).

The pseudocode of the approach is given in Algorithm 1.

The procedure CreateTaxonomy first initializes a dummy

root node by setting its label as “root”; it then recursively

applies k-medoids clustering at various levels in the taxono-

my by calling CreateLevels. We stop dividing a cluster

further if its size is less than minSize. In our evaluation,

we use minSize = 20 and k = 7.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

605

Figure 2. Partial resultant taxonomy

Algorithm 1 Construction of Term Taxonomy.
Procedure CreateTaxonomy

Input: ipTerms: Set of terms
k : # of sub-clusters under each node in the taxonomy
minSize: Minimum size of a cluster

Output: Taxonomy of terms in ipTerms

Initialize a dummy root node root of the taxonomy
CreateLevels(ipTerms , k, minSize, root)
Output the taxonomy rooted at root

Procedure CreateLevels

Input: ipTerms: Set of terms
k : # of sub-clusters under each node in the taxonomy
minSize: Minimum size of a cluster
p: Parent node in the taxonomy

Output: Children of p added to the taxonomy
Let Clusters = Perform k-medoids on ipTerms

for all c in Clusters do

if size(c) < minSize then

Add c as a child of p in the taxonomy
else

Add the medoid m of c as a child of p
Let nTerms = All non-medoid terms in c

CreateLevels(nTerms , k, minSize, m)
end if

end for

IV. EMPIRICAL EVALUATION

In this section, we present our dataset, our research

questions and answers, and describe some threats to validity.

A. Dataset

We collect 45,470 projects from Freecode with 7,163 tags,

but remove tags used in less than 10 projects (they appear

to be too specific) and projects with no tags. Thus, we get

690 tags and 40,744 projects.

B. Research Questions

We are interested in the following research questions:

RQ1 How accurate is our similarity metric in mea-

suring the semantic relations among terms?

RQ2 How the resultant taxonomy looks like?

RQ3 How accurate is the taxonomy? Is the structure

of the taxonomy reasonable?

C. RQ1: Accuracy of the Similarity Metric

We perform a user study with six participants who all

have background in computer science. We sort all pairs of

terms based on their similarities calculated by the equations

in Section III-A. The smaller the similarity is, the higher

rank a pair gets. We pick 3 categories of pairs from the

ranked list: 100 most similar terms (top), 100 most different

ones (bottom), and 100 from the middle of the list (middle).

Each participant is randomly assigned 50 pairs and asked

to provide a 3-point Likert score to each pair to indicate

whether they agree if the pair is similar: 3 means agree, 2

means neither agree nor disagree, and 1 means disagree.

Table I shows the statistics of Likert scores from the user

study for each category. The mean Likert score for the top

pairs is larger than that of the middle pairs, which is larger

than that of the bottom pairs. Mann-Whitney U tests on the

scores show that the differences are statistically significant,

which means our similarity metric can indeed be an effective

measurement of semantic relations among terms.
Table I

LIKERT SCORES FOR EACH CATEGORY

Category Mean Deviation
Top 2.37 0.76

Middle 1.5 0.70
Bottom 1.03 0.17

D. RQ2: Resultant Taxonomy

Figure 2 shows a partial resultant taxonomy, which is a

hierarchical tree. Each node except leaf nodes denotes a term

(tag) which represents the general meaning of its children.

Every leaf node is a cluster of terms. As Figure 2 shows,

this partial hierarchy presents the tags under Multimedia,

which can be categorized into Sound/Audio, Radio, Graph-

ics, Capture, Video, etc. The resultant taxonomy structure

reasonably represents the relationships among the terms.

E. RQ3: Accuracy of the Taxonomy

We also perform a user study with the same six partici-

pants. We randomly pick 100 paths from a non-leaf node in

the taxonomy to a term in a leaf node. A sample path in Fig-

ure 2 is “Multimedia → Graphics → Games/Entertainment

→ First Person Shooters.” Each participant is randomly

assigned 20 paths and asked to provide a 3-point Likert score

for each path to indicate whether they agree if the path is

semantically reasonable: 3 means all terms in the path are

2012 28th IEEE International Conference on Software Maintenance (ICSM)

606

reasonable, 2 means some terms are reasonable, and 1 means

all terms are unreasonable.

Figure 3 shows that 38% of the 100 paths are totally

reasonable, 48% of them are partially reasonable, and only

15% of them are unreasonable. The mean Likert score

is 2.23, which means that the taxonomy created by our

approach is reasonably meaningful.

50

s

30

40

50

f
p
a
th
s

10

20

30

40

50

u
m
b
e
r o

f
p
a
th
s

0

10

20

30

40

50

Unreasonable Partially Reasonable Reasonable

N
u
m
b
e
r o

f
p
a
th
s

0

10

20

30

40

50

Unreasonable Partially Reasonable Reasonable

N
u
m
b
e
r o

f
p
a
th
s

0

10

20

30

40

50

Unreasonable Partially Reasonable Reasonable

N
u
m
b
e
r o

f
p
a
th
s

0

10

20

30

40

50

Unreasonable Partially Reasonable Reasonable

N
u
m
b
e
r o

f
p
a
th
s

Figure 3. The histogram of Likert scores for the 100 paths.

F. Threats to Validity

There are threats due to our limited datasets, parameters

used in our approach (minSize, k, etc.), randomness em-

ployed during user studies, and human bias in providing

Likert scores. In the future, we plan to collect more tag data

from various project hosting platforms, to perform sensitivity

analysis of the parameters, and to involve more participants

and more samples to reduce such threats.

V. RELATED WORK

Study of Semantically Related Words: In software engi-

neering communities, there are a few studies on semantically

related words and their applications. Yang and Tan infer

related words from software code (e.g., [22]). Biggers et

al. consider a suite of similarity metrics based on code

lexicons as well [5]. Kuhn uses word frequencies in code

to automatically label software components [12]. Wang et

al. infer paraphrases from duplicate bug reports [21]. Abebe

et al. establish a catalog of “lexical bad smells” in code

and use it to help concept localization [2], [3]. Haiduc and

Marcus study how developers use domain terms in code

(e.g., in identifiers or comments) [9]. Our work considers

a very different data source from code—software tags, and

our objective is different, i.e., to produce semantically related

tags and their taxonomy.

In other research communities, there are studies on tax-

onomies of concepts and tags (e.g., [6], [11], [19]). Although

having a similar objective, we use different techniques on

different data to construct different taxonomies.

Social Media and Software Engineering: Our work is

related to but different from many studies on the uses of

social media in software development [16]. Treude et al.

investigate how tagging is used to improve software devel-

opment [18]. Dabbish et al. investigate the social coding

site GitHub and analyze the impact of its transparency [7].

Pagano and Maalej investigate blogging behaviors among

software developers [14]. Gottipati et al. use machine learn-

ing tools to categorize posts on software forums [8].

VI. CONCLUSION AND FUTURE WORK

In this work, we propose the problem of inferring seman-

tically related software tags that are used to characterize

the main features of software products. We propose a

new similarity metric for software tags by considering the

documents tagged by them. We collect tens of thousands of

projects and their tags from Freecode and build a taxonomy

of tags based on our metric and the k-medoids clustering

algorithm. Our user studies show that our metric and the

generated taxonomy capture the actual semantic relations

among software tags reasonably well.
In the future, we plan to extend this study by investigating

more projects and tags from more project hosting sites

with larger scale user studies. We also plan to integrate the

taxonomy of software terms into code search engines.

REFERENCES

[1] “WordNet,” http://wordnet.princeton.edu.
[2] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon bad

smells in software,” in WCRE, 2009, pp. 95–99.
[3] ——, “The effect of lexicon bad smells on concept location in source

code,” in SCAM, 2011, pp. 125–134.
[4] J. Beall, “The weaknesses of full-text searching,” Journal of Academ-

ic Librarianship, vol. 34, pp. 438–444, 2008.
[5] L. R. Biggers, B. P. Eddy, N. A. Kraft, and L. H. Etzkorn, “Toward a

metrics suite for source code lexicons,” in ICSM, 2011, pp. 492–495.
[6] B. Cui, J. Yao, G. Cong, and Y. Huang, “Evolutionary taxonomy

construction from dynamic tag space,” in Proceedings of the 11th
international conference on Web information systems engineering
(WISE), 2010, pp. 105–119.

[7] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social
coding in github: transparency and collaboration in an open software
repository,” in CSCW, 2012.

[8] S. Gottipati, D. Lo, and J. Jiang, “Finding answers in software
forums.” in ASE, 2011.

[9] S. Haiduc and A. Marcus, “On the use of domain terms in source
code,” in ICPC, 2008, pp. 113–122.

[10] J. Han and M. Kamber, Data Mining Concepts and Techniques,
2nd ed. Morgan Kaufmann, 2006.

[11] X. Hu, N. Cercone, and J. Han, “Discovery of knowledge associated
with concept hierarchy in database,” in Proc. 3rd Int. Conf. for Young
Computer Scientists, Beijing, China, July 1993.

[12] A. Kuhn, “Automatic labeling of software components and their
evolution using log-likelihood ratio of word frequencies in source
code,” in MSR, 2009, pp. 175–178.

[13] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[14] D. Pagano and W. Maalej, “How do developers blog? an exploratory
study,” in MSR, 2011.

[15] V. Rajlich and N. Wilde, “The role of concepts in program compre-
hension,” in IWPC, 2002, pp. 271–280.

[16] M.-A. D. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The
impact of social media on software engineering practices and tools,”
in FoSER, 2010.

[17] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011.

[18] C. Treude and M.-A. D. Storey, “How tagging helps bridge the gap
between social and technical aspects in software development,” in
ICSE, 2009.

[19] E. Tsui, W. Wang, C. Cheung, and A. S. Lau, “A concept-relationship
acquisition and inference approach for hierarchical taxonomy con-
struction from tags,” Information Processing & Management, vol. 46,
no. 1, pp. 44–57, 2010.

[20] E. M. Voorhees, “Using wordnet to disambiguate word senses for
text retrieval,” in SIGIR, 1993.

[21] X. Wang, D. Lo, J. Jiang, L. Zhang, and H. Mei, “Extracting
paraphrases of technical terms from noisy parallel software corpora,”
in ACL/AFNLP, 2009.

[22] J. Yang and L. Tan, “Inferring semantically related words from
software context,” in MSR, 2012.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

607

