
Detecting Similar Applications with Collaborative Tagging

Ferdian Thung, David Lo, and Lingxiao Jiang

School of Information Systems

Singapore Management University, Singapore

{ferdianthung,davidlo,lxjiang}@smu.edu.sg

Abstract—Detecting similar applications are useful for var-
ious purposes ranging from program comprehension, rapid
prototyping, plagiarism detection, and many more. McMillan et
al. have proposed a solution to detect similar applications based
on common Java API usage patterns. Recently, collaborative
tagging has impacted software development practices. Various
sites allow users to give various tags to software systems. In
this study, we would like to complement the study by McMillan
et al. by leveraging another source of information aside from
API usage patterns, namely software tags. We have performed
a user study involving several participants and the results show
that collaborative tagging is a promising source of information
useful for detecting similar software applications.

I. INTRODUCTION

Search engines like Google allow users to find similar

webpages. Code search engines, such as JavaClan proposed

by McMillan et al. [12], can detect applications of similar

functionalities. Detecting similar applications has various

benefits for program comprehension, rapid prototyping, pla-

giarism detection, and many more [8], [10], [14], [16], [18].

McMillan et al. investigate how Java API methods are

called within an application. These API method calls are

referred to as semantic anchors and are used as features

to detect similar applications. In this work, we would like

to complement their study by considering another source

of information that are often available on various project

hosting platforms, such as SourceForge1.

Recently, collaborative tagging has been a popular way to

crowdsource and share knowledge. Tagging has also been

used in software engineering communities. Various project

hosting sites like SourceForge allow people to provide tags

to various software systems. Since similar applications are

likely to be tagged in a similar way, these tags can provide

information useful for detecting similar applications.

In this paper, we propose to leverage tags for detecting

similar application. We first collect more than a hundred

thousands of projects from SourceForge, and extract tags

for the projects. Then, we discriminate important tags from

less important ones. Some tags do not carry much infor-

mation; for example, many software systems are tagged

with “English” as they are released in English, but they

could potentially be very different from one another. Other

1http://sourceforge.net/

tags, such as “Word Processor”, carry more information, and

applications with this tag are more likely to share similar

core functionality. Thus, to detect similar applications, we

infer different weights for different tags. After tag weights

are learned, each application could be represented by a set of

tags with weights. The similarity between two applications

can then be measured by comparing their representative tags.

We compare our solution that leverages tags with the

approach by McMillan et al. (named JavaClan) that leverages

Java API method calls within application code based on a

corpus of more than a hundred thousands of applications

from SourceForge. Given an application used as a query, our

solution and JavaClan would recommend 10 most similar

applications respectively. We perform a user study by asking

several participants to indicate if they agree whether each

recommended application has similar functionality to the

query application. Then, we measure the effectiveness of

our approach and JavaClan by using the following measures:

success rate, confidence [12], and precision [12]. Based on

20 queries used in the user study, our approach could achieve

a higher success rate, higher average confidence, and higher

average precision than JavaClan: Our approach achieves a

success rate upto 80%, while JavaClan achieves upto 65%;

our approach achieve higher confidences and precisions

than JavaClan for about 65% and 35% of the query tasks,

respectively; For another 15% and 40% of the query tasks,

our approach achieves the same confidences and precisions

as JavaClan. In addition, we find that many software systems

that we recommend are different from those of JavaClan.

Thus, the two approaches are complementary and could

potentially be combined in the future.

Our contributions are as follows:

1) We propose a new solution to detect similar applica-

tions by leveraging collaborative tagging. This is com-

plementary with the state-of-the-art work by McMillan

et al. which only utilizes Java API calls to detect similar

applications. Different from the previous approach that

is language specific, our approach can detect similar

applications in different programming languages.

2) With a user study, we compare our proposed approach

with JavaClan and show that our approach could out-

perform the previous approach.

The structure of this paper is as follows. In Section II, we

describe preliminary information about tagging on Source-

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

600

Figure 1. Sample Tags from SourceForge

Forge. In Section III, we elaborate our proposed approach.

We present our empirical evaluation in Section IV. We

discuss related work in Section V. Finally, we conclude and

mention future work in Section VI.

II. TAGGING IN SOURCEFORGE

SourceForge is an established and well-known site that

aggregates various software systems for users to download.

It allows people to provide not only the descriptions of an

application but also tags for the application. Tags at times are

more useful than textual descriptions as they often capture

the key characteristics or features of an application.

SourceForge allows various kinds of tags to be specified.

A snapshot of tags on SourceForge is shown in Figure 1. The

tags describe the categories a software system may belong

to (in this case CMS System, and Site Management), the

license of the software system, the languages in which the

system is available, the intended audience, the type of user

interface, and the programming languages.

Some of these tags are more useful than others in inferring

similar applications. Categories are possibly the strongest

indicator, while languages (especially common languages

like English) are possibly the weakest. Nevertheless, we

collect all of these tags and use them in our study.

III. PROPOSED APPROACH

Our approach is illustrated in Figure 2. It mainly consists

of three steps: data collection, weight inference, and similar

application detection.

Data Collection: We first create a pool of applications

from which similar applications could be found. We collect

Data

Collection

Weight

Inference

Similar

Application

Detection

User Query

Similar

Applications

Figure 2. Proposed Approach

applications from SourceForge which provides APIs2 that

allow us to find various information about the applications

hosted there. The APIs return information in the JSON

format. We process the information for more than a hundred

thousand applications and store them in our own database.
Weight Inference: Some tags are more important for

determining the similarities of two applications than other

tags. Tags that are shared by all or a majority of applications

are not very useful—otherwise all applications would be

deemed as similar. On the other hand, tags that are shared

by a small groups of applications are more important.
With this intuition, we weight each tag based on the

number of applications that are tagged by it. The more

applications a tag tags, the less its weight is. This follows

the concept of inverse document frequency in information

retrieval [11]. Let App(t) denote the set of applications that

are tagged by t and |App(t)| be the size. The weight of t,

denoted as w(t), is given as: w(t) = 1
|App(t)| .

Similar Application Retrieval: We characterize each

application by the set of its tags. To find similar applications,

we compare the sets of tags that two applications posses.

Let Tag(A) denotes the set of tags for the application A.

The similarity of two applications A1 and A2 are given as

follows, which is based on cosine similarity [20]:

sim(A1, A2) =

∑

t∈Tag(A1)
⋂

Tag(A2)
w(t)× w(t)

√

∑

t∈Tag(A1)
w(t)2 ×

√

∑

t∈Tag(A2)
w(t)2

The above formula would assign a higher score if two ap-

plications share more tags and the tags have higher weights.

The denominator of the formula is used to normalize the

score. If an application has many tags, it is more likely that

it coincidentally shares a tag with another application.
Given an application as a query, we compare it with

each of other applications in our database. We only keep

the top-10 similar applications and incrementally update

the top-10 results as we scan through all applications. We

find this search technique is sufficiently fast—we can detect

similar applications in less than two seconds in a database

containing more than a hundred thousand applications.

IV. EMPIRICAL EVALUATION

In this section, we describe our dataset, experimental

settings, research questions, and answers to these questions.

2http://sourceforge.net/apps/trac/sourceforge/wiki/API

2012 28th IEEE International Conference on Software Maintenance (ICSM)

601

A. Dataset & Experimental Settings

We retrieve 164,535 projects from SourceForge with its

APIs. These projects form the pool of applications that we

query for similar applications.

We make use of 20 queries listed in Table I used by

McMillan et al. [12]. They investigate 24 unique queries to

evaluate JavaClan,3 but we only pick a subset. This subset is

the set of queries for which all of the top-10 recommended

applications made by JavaClan still exist on SourceForge.4

Table I
QUERIES

No Query No Query No Query

1 bcel 8 drawswf 15 qform

2 bigzip 9 genesys-mw 16 redpos

3 certforge 10 javum 17 sqlshell

4 chiselgroup 11 jazilla 18 tyrex

5 classgen 12 jsresources 19 xflows

6 color-studio 13 opensymphony 20 yapoolman

7 confab 14 psychopath

In the study by McMillan et al., most applications are

investigated by one participant. Participants give a score

from 1–4 to indicate their confidences in whether two

applications are similar. We modify the scale to 1–5 by

following the commonly used Likert scale [1]. The rating

items are: 1. strongly disagree (i.e., the two applications are

very dissimilar), 2. disagree, 3. neither agree or disagree,

4. agree, and 5. strongly agree (i.e., the two applications

are very similar). We perform a user study to compare our

approach with JavaClan.

For each of the 20 queries used in our study, we take

the top-10 recommendations given by JavaClan (retrieved

by their search engine5) and the top-10 recommendations

given by our approach. Thus, we have 20 recommendations

for each query, possibly including duplicates. We randomly

mix and shuffle these recommendations without duplicates,

and for each of the recommendations we ask a participant

the question: Is this recommended application similar to the

query application? To decide the rating for the questions, the

participants are allowed to browse the websites that provide

information about the applications. The random shuffling is

important to reduce experimental bias toward either of the

approaches. All of the (at most) 20 questions for each query

are assigned to the same person to reduce opinion differences

among different persons.
With the ratings for all of the questions for all queries, we

measure the effectiveness of our approach and JavaClan by

using three metrics: success rate, confidence, and precision,

the later two have been used to evaluate JavaClan [12]. We

introduce the definitions of these metrics as follows:
A search result is successful if at least one application

in the top-10 list is rated 3 or above. The success rate is

defined as the proportion of queries for which the search

3cf. questionnaires at http://www.cs.wm.edu/semeru/clan/#experiment.
4Many applications are ephemeral on SourceForge.
5http://javaclan.net

result is successful. The confidence of a participant for a

question is the Likert rating given by the participant for the

question. The average confidence is the average rating across

all questions by all participants. The precision for each query

is the proportion of applications in the top-10 list that are

labeled by a participant as similar (i.e., 4 or 5 in our Likert

scale). The average precision across all queries is also used

as an effectiveness metric.

B. Research Questions

We investigate the following research questions:
RQ1 How many queries could our proposed approach

and JavaClan return successful search results?

RQ2 How high is the average confidence of the

participants when using our approach as com-

pared with JavaClan? Is our result statistically

significantly better than that of JavaClan?

RQ3 How high is the average precision of our ap-

proach and that of JavaClan? Is our result statis-

tically significantly better than that of JavaClan?

C. RQ1: Success Rate

The success rate of our approach and JavaClan is shown in

Table II. We note that our approach leads to more successful

search results than JavaClan. When we further strengthen the

requirement of success from “rated 3 or above” to “rated 4

or above”, our approach still perform better than JavaClan,

although the success rates for both approaches are lower

(Column “Success Rate (Above 4)”).

Table II
OUR APPROACH VS. JAVACLAN: SUCCESS RATE

Approach #. of Successful Success Rate Success Rate
Queries (Out of 20) (Above 4)

Ours 16 80% 50%
JavaClan 13 65% 35%

D. RQ2: Confidence

Table III shows various statistics of the confidences that

participants have on the results of our approach and those

of JavaClan. We note that the similar applications recom-

mended by our approach have better median and arithmetic

mean confidences than JavaClan. We also compute the

average confidence for each query. Out of 20 queries, our

average confidences are higher in 13 queries than JavaClan

and the same in 5 queries.

Table III
OUR APPROACH VS. JAVACLAN: CONFIDENCE

Approach Sample Size Min Max Median Mean

Ours 200 1 5 2 2.02

JavaClan 200 1 5 1 1.715

We have also performed Mann-Whitney U test (a non-

parametric test of statistical significance) at 0.01 confidence

level6. We find that the value for the test is 0.001. This

means that the difference is statistically significant.

6We do not perform a statistical test on success rates in RQ1 since they
are just two numbers.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

602

E. RQ3: Precision

Table IV shows various statistics about the precisions of

the results from our approach and those from JavaClan. We

note that, in both approach, the minimum and maximum

precisions are the same, while our approach have higher

median and arithmetic mean precisions. This indicates that

our approach gives an overall better performance than Java-

Clan. In addition, we compute the average precision for each

query; Out of 20 queries, our mean precisions are higher in

7 queries than JavaClan and the same in 8 queries.

Table IV
OUR APPROACH VS. JAVACLAN: PRECISION

Approach Sample Size Min Max Median Mean

Ours 20 0 0.4 0.05 0.115
JavaClan 20 0 0.4 0 0.095

We have also performed Mann-Whitney U test at 0.01

confidence level and find that the test value is 0.488. This

means that the difference is not statistically significant.

F. Threats to Validity

We have only three participants in this user study. We have

also only investigated 20 queries. In the future, we plan to

reduce this threat to validity by increasing the number of

participants and the number of queries.

V. RELATED WORK

The closest to our work is the study by McMillan

et al. [12]. Our approach is different as we consider a

complementary source of information, collaborative tagging,

for detecting similar applications. Our approach can work

on applications in different programming languages. The

semantic tags given by end users are likely more relevant

than information inferred from API method calls. However,

not all applications have sufficiently relevant tags. In the

future, we plan to combine both approaches together to

improve search confidence and precision.

There are also a number of studies that propose various

code search engines for returning similar code pieces, func-

tions, components, applications, etc., such as Exemplar [5],

Mica [19], Portfolio [13], SNIFF [3], Sourcerer [9], and

XSnippet [17]. However, to the best of our knowledge,

we are the first to use collaborative tags to detect similar

applications, which are complementary to other approaches.

Many studies also aim to detect similar code fragments

(a.k.a. clone detection) based on text matching, syntax trees,

program dependence graphs, etc. [2], [4], [6], [7], [15].

Different from these studies, we recover similar applications

rather than code. Two applications can implement the same

functionality but are written in different ways. These two

would be similar applications but not clones of each other.

VI. CONCLUSION AND FUTURE WORK

We have proposed an approach that detects applications

of similar functionalities by leveraging collaborative tagging.

This complements the recent study by McMillan et al. that

uses API calls for detection. Applications from many project

hosting platforms, such as SourceForge, have user-given tags

that could shed light on the nature of the applications. We

collect such tags from SourceForge and perform weight

inference to detect similar applications. We have evaluated

the effectiveness of our approach with a user study and three

metrics: success rate, confidence, and precision, and show

that our approach can achieve better results than JavaClan.

There is still room for improvement, considering that both

JavaClan and our approach have relatively low confidences

and precisions. For example, it may be useful to explore

the semantic aspects of the tags, such as synonyms, to

improve our approach. It is also interesting to note that

many search results from our approach are different from

those of JavaClan. In the future, we plan to combine various

approaches to enhance the search of similar applications.

REFERENCES

[1] E. Allen and C. Seaman, “Likert scales and data analyses,” Quality
Progress, vol. July, 2007.

[2] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in WCRE, 1995.

[3] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF: A search engine for
java using free-form queries,” in FASE, 2009, pp. 385–400.

[4] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in ICSE, 2008, pp. 321–330.

[5] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A search engine for finding highly relevant applications,”
in ICSE (1), 2010, pp. 475–484.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in ICSE, 2007.

[7] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE TSE, vol. 28, no. 7, pp. 654–670, Jul 2002.

[8] K. Kontogiannis, “Program representation and behavioural matching
for localizing similar code fragments,” in CASCON, 1993.

[9] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software reposito-
ries,” Data Min. Knowl. Discov., vol. 18, no. 2, pp. 300–336, 2009.

[10] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: Detection of software
plagiarism by program dependence graph analysis,” in KDD, 2006.

[11] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[12] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in ICSE, 2012.

[13] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in ICSE, 2011.

[14] A. Michail and D. Notkin, “Assessing software libraries by browsing
similar classes, functions and relationships,” in ICSE, 1999.

[15] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and
T. N. Nguyen, “Complete and accurate clone detection in graph-based
models,” in ICSE, 2009, pp. 276–286.

[16] T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer., “Detecting similar
java classes using tree algorithms,” in MSR, 2006.

[17] N. Sahavechaphan and K. Claypool, “XSnippet: mining for sample
code,” in OOPSLA, 2006, pp. 413–430.

[18] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
java,” in ASE, 2007.

[19] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in VLHCC, 2006, pp. 195–202.

[20] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Addison Wesley, 2005.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

603

