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Abstract—In the evolution of an operating system there is a
continuing tension between the need to develop and test new
features, and the need to provide a stable and secure execution
environment to users. A compromise, adopted by the developers
of the Linux kernel, is to release new versions, including bug
fixes and new features, frequently, while maintaining some
older “longterm” versions. This strategy raises the problem
of how to identify bug fixing patches that are submitted to the
current version but should be applied to the longterm versions
as well. The current approach is to rely on the individual
subsystem maintainers to forward patches that seem relevant
to the maintainers of the longterm kernels. The reactivity and
diligence of the maintainers, however, varies, and thus many
important patches could be missed by this approach.

In this paper, we propose an approach that automatically
identifies bug fixing patches based on the changes and commit
messages recorded in code repositories. We compare our
approach with the keyword-based approach for identifying
bug-fixing patches used in the literature, in the context of the
Linux kernel. The results show that our approach can achieve a
53.19% improvement in recall as compared to keyword-based
approaches, with similar precision.

I. INTRODUCTION

For an operating system, reliability and continuous evolu-
tion to support new features are two key criteria governing
its success. However, achieving one is likely to adversely
affect the other, as supporting new features entails adding
new code, which can introduce bugs. In the context of Linux
development, these issues are resolved by regularly releasing
versions that include new features, while periodically des-
ignating some versions for longterm support. Development
is carried out on the most recent version, and relevant bug
fixes are backported to the longterm code.

A critical element of the maintenance of the longterm
versions is thus the identification of bug fixing patches. In
the Linux development process, contributors submit patches
to subsystem maintainers, who approve the submissions and
initiate the process of integrating the patch into the coming
release. A maintainer may also forward the patch to the
maintainers of the longterm versions, if the patch satisfies
various guidelines, such as fixing a real bug, and making
only a few changes to the code. This process, however,
puts an extra burden on the subsystem maintainers, implying
that necessary bug fixing patches could be missed. Thus, a
technique that automatically labels a commit as a bug fixing
patch would be valuable.

978-1-4673-1067-3/12/$31.00 (© 2012 IEEE

386

In the literature, there are furthermore many studies that
rely on identifying links between commits and bugs. These
include work on empirical study of software changes [21],
[29], bug prediction [14], [22], and bug localization [17],
[20], [27]. All of these studies employ a keyword-based
approach to infer commits that correspond to bug fixes,
typically relying on the occurrence of keywords such as
“bug” or “fix” in the commit log. Some studies also try to
link software repositories with a Bugzilla by the detection
of a Bugzilla number in the commit log. Unfortunately these
approaches are not sufficient for our setting because:

1) Not all bug fixing commit messages include the words
“bug” or “fix”; indeed, commit messages are written
by the initial contributor of a patch, and there are few
guidelines as to their contents.

2) Linux development is mostly oriented around mailing
lists, and thus many bugs are found and resolved
without passing through Bugzilla.

A similar observation was made by Bird et al. [4], who
performed an empirical study that showed bias could be in-
troduced due to missing linkages between commits and bugs.

In view of the above limitations, there is a need for a
more refined approach to automatically identify bug fixing
patches. In this work, we perform a dedicated study on bug
fixing patch identification in the context of the Linux kernel.
The results of our study can also potentially benefit studies
that require the identification of bug fixes from commits.
We propose a combination of text analysis of the commit
log and code analysis of the change description to identify
bug fixing patches. We use an analysis plus classification
framework which consists of:

1) The extraction of basic “facts” from the text and code
that are then composed into features.

2) The learning of an appropriate model using machine
learning and its application to the detection of bug
fixing commits.

In a typical classification task, appropriately labeled train-
ing dataset is available. However this is not the case in
our setting. For positive data, i.e., bug fixing patches, we
can use the patches that have been applied to previous
Linux longterm versions, as well as patches that have been
developed based on the results of bug-finding tools. There
is, however, no corresponding set of independently labeled
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negative data, i.e., non bug fixing patches. To address this
problem, we propose a new approach that integrates ranking
and classification.

We have tested our approach on commits from the Linux
kernel code repository, and compare our results with those
of the keyword-based approach employed in the literature.
We can achieve similar precision with improved recall; our
approach’s precision and recall are 0.537 and 0.900 while
those of the keyword based approach are 0.519 and 0.588.
Our contributions are as follows:

1) We identify the new problem of finding bug fixing
patches to be integrated into a Linux “longterm” re-
lease.

We propose a new approach to identifying bug fixing
patches by leveraging both textual and code features.
We also develop a suitable machine-learning approach
that performs ranking and classification to address the
problem of unavailability of a clean negative dataset
(i.e., non bug-fixing patches).

We have evaluated our approach on commits in Linux
and show that our approach can improve on the
keyword-based approach by up to 53.19% in terms of
recall while maintaining similar precision.

2)

3)

Section II provides more information on Linux longterm
and stable kernels. Section III gives an overview of our bug
fixing patch identification framework. Section IV describes
the data acquisition and feature extraction processes. Sec-
tion V describes the learning and application of discrimina-
tive models to detect bug fixing patches. Our experiments
are discussed in Section VI. We discuss interesting issues in
Section VII. Related work is presented in Section VIII. We
conclude and discuss future work in Section IX.

II. LINUX LONGTERM AND STABLE KERNELS

The Linux operating system is widely used across the
computing spectrum, from embedded systems, to desktop
machines, to servers. From its first release in 1994 until
the release of Linux 2.6.0 in 2003, two versions of the
Linux kernel were essentially maintained in parallel: stable
versions for users, receiving only bug-fixing patches over a
number of years, and development versions, for developers
only, receiving both bug fixes and new features. Since the
release of Linux 2.6.0, there has been only a single version,
which we refer to as the mainline kernel, targeting both
users and developers, which includes both bug fixes and
new features as they become available. Since 2005, the rate
of these releases has been roughly one every three months.

The current frequent release model is an advantage for
both Linux developers and Linux users because new fea-
tures become quickly available and can be tested by the
community. Nevertheless, some kinds of users value stability
over support for new functionalities. Nontechnical users may
prefer to avoid frequent changes in their working environ-
ment, while companies may have a substantial investment in
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Figure 1. Various kinds of patches applied to the stable kernels 2.6.20

and 2.6.27 and to the mainline kernel in the same time period

software that is tuned for the properties of a specific kernel,
and may require the degree of security and reliability that a
well-tested kernel provides. Accordingly, Linux distributions
often do not include the latest kernel version. For example,
the current stable Debian distribution (squeeze) and the
current Ubuntu Long Term Support distribution (lucid) rely
on the Linux 2.6.32 kernel, released in December 2009. For
industrial users, the same kernel is at the basis of Suse
Enterprise Linux, Red Hat Enterprise Linux and Oracle
Unbreakable Linux.

In recognition of the need for a stable kernel, the Linux
development community maintains a “stable” kernel in par-
allel with the development of the next version, and a number
of “longterm” kernels that are maintained over a number of
years. For simplicity, in the rest of this paper, we refer to
all of these as stable kernels. Stable kernels only integrate
patches that represent bug fixes or new device identifiers, but
no large changes or additions of new functionalities." Such a
strategy is possible because each patch is required to perform
only one kind of change.? Developers and maintainers may
identify patches that should be included in the stable kernels
by forwarding the patches to a dedicated e-mail address.
These patches are then reviewed by the maintainers of the
stable kernels before being integrated into the code base.

Figure 1 compares a very conservative approximation of
the number of bug-fixing patches accepted into the mainline
kernel (left, solid bars) with the number of patches accepted
into the stable kernels Linux 2.6.20, maintained between
February 2007 and August 2007, and Linux 2.6.27, main-
tained between October 2008 and December 2010 (right,
open bars). Bug-fixing patches are approximated as those
where the log message mentions a bug-finding tool (Coc-
cinelle [23], Smatch,’ or Coverity4) or where it mentions

inux-2.6.39/Documentation/stable_kernel_rules.txt
2linux-2.6.39/Documentation/SubmittingPatches.txt
3http://smatch.sourceforge.net/
“http://www.coverity.com/
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on bug-finding tools in the mainline kernel outstripped the
number of patches integrated into the stable kernel. Indeed,
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of the considered time periods. While it is ultimately the
stable kernel maintainers who decide whether it is worth
including a bug-fixing patch in a stable kernel, the very
low rate of propagation of the considered types of bug-
fixing patches from the mainline kernel to the stable kernels
suggests that automatic identification of bug-fixing patches
could be useful.
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Figure 2.

III. OVERALL FRAMEWORK

Our approach is composed of the following steps: data ac-
quisition, feature extraction, model learning, and bug-fixing
patch identification. These steps are shown in Figure 2.

The data acquisition step extracts commits from Linux
code repository. Some of these commits represent bug fixing
patches while others do not. Not all bug fixing patches are
well marked in Linux code. Furthermore, many of these bug
fixes are not recorded in Bugzilla. Thus, they are simply
hidden in the mass of other commits that do not perform bug
fixing. Non bug fixing commits may perform code cleaning,
feature addition, performance enhancement, etc.

The feature extraction component then reduces the dataset
into some potentially important facets. Each commit con-
tains a textual description along with code elements that are
changed by the commit. The textual description can provide
hints whether a particular commit is fixing a bugs or is
it only trying to clean up some bad coding style or poor
programming practice. Code features can also help identify
the kind of patch. Many bug fixes involve a change at a
single location, while many non-bug fixing commits involve
substantially more lines of code. To obtain a good collective
discriminative features we need to leverage both text and
code based features.

Next, the extracted features are provided to a model learn-
ing algorithm that analyzes the features corresponding to bug
fixing patches and tries to build a model that discriminates
bug fixing patches from other patches. Various algorithms
have been proposed to learn a model given a sample of
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its behavior. We consider some popular classification algo-
rithms (supervised and semi-supervised) and propose a new
framework that merges several of them. The final step is the
application of our model to the unlabeled data to obtain a
set of bug fixing patches.

A challenge in our work is to obtain adequate training
data, consisting of known bug fixing patches and known non
bug fixing patches. For the former, we may use the patches
that have already been applied to Linux stable versions, as
well as patches that are derived from the use of bug finding
tools or that refer to Bugzilla. But there is no comparable
source of labeled non bug fixing patches. Accordingly, we
propose a hybrid machine learning algorithm, that first uses
a ranking algorithm to identify a set of patches that appear
to be quite distant from the set of bug fixing patches. These
patches are then considered to be a set of known non
bug fixing patches. We then use a supervised classification
algorithm to infer a model that can discriminate bug fixing
from non bug fixing patches in the unlabeled data.

We describe the details of our framework in the following
two sections. In Section IV, we describe our approach
to collect data and to extract features from the collected
data, corresponding to the first two blocks in Figure 2. In
Section V, we describe our new framework that integrates
ranking (via semi-supervised classification) and supervised
classification.

IV. DATA ACQUISITION & FEATURE EXTRACTION
A. Data Acquisition

Linux development is managed using the version control
system git.> Git makes available the history of changes that
have been made to the managed code in the form of a
series of patches. A patch is a description of a complete
code change, reflecting the modifications that a developer
has made to the source code at the time of a commit. Figure
3 shows an example. A patch consists of two sections: a log
message, followed by a description of the code changes.
Our data acquisition tool collects information from both
of these sections. The collected information is represented
using XML, to facilitate subsequent processing.

The log message of a patch, as illustrated by lines 1-16
of Figure 3, consists of a commit number (SHA-1 code),
author and date information, a description of the purpose of
the patch, and a list of names and emails of people who
have been informed of or have approved of the patch. The
data acquisition tool collects all of this information.

The change description of a patch, as illustrated by lines
17-29 of Figure 3, appears in the format generated by
the command diff, using the “unified context” notation
[18]. A change may affect multiple files, and multiple code
fragments within each file. For each modified file, the diff
output first indicates the file name (lines 17-20 of Figure 3)

Shttp://git-scm.com/



commit 45d787b8a9%946313b73e8a8fc5d501c%aeal3d8847
Author: Johannes Berg < johannes.berg@intel.com>
Date: Fri Sep 17 00:38:25 2010 +0200

wext: fix potential private ioctl memory content leak

NelieBEN e R R e O R

When a driver doesn’t fill the entire buffer, old
heap contents may remain, ...

Reported-by: Jeff Mahoney <jeffml@suse.com>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
diff --git a/net/wireless/wext.c b/net/wireless/wext.c

index d98ffb7. .6890b7e 100644
-—- a/net/wireless/wext.c

commit df6d02300£f7c2fbd0fbe626d819c8e5237d72¢c62 upstream

Signed-off-by: John W. Linville <linville@tuxdriver.com>

20 +++ b/net/wireless/wext.c

21 @@ -947,7 +947,7 @@ static int ioctl_private_iw_point (. ..
22 } else if (!iwp—>pointer)

23 return —-EFAULT;

24

25 - extra = kmalloc (extra_size, GFP_KERNEL);

26 + extra = kzalloc (extra_size, GFP_KERNEL);

27 if (!extra)

28 return —-ENOMEM;

29

Figure 3. A bug fixing patch, applied to stable kernel Linux 2.6.27

and then contains a series of hunks describing the changes
(lines 21-29 of Figure 3). A hunk begins with an indication
of the affected line numbers, in the old and new versions of
the file, which is followed by a fragment of code. This code
fragment contains context lines, which appear in both the old
and new versions, removed lines, which are preceded by a —
and appear only in the old version, and added lines, which
are preceded by a + and appear only in the new version. A
hunk typically begins with three lines of context code, which
are followed by a sequence of zero or more removed lines
and then the added lines, if any, that replace them. A hunk
then ends with three more lines of context code. If changes
occur close together, multiple hunks may be combined into
one. The example in Figure 3 contains only one hunk, with
one line of removed code and one line of added code.
Given the different information in a patch, our data acqui-
sition tool records the boundaries between the information
for the different files and the different hunks. Within each
hunk, it distinguishes between context, removed, and added
code. It does not record file names or hunk line numbers.

B. Feature Extraction

1) Analysis of the Text: A commit log message describes
the purpose of the change, and thus can potentially provide
valuable information as to whether a commit represents
a bug fix. To mechanically extract information from the
commit logs, we represent each commit log as a bag of
words. In these words, we perform stop-word removal
and stemming [19]. Stop words, such as, “is”, “are”,
“am”, “would”, etc, are used very frequently in almost all
documents, and thus they provide little discriminative power.
Stemming reduces a word to its root; for example, “writing”
and “writes”, could all be reduced to “write”. Stemming
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groups together words that have the same meaning but only
differ due to some grammatical variations. This process can
potentially increase the discriminative power of root words
that are good at differentiating bug fixing patches from
other commits, as more commits with logs containing the
root word and its variants can potentially be identified and
associated together after stemming is performed.

At the end of this analysis, we represent each commit as a
bag of root words. We call this information the fextual facts
that represent the commit.

2) Analysis of the Code: To better understand the effect
of a patch, we have also incorporated a parser of patches
into our data acquisition tool [24]. Parsing patch code is
challenging because a patch often does not represent a
complete, top-level program unit, and indeed portions of
the affected statements and expressions may be missing, if
they extend beyond the three lines of context information.
Thus, the parsing is necessarily approximate. The parser is
independent of the line-based — and + annotations, only
focusing on the terms that have changed. In the common
case of changes in function calls, it furthermore detects argu-
ments that have not changed and ignores their subterms. For
example, in the patch in Figure 3, the change is detected to
involve a function call, i.e. to kmalloc, which is replaced
by a call to kzalloc. The initialization of extra is not
included in the change, and the arguments to kmalloc and
kzalloc are detected to be identical.

Based on the results of the parser, we collect the numbers
of various kinds of constructs such as loops, conditionals,
and function calls that include removed or added code. We
call these the code facts that represent the commit.

3) Feature Engineering: Based on the textual and code
facts extracted as described above, we pick interesting
features that are compositions of several facts (e.g., the
difference between the number of lines changed in the minus
and plus hunks, etc.). Table I presents some features that
we form based on the facts. Features F; to Fio are those
extracted from code facts. The other features (i.e., features
F53-F55 and features Wy to W,,) are those extracted from
textual facts.

For code features, we consider various program units
changed during a commit including, files, hunks, loops,
ifs, contiguous code segments, lines, boolean operators, etc.
For many of these program units, we consider the number
of times they are added or removed; and also, the sum
and difference of these numbers. Our initial investigation
suggests that often bug fixing patches, and other commits
(e.g., feature additions, performance enhancements, etc)
have different value distributions for these code features.

For text features, we consider stemmed non-stop words
appearing in the logs as features. For each feature corre-
sponding to a word, we take its frequency (i.e., number
of times it appears in a commit log) as its corresponding
feature value. We also consider two composite families of



Table I
EXTRACTED FEATURES

ID Feature

F1 Number of files changed in a commit.

F> Number of hunks in a commit.

F3 #Loops Added

Fy #Loops Removed

Fs |F5 - Fy|

F(; F: 3+ F4

Fy Fi3 > Fig

Fs — Fio Similar to F3 to F7 for #Ifs

Fi13 — Fi7 Similar to F3 to F% for #Contiguous code segments

Fi1g — Fao Similar to F3 to F7 for #Lines

Fo3 — Fao7 Similar to F3 to F7 for #Character literals

Fog — F3o Similar to F3 to F% for #Paranthesized expressions

F33 — F37 Similar to F3 to F%7 for #Expressions

F38 — Fyo Similar to F3 to F% for #Boolean operators

Fy3 — Fu7 Similar to F3 to F% for #Assignments

Fyg — F59 Similar to F3 to F7 for #Function calls

Fs3 One of these words exists in the commit log {robust,
unnecessary, improve, future, anticipation, superfluous,
remove unused}

Fsq One of these words exists in the commit log {must,
needs to, remove, has to, don’t, fault, error, have to,
need to}

Fs5 The word “warning” exists in the commit log

Wi to Wy, Each feature represents a stemmed non-stop word in the

commit log. Each feature has a value corresponding to
the number of times the word appears in the commit
(i.e., term frequency).

words each conveying a similar meaning: one contains words
that are likely to relate to performance improvement, feature
addition, and clean up; another contains words that are likely
to relate to a necessity to fix an error. We also consider the
word “warning” (not stemmed) as a separate textual feature.

V. MODEL LEARNING & BUG FIX IDENTIFICATION
A. Model Learning

We propose a solution that integrates two classification
algorithms: Learning from Positive and Unlabeled Examples
(LPU) [16]® and Support Vector Machine (SVM) [9].
These learning algorithms take in two datasets: training and
testing, where each dataset consists of many data points.
The algorithms each learn a model from the training data
and apply the model to the test data. We first describe the
differences between these two algorithms.

LPU [16] performs semi-supervised classification [7],
[40]. Given a positive dataset and an unlabelled dataset, LPU
builds a model that can discriminate positive from negative
data points. The learned model can then be used to label
data with unknown labels. For each data point, the model
outputs a score indicating the likelihood that the unlabeled
data is positive. We can rank the unlabeled data points based
on this score.

SVM on the other hand performs supervised classification.
Given a positive dataset and a negative dataset, SVM builds
a model that can discriminate between them. While LPU
only requires the availability of datasets with positive labels,

Shttp://www.cs.uic.edu/ liub/LPU/LPU-download.html
7http://svmlight.joachims.org/
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Figure 4. Model Learning

SVM requires the availability of datasets with both positive
and negative labels.

LPU tends to learn a weaker discriminative model than
SVM because it takes in only positive and unlabeled data,
while SVM is able to compare and contrast positive and
negative data. To be able to classify well, we propose to
combine LPU and SVM. First, we use LPU to rank how far
an unlabeled data point is from the positive training data.
For this, we sort the data points based on their LPU scores
(in descending order), indicating the likelihood of a data
point being positive. The bottom £ data points, where k is
a user-defined parameter, are then taken as a proxy for the
negative data. These negative data along with the positive
data are then used as the input to SVM. The steps in our
model learning process are shown in Figure 4.

In the problem of identifying bug fixing patches, each
data point is a commit. We have a set of positive data
points, i.e., bug fixing patches, and a set of unlabeled data
points, i.e., arbitrary commits. We first apply LPU to sort
commits such that bug fixing patches are listed first and
other patches, which may correspond to innocuous changes,
performance improvements or feature additions, are listed
later. According to this ordering, the bottom k& commits are
likely to be non-bug fixing patches. We then take the bottom
k commits to be a proxy of a dataset containing non-bug
fixing patches. We use the original bug fixing patch dataset
and this data to create a model using SVM.

B. Bug Fix Identification

Once we have learned the model, for bug fix identification,
we apply the same feature extraction process to a test dataset
with unknown labels. We then represent this test dataset by a
set of feature values. These feature values are then fed to the
learned model as described in Section V-A. Based on these
features, the model then assigns either one of the following
two labels to each commit: bug-fixing or non bug-fixing.

VI. EXPERIMENT

We first describe the datasets used for our evaluation,
and then present a number of research questions. Then we
present experimental results that answer these questions.



Table II
PROPERTIES OF THE CONSIDERED BLACK DATASETS. LOC (LINES OF
CODE) INCLUDES BOTH THE LOG AND THE CHANGED CODE.

Source Dates # patches LOC
Stable 2.6.20  02.2007-08.2007 409 29K
Stable 2.6.27  10.2008-12.2010 1534 116K
Coverity 05.2005-06.2011 478 22K
Coccinelle 11.2007-08.2011 825 54K
Smatch 12.2006-08.2011 721 31K
Bugzilla 08.2005-08.2011 2568 275K
A. Dataset

Our algorithm requires as input “black” data that is known
to represent bug-fixing patches and “grey” data that may or
may not represent bug-fixing patches. The “grey” data may
contain both “black” data and “white” data (i.e., non bug-
fixing patches).

As there is no a priori definition of what is a bug-fixing
patch in Linux, we have created a selection of black data sets
from varying sources. One source of black data is the patches
that have been applied to existing stable versions. We have
considered the patches applied to the stable versions Linux
2.6.20,% released in February 2007 and maintained until Au-
gust 2007, and Linux 2.6.272 released in October 2008 and
maintained until December 2010. We have taken only those
patches that include C code, and where this code is not in
the Documentation section of the kernel source tree. Another
source of black data is the patches that have been created
based on the use of bug finding tools. We consider uses
of the commercial tool Coverity,'” which was most actively
used prior to 2009, and the open source tools Coccinelle [23]
and Smatch,'" which have been most actively used since
2008 and 2009, respectively [25]. The Coverity patches are
collected by searching for patches that mention Coverity in
the log message. The Coccinelle and Smatch patches are
collected by searching for patches from the principal users
of these tools, which are the second author of this paper
and Dan Carpenter, respectively. The Coccinelle data may
contain both bug fixes and simple refactorings. The Coverity
and Smatch patches should contain only bug fixes. All three
data sets are taken from the complete set of patches between
April 2005 and August 2011. Our final source of black data
is the set of patches that mention Bugzilla, taken from the
same time period. Table II summarizes various properties of
these data sets.

The grey data is taken as the complete set of patches
that have been applied to the Linux kernel between versions
2.6.20 and 2.6.26. To reduce the size of the dataset, we
take only those patches that can apply without conflicts to

8http://www.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.20.y
9http://www.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.27.y
1Ohttp://www.coverity.com/

http://smatch.sourceforge.net/
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Table III
PROPERTIES OF THE CONSIDERED GREY DATASET, BY LINUX VERSION.

Source Dates # patches
2.6.20-2.6.21  02.2007-04.2007 3415
2.6.21-2.6.22  04.2007-07.2007 3635
2.6.22-2.6.23  07.2007-10.2007 3338
2.6.23-2.6.24  10.2007-01.2008 4639
2.6.24-2.6.25  01.2008-04.2008 6110
2.6.25-2.6.26  04.2008-07.2008 5069

the Linux 2.6.20 code base. Table III summarizes various
properties of the data sets.

B. Research Questions

Our study addresses the following four research questions
(RQI-RQ4). In RQI, we investigate the effectiveness of
our approach. Factors that influence its effectiveness are
investigated in RQ2 and RQ3. Finally, RQ4 investigates the
benefit of our hybrid classification model.

RQ1: Does our approach identify bug fixing patches as
well as the existing keyword-based method? To evaluate
the effectiveness of our approach as compared with existing
keyword-based methods, we consider the following criteria:

Criterion 1: Precision and Recall on Sampled Data. We
randomly sample 500 commits and manually label each as
a bug fix that could go to stable or not. We then compare
the human-assigned labels with the labels assigned by each
bug fix identification approach, and compute the associated
precision and recall [19].

Criterion 2: Accuracy on Known Black Data. We take
commits that have been identified by Linux developers as
bug fixing patches and split this dataset into 10 equal sized
groups. We train on 9 groups and use one group to test. We
evaluate how many of the bug fixing patches are correctly
labeled. The process is iterated 10 times. For each iteration
we compute the number of bug fixing patches that are
correctly identified (we refer to this as accuracy”!°¥) and
report the average accuracy.

The goal of the first criterion is to estimate the accuracy
of our approach on some sampled data points. One of
the authors is an expert on Linux development and has
contributed many patches to Linux code base. This author
manually assigned labels to the sampled data points. The
goal of the second criterion is to address the experimenter
bias existing in the first criteria. Unfortunately, we only have
known black data. Thus, we evaluate our approach in terms
of its accuracy in labeling black data as such.

RQ2: What is the effect of the parameter k on the results?
Our algorithm has one parameter, k, which specifies the
number of bottom ranked commits that we take as a proxy
of a dataset containing non-bug fixing patches. As a default
value in our experiments, we fix k£ to be 0.9 x the number



of “black” data that are known bug fixing patches. We vary
this number and investigate its impact on the result.

RQ3: What are the best features for discriminating if a
commit is a bug fixing patches? Aside from producing a
model that can identify bug fixing patches, we are also
interested in finding discriminative features that could help
in distinguishing bug fixing patches and other commits. We
would like to identify these features out of the many textual
and code features that we extract from commits.

We create a clean dataset containing all the known black
data, the manually labeled black data, and the manually
labeled white data. We then compute the Fisher score [10]
of all the features that we have. Specifically, we compute a
variant of the Fisher score reported in [8] and implemented
in LibSVM'2. The Fisher score and its variants have been
frequently used to identify important features [6].

RQ4: Is our hybrid approach (i.e., ranking + supervised
classification using LPU+SVM) more effective than a simple
semi-supervised approach (i.e., LPU)? Our dataset only
contains positively labeled data points (i.e., bug fixing
patches). To address this sort of problem, machine-learning
researchers have investigated semi-supervised learning solu-
tions. Many of these techniques still required a number of
negatively labeled data points. However, LPU [16], which is
one of the few semi-supervised classification algorithms with
an implementation available online, only requires positively
labeled and unlabeled data points.

Our proposed solution includes a ranking and a supervised
classification component. The ranking component makes use
of LPU. Thus it is interesting to investigate if the result
of using LPU alone is sufficient and whether our hybrid
approach improves the results of LPU.

C. Experimental Results

We present our experimental results as answers to the four
research questions: RQ1-RQ4.

1) RQI: Effectiveness of Our Approach: We compare
our approach to the keyword-based approach used in the
literature [14], [21]. The result of the comparisons using the
two criteria are discussed below.

Precision and Recall on Sampled Data. Table IV compares
the precision and recall of our approach to those of the
keyword-based approach. Our precision is comparable with
that of the keyword-based approach. On the other hand,
we increase the recall of the keyword-based approach from
0.588 to 0.900; this is an improvement of 53.19%.

To combine precision and recall, we also compute the F-
measure [19], which is a harmonic mean of precision and
recall. The F-measure is often used to evaluate whether an
improvement in recall outweighs a reduction in precision

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools
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Table IV
PRECISION AND RECALL COMPARISON
Approach  Precision  Recall
Ours 0.537 0.900
Keyword 0.519 0.588
Table V
F-MEASURES COMPARISON
Approach F1 F2 F3 F5
Ours 0.673 0.793 0.843 0.877
Keyword 0.551 0.572 0.580 0.585
Improvement  22.05%  38.51% 45.39%  50.07%

(and vice versa). The F-measure has a parameter 3 that mea-
sures the importance of precision over recall. The formula

is:
(B2 + 1) x precision x recall

(82 x precision) + recall

If precision and recall are equally important, /3 is set to one.
This computes what is known as F1. If beta is set higher than
1, then recall is preferred over precision; similarly, if beta
is set lower than 1 then precision is preferred over recall.

In the context of bug fixing patch identification, recall
(i.e., not missing any bug fixing patch) is more important
than precision (i.e., not reporting wrong bug fixing patch).
Missing a bug fixing patch could potentially cause system
errors and even expose security holes.!® For these cases, a
standard IR book [19], recommend setting /3 equal to 3 or
5. Other studies recommend setting 3 to 2 [30].

Table V shows the F-measures for the different values of
(. For all values of 8 our approach has better results than
the keyword-based approach. The F1, F2, F3, and F5 scores
are improved by 22.05%, 38.51%, 45.39%, and 50.07%
respectively.

From the 500 randomly sampled commits, we notice that
a very small number of the commits that are bug fixing
patches reference Bugzilla. Thus identifying these patches
are not trivial. Also, as shown in Table IV, about 40% of
bug fixing patches do not contain the keywords considered
in previous work [14], [21].

Accuracy on Known Black Data. For the given data, our
approach increases accuracy®!°* by 22.4% as compared
to the keyword-based approach, from 0.772 to 0.945. These
results show that our approach is effective in identifying bug
fixing patches as compared to keyword-based approach used
in existing studies.

The known black data is unbiased as we do not label
it ourselves. However, this experiment does not provide any
information about the rate of false positives, as all our known
test data are black.

BRecall is more important in other related settings. Manning et al.
describe scenarios where recall is more important than precision, e.g.,
paralegals and intelligence analysts potentially looking for violations of
a legal clause or for terrorists [19].



Table VI
EFFECT OF VARYING kK ON PERFORMANCE. TP = TRUE POSITIVE, FN =
FALSE NEGATIVE, FP = FALSE POSITIVE, TN = TRUE NEGATIVE.

k TP FN FP TN  Prec. Recall F2

075 156 4 206 134 0431 0975 0.778
0.80 152 8 186 154 0450 0.950 0.777
0.85 149 11 165 175 0475 0.931 0.781
090 144 16 124 216  0.537  0.900 0.793
095 117 43 84 256 0.582  0.731 0.696

The high accuracy of the keyword-based approach is due
to the large number of Bugzilla patches in the clean bug
fixing patch dataset. In practice, however, most bug fixing
patches are not in Bugzilla — these bug fixing patches are
hidden in the mass of other non bug fix related commits.

2) RQ2: Effects of Varying Parameter k: When we vary
the parameter k, as a proportion of the amount of “black”
data, the number of false positives and false negatives
changes. The results of our experiments with varying values
for k is shown in Table VI.

As we increase the value of k& the number of false
negatives (FN) increases, while the number of false positives
(FP) decreases. Indeed, as we increase the value of k, the
“pseudo-white” data (i.e., the bottom k& commits in the sorted
list after ranking using LPU) gets “dirtier” as more “black”
data are likely to be mixed with the “white” data in it. Thus
more and more “black” data are wrongly labeled as “white”
(i.e., an increase in false negatives). However, the white
data are still closer to the “dirty” “pseudo-white” data than
to the black data. Also, more and more borderline “white”
data are “closer” to the “dirtier” “pseudo-white” data than
before. This reduces the number of cases where “white” data
are labeled “black”™ (i.e., a reduction in false positives). We
illustrate this in Figure 5.

3) RQ3: Best Features: From the bug reports, we extract
thousands of features corresponding to the presence or
absence of words in commit logs and the various code facts.
We report the top 20 features sorted based on their Fisher
scores in Table VII.

We note that among the top-20 features there are both
textual and code features. This highlights the usefulness of
combining both textual features in commit logs and code
features in changed code to predict bug fixing patches. We
notice however that the Fisher score is low (the highest
possible value is 1), which highlights that one feature
alone is not sufficient to discriminate positive from negative
datasets (i.e., bug fixing patches versus other commits).

Some keywords used in previous approaches [14], [21],
[29], e.g., fix, bugzilla, etc., are also included in the top-
20 features. Due to tokenization some of these features
are split into multiple features, e.g., http, bug.cgi, and
bugzilla.kernel.org. The word blackfin, which is the name
of a family of microprocessors, is in the top 20 as many
commits containing this keyword are non bug fixing patches.
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As k increases the pseudo white data gets dirtier.

e

K=0.8
K=0.7
Pseudo Pseudo
White——White—— 0
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B Non Bug Fixing Patch

A Bug Fixing Patch

Figure 5.  Effect of Varying k. The pseudo white data is the bottom
k commits that we treat as a proxy to non bug fixing patches. The three
boxes, corresponding to pseudo white (2 of them) and black data, represent
the aggregate features of the respective pseudo-white and black data in our
training set, respectively. The squares and triangles represent test data points
whose labels (i.e., bug fixing patches or not) are to be predicted.

Table VII
ToP-20 MOST DISCRIMINATIVE FEATURES BASED ON FISHER SCORE

Rank  Feature Desc. Fisher Score
1 http 0.032
2 bug.cgi 0.022
3 blackfin 0.021
4 show 0.019
5 bugzilla.kernel.org 0.015
6 fix 0.015
7 commit 0.014
8 F1g (i.e., # lines removed) 0.014
9 upstream 0.013
10 id 0.012
11 Fyo (i.e., # lines added & removed) 0.011
12 unifi 0.011
13 F3g (i.e., # boolean operators removed) 0.010
14 Fyy (ie., # assignments removed) 0.010
15 checkpatch 0.010
16 spell 0.010
17 Fye (i.e., # assign. removed & added) 0.009
18 F37 (i.e., # boolean operators added) 0.009
19 Fg (i.e., # loops added & removed) 0.008
20 Fyg (i.e., # function calls added) 0.008

Many other features in the list are code features; these
include the number of times different program elements
are changed by a commit. The most discriminative code
element is the number of lines of code being deleted (ranked
8th). Next come features such as the number of lines
added and deleted (ranked 11th), the number of boolean
operators added (ranked 13th), the number of assignments
removed (ranked 14th), the number of assignments added
and removed (ranked 17th), the number of boolean opera-
tors added (ranked 18th), the number of loops added and
removed (ranked 19th), and the number of function calls
made (ranked 20th).



Table VIII
COMPARISONS WITH LPU.
PREC. = PRECISION, ACC. = ACCURACYBlack

Approach Prec. Recall F1

Ours 0.537  0.900 0.673

LPU Only 0.563  0.281 0.375

Improvement  -4.5% 219.9%  79.4%
Approach F2 F3 F5 Acc.
Ours 0.793 0.843 0.877 0.944
LPU Only 0.313 0.296 0.287 0.942
Improvement  153.7%  184.7% 2059% 0.2%

4) RQ4: Our Approach versus LPU: We have run LPU
on our dataset and found that the results of using LPU alone
are not good. Results are shown in Table VIII.

The precision of LPU alone is slightly higher than that
of our approach, but the reported recall is much lower. Our
approach can increase the recall by more than 3 times (i.e.,
200% improvement). When we trade off precision and recall
using F-measure, we notice that for all 8 our approach is
better than LPU by 79.4%, 153.7%, 184.7%, and 205.9%
for F1, F2, F3, and F5 respectively.

The accuracy®!®* values of our approach and that of
LPU alone are comparable. Notice that the black data
in accuracy®'** are similar to one another, with many
having the terms Bugzilla, http, etc. The black data in the
500 random sample are more challenging and better reflect
the black data that are often hidden in the mass of other
commits.

The above highlights the benefit of our hybrid approach of
combining ranking and supervised classification to address
the problem of unavailability of negative data points (i.e., the
non bug fixing patches) as compared to a simple application
of a standard semi-supervised classification approach. In our
approach, LPU is used for ranking to get a pseudo-negative
dataset and SVM is used to learn the discriminative model.

VII. DISCUSSION

Threats to Validity. As with other empirical studies there
are a number of threats to the validity of our results.

Threats to internal validity corresponds to the relationship
between the independent and dependent variables in the
study. One such threat in our study is experimenter bias, as
we have personally labelled each commits as a bug fixing
patch or as a non bug fixing patch. This labelling might
introduce some experimenter bias. However, we have tried
to ensure that we label the commits correctly, according to
our experience with Linux code [15], [23], [24]. Also, we
have labelled the commits before seeing the results of our
identification approach, to minimize this bias.

Threats to external validity refers to the generalizability
of the result. We have manually checked the effectiveness
of our approach over 500 commits. Although 500 is not a
very large number, we still believe it is a good sample size.
Past studies, e.g., [1], [5], [38], investigate a similar amount
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of manually labeled data. We plan to reduce this threat
of external validity in the future by investigating an even
larger number of manually labeled commits. We have also
only investigated patches in Linux. Although we analyze one
system, it is large and contains diverse components. Linux is
one of the largest open source project in terms of code size,
number of contributors, and configurations. Thus we believe
that its development is worth study. The size of Linux (LOC)
is indeed larger than the sum of that of systems investigated
in related prior studies, e.g., [38]. We believe our approach
can be easily applied to identify bug fixing patches in other
systems, but leave this to future work.

Threats to construct validity deals with the appropri-
ateness of the evaluation criteria. We use the standard
measures precision, recall, and F-measure [19] to evaluate
the effectiveness of our approach. Thus, we believe there is
little threat to construct validity.

Automated Tuning of k. If there exist manual user labels
on some representative samples of commits, then we can use
this information to automatically tune the value of k. As a
default initial value, k£ could be set as 0.9 x the number
of black data. The performance of a classifier based on this
initial value could be evaluated based on the manual user
labels. k could be reduced or increased to improve recall
and precision on the input representative sample of commits.
The best value of k is one that allows learning from the
most “white” example data points without mixing too many
“black” data points with the “white” ones.

In an additional experiment, we take 250 of the 500
manually labeled commits and use it to fine tune k. The
best value of k to optimize F'1 is again 0.9. For F'2, at
k = 0.9, its score is not much different than that of the
other values of £ in the range of 0.75-0.9 that we try. We
still notice that in terms of F'2, taking either 0.75, 0.8, 0.85,
or 0.9 does not impact F'2 much (less than 0.03 difference).

Benefit of Including Unlabeled Data. Labeling is expensive
and time consuming. On the other hand, unlabeled data can
be obtained easily. As there are many variants of bug fixing
and non bug fixing patches, many labeled data are needed to
characterize all these variants. Producing these labels would
cost much time and effort. Unlabeled data already contain
many different variants of bug fixing and non bug fixing
patches. In this study, we leverage unlabeled data and show
that they can be used to identify bug fixing patches well.

Characteristics of Non-Bug Fixing Patches. From the non-
bug fixing patches that we label and inspect, we notice that
they fall into several categories:

1) Performance enhancement commits. A commit of this
type often tries to make something run faster. Often this
performance issue is not a bug that need to be patched
in a stable version.

2) Code clean up. A commit of this type improves the



structure of the code without changing its semantics, to
make the code easier to read, etc. Stable versions target
users, not developers, so readability is not a priority.
Feature addition or removal. A commit of this type adds
a new feature or remove an old one. Users of stable
versions are likely to find such changes undesirable.
Warnings. Warnings are not errors. The code can still
run well even in the existence of these warnings.
Eliminating such a warning does not fix a bug.

3)

4)

VIII. RELATED WORK

We describe some studies that are related to our approach.
We start with those that are most related, and then consider
some that are marginally related.

Identification of Bug Fixes. A number of studies have
searched for keywords such as “bug” and “fix” in log
messages to identify bug fixing commits [11], [14], [21],
[29]. Our approach, on the other hand, is not based on a fixed
set of keywords. Rather, we automatically infer keywords
that are good at discriminating bug fixing patches from other
commits. Furthermore, we consider not only commit logs,
but also some features extracted from the changes made
to the source code. We then built a discriminative machine
learning model that is used to classify commits as either bug
fixing or not. Experimental results show that our approach
can identify more bug fixing patches with similar precision
but improved recall, as compared to a fixed-keyword based
approach.

Bird et al. have observed that the lack of clearly identified
bug fixing patches itself has caused potential bias in many
prior studies [4]. Thus we believe our approach could not
only benefit Linux stable release maintainers but also help
other studies involving the analysis of bug fixes.

There are two recent studies that are related to ours.
Wu et al. propose ReLink which links bug reports to their
associated commits [38]. ReLink only captures tracked bugs;
bugs described only in mailing lists, etc. are mentioned
as future work. Our work considers a different problem
and does not require the availability of bug reports, which
may be absent or incomplete. Bird er al. propose Linkster
which integrates information from various sources to support
manual link recovery [5]. Our approach is based on machine
learning for more automation.

Studies on Bug Reports. There have been a number of
studies that analyze bug reports [2], [3], [33], [13], [17], [20],
[27], [28], [32], [34], [37]. Similar to these studies we also
analyze textual data found in software artifacts. We focus on
commit logs made by developers while these studies focus
on bug reports made by users.

Bug localization tries to locate methods that are responsi-
ble for a bug given the corresponding bug report [17], [20],
[27]. Bug localization approaches require as input linkages
between code responsible for the bugs and the bug reports.
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Obtaining these linkages is often hard due to poor commit
log comments. Our approach of inferring bug fixing patches
could potentially help infer these links.

Anvik et al. investigate the problem of automatic bug
triaging, which tries to recommend developers suitable to fix
a bug [2]. With more bug fixing patches identified, possibly
a better recommendation of suitable developers could be
made.

Other Studies on Textual Software Engineering Data.
There have been other studies that analyze software and
its related textual artifacts. Closest to our approach, is the
work by Antoniol et al. which analyzes change requests and
classify them as either bugs or enhancements [1]. Change
requests contain text with additional fields such as severity
and are written by ordinary users. Commits considered in
this work contains both text and code. They are written by
experts, but do not include fields such as severity. Thus, the
type of input is different.

There are many other studies. For example, Tan et al. an-
alyze source code comments to find concurrency bugs [35].
Zhong et al. infer program specifications from API doc-
umentation [39]. Gottipati et al. build an effective search
engine over software forum posts [12]. Wang et al. extract
paraphrases of technical terms from bug reports [36]. There
are also a number of techniques that trace requirements
expressed in natural language, including the work of Port
et al. [26], Sultanov et al. [31], etc.

IX. CONCLUSION & FUTURE WORK

Linux developers periodically designate a release as being
subject to longterm support. During the support period, bug
fixes applied to the mainline kernel need to be back ported to
these longterm releases. This task is not trivial as developers
do not necessarily make explicit which commits are bug
fixes, and which of them need to be applied to the longterm
releases. To address this problem, we propose an automated
approach to infer commits that represent bug fixing patches.
Our approach first extracts features from the commits that
describe those code changes and log messages that can
potentially distinguish bug fixing patches from regular com-
mits. A machine learning approach involving ranking and
classification is employed. Experiments on Linux commits
show that we can improve on the existing keyword-based
approach, obtaining similar precision and improving recall
by 53.19%.

In the future, we plan to further improve the accuracy of
our approach. We also plan to apply our approach to work
in bug prediction and related areas that suffer from bias due
to unidentified bug fixes.
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