
LM: A Miner for Scenario-Based Specifications
Tuan-Anh Doan1, David Lo2, Shahar Maoz3, Siau-Cheng Khoo1

1School of Computing, National University of Singapore
2School of Information Systems, Singapore Management University

3Department of Computer Science 3 (Software Engineering), RWTH-Aachen, Germany

doanta@comp.nus.edu.sg, davidlo@smu.edu.sg,
maoz@se.rwth-aachen.de, khoosc@comp.nus.edu.sg

ABSTRACT
We present LM, a tool for mining scenario-based specifi-
cations in the form of Live Sequence Charts, a visual lan-
guage that extends sequence diagrams with modalities. LM
comes with a project management component, a wizard-like
interface to the mining algorithm, a set of pre- and post-
processing extensions, and a visualization module.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Algorithms, Design, Experimentation

Keywords
Specification Mining, Live Sequence Charts, Tool

1. INTRODUCTION
Specification mining [3] aims at extracting behavioral mod-

els of a program under investigation from a set of its ex-
ecution traces. The mined models can assist in program
comprehension, documentation, and debugging tasks, in the
absence of complete and up-to-date specifications. Specifi-
cally, in this paper we present LM, a tool for scenario-based
specification mining [10], where a data mining approach is
used to process a set of execution traces into scenario-based
specifications in the form of Live Sequence Charts (LSC).

LSC [4, 5] is an intuitive yet expressive specification lan-
guage used to represent interactions between system com-
ponents. Roughly, LSC extends industry standard Mes-
sage Sequence Charts (MSC) with existential and universal
modalities. A (universal) LSC consists of two parts, a pre-
chart and a main-chart, and carries the following semantics:
Whenever the events in the pre-chart occur in the specified

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

order, eventually the events in the main-chart must occur
in the specified order. The LSC does not restrict events not
appearing in it to occur or not to occur during a run.

The popularity and intuitive nature of sequence diagrams
as a specification language in general, together with the ad-
ditional unique features of LSC, motivate our choice for the
target formalism of our work.

Based on the LSC semantics, we extract positive and neg-
ative witnesses of an LSC in an input trace. Given an input
trace, our goal is to extract significant LSCs: those with
enough number of positive witnesses and relatively few neg-
ative witnesses. We refer to the former notion as the support
of the LSC and the latter as the confidence of the LSC over
the given trace.

The core mining algorithm is statistically sound and com-
plete: given input traces and thresholds of minimum sup-
port and confidence, we guarantee that all mined LSCs are
significant, and all significant LSCs are mined (see [10]).

LSC mining extends sequential pattern mining [2, 6]. Dif-
ferent from typical sequential pattern mining that mines
from sequences of atomic symbols, LSC mining mines from
an event-trace where each event is a triple consisting of
caller, callee, and the signature of the method being in-
voked. Our output is also not simply a sequence of symbols,
but rather a modal sequence chart obeying the semantics of
LSC.

In order to make the result more useful with the help
of input from the engineer, LM provides, in addition to its
core mining, a set of pre- and post-processing features –
user-defined filters and abstractions – optionally used before
and after the mining is performed. Some pre- and post-
processing functions are embedded into the mining process
to accelerate it and to remove uninteresting search spaces.
Others aim at allowing the engineer to customize the mining
results to the needs of the specific task at hand. For example
to let the engineer define events that the miner should ignore
although they do appear in the raw traces captured from the
system under analysis or group the mined LSCs into sets
representing corresponding class-level LSCs (see [8]).

It is important to note that scenario-based approach to
modeling, in general, does not aim at providing complete
systems’ specifications. Rather, the strength of the scenario-
based approach to modeling is that it allows the specifier to
break up a specification into pieces of behavior or scenarios,
each of which cuts across multiple objects.

The success of any software engineering technique in gen-
eral and of specification mining in particular depends not
only on its solid theoretical foundations but also on its ac-

319

Figure 1: A screen dump from LM

cessibility to engineers. Specifically, in scenario-based spec-
ification mining, a scalable implementation with acceptable
performance and an intuitively usable interface to define the
mining goals and explore the mining results are critical to
the future adaptation of our approach in industrial settings.
LM indeed tries to address these challenges.

We have used LM to perform a number of case studies,
the results of which can be found in [1]. Below we give an
overview of the tool.

2. OVERVIEW OF LM
LM is implemented in C# and is currently a stand-alone

application. A screen dump from the user interface of LM
is shown in Fig. 1. Typical usage follows four phases:

1. Trace upload
2. Basic mining (with or without pre-processing options)
3. Post-processing
4. Results exploration and visualization

Mining tasks are organized into projects, each of which
may include a number of execution traces. The result of var-
ious mining and post-processing operations are stored inside
the project, which can be saved and loaded later for further
work.

2.1 Input Traces
LM is agnostic to the language the program under analysis

is written in. Thus, engineers may use existing instrumenta-
tion tools to collect traces, e.g., AspectJ for Java, AspectC
for C, Valgrind for binary C, JRAT for Java byte code etc.
After a program is instrumented, it could be executed and
a trace or a set of traces is collected. The engineer uploads
the traces into a project in LM.

2.2 Mining & Post-Processing
Once a trace set is uploaded into a project, it can be

mined. Setting the parameters for the mining process is
done using a wizard-like interface. The basic settings that
the engineer must provide consist of the minimum thresholds
of support and confidence. Various advanced settings for
pre-processing options can be set too.

The results of the mining are saved within the project, and
can be further analyzed using the various post-processing

extensions. The results of separate mining sessions over the
same trace or set of traces are stored under the same project.

2.3 Exploring the Mining Results
The mining results consist of a set of LSCs, annotated

with their support and confidence metric values over the
input traces. As typically many scenarios are mined, a sim-
ple textual representation of the results is not very useful.
We thus follow a details-on-demand approach and allow the
engineer to explore the mining results at two levels.

First, we show a table, listing the mined LSCs and their
metric values. In addition to the support and confidence
metric values, this high-level view of the results shows how
many objects participated in the interaction described by
each of the mined LSCs.

Second, the engineer may drill-down for more details on
a selected scenario, by opening up a visual representation
of the selected chart. This takes advantage of the intuitive
visual syntax of LSCs to show the participating objects, the
methods involved, and their orders.

Further exploration of the mining results is available on
the trace itself. For example, in order to look for evidence
of the calculated support and confidence metric values for
a selected mined LSC, the engineer may choose to view the
textual trace with colored highlights showing the positive
and negative witnesses.

3. CONCLUSION
We presented LM, a tool for mining scenario-based speci-

fications in the form of LSC. Further details about LM and
the results of several case studies are available in [1]. Future
work includes the extension of LM with additional scenario-
based mining algorithms from [7, 9].

4. REFERENCES
[1] http://www.comp.nus.edu.sg/˜dlo/lscminer/.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In ICDE, 1995.

[3] G. Ammons, R. Bodik, and J. R. Larus. Mining
Specification. In POPL, 2002.

[4] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45–80, 2001.

[5] D. Harel and S. Maoz. Assert and Negate Revisited:
Modal Semantics for UML Sequence Diagrams.
Software and Systems Modeling, 7(2):237–252, 2008.

[6] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of
iterative patterns for software specification discovery.
SIGKDD, 2007.

[7] D. Lo and S. Maoz. Mining Scenario-Based Triggers
and Effects. In ASE, pages 109–118. IEEE, 2008.

[8] D. Lo and S. Maoz. Specification mining of symbolic
scenario-based models. In PASTE, pages 29–35. ACM,
2008.

[9] D. Lo and S. Maoz. Mining hierarchical scenario-based
specifications. In ASE, 2009.

[10] D. Lo, S. Maoz, and S.-C. Khoo. Mining Modal
Scenario-Based Specifications from Execution Traces
of Reactive Systems. In ASE, 2007.

320

