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Abstract—Links between issue reports and their corresponding
commits in version control systems are often missing. How-
ever, these links are important for measuring the quality of
a software system, predicting defects, and many other tasks.
Several approaches have been designed to solve this problem
by automatically linking bug reports to source code commits
via comparison of textual information in commit messages
and bug reports. Yet, the effectiveness of these techniques is
oftentimes suboptimal when commit messages are empty or
contain minimum information; this particular problem makes
the process of recovering traceability links between commits and
bug reports particularly challenging. In this work, we aim at
improving the effectiveness of existing bug linking techniques by
utilizing rich contextual information. We rely on a recently pro-
posed approach, namely ChangeScribe, which generates commit
messages containing rich contextual information by using code
summarization techniques. Our approach then extracts features
from these automatically generated commit messages and bug
reports, and inputs them into a classification technique that
creates a discriminative model used to predict if a link exists
between a commit message and a bug report. We compared our
approach, coined as RCLinker (Rich Context Linker), to MLink,
which is an existing state-of-the-art bug linking approach. Our
experiment results on bug reports from six software projects
show that RCLinker outperforms MLink in terms of F-measure
by 138.66%.

I. INTRODUCTION

In order to improve the quality of software systems, de-
velopers often allow users and testers submit issue reports in
issue tracking systems, such as JIRA or Bugzilla. Developers
would then work on these issue reports and commit corre-
sponding changes to version control systems, e.g., SVN or
Git. Unfortunately, many issue reports can not be linked to
their corresponding commits for many reasons [4], [3], [49].
However, these missing links are important because they can
be used to support a number of development and research
tasks. For example, these links can be used to find classes that
are most buggy ones by counting the number of bug reports
that are linked to them. Furthermore, these links can be used to
generate high quality defect data (i.e., the number of defects
that affect various classes in a project during its life-time),
which can, in turn, be used to build effective bug prediction
solutions [24], [7], [43], [28], [41], [63], [21].

Due to the importance of these links, a number of past
studies have proposed approaches to recover missing links
between bug reports and their corresponding commits in
version control systems. Wu et al. and Nguyen et al. propose

approaches named ReLink [60] and MLink [47] respectively.
These approaches enumerate a set of potential links and
remove the ones that do not satisfy some criteria defined
based on a set of thresholds. These thresholds are learned by
heuristically enumerating various values based on a training
and/or a validation dataset. A main operation in ReLink and
MLink is the computation of similarity between the textual
contents in commit messages and issue reports. Intuitively,
the more similar the textual contents are the more likely the
commit is to be linked to the issue report. Unfortunately,
many commit messages are empty or contain insufficient
information [39], [19]. This makes it hard for ReLink and
MLink to identify links between bug reports and commits.

In this paper, we propose a novel bug linking approach
that addresses major weaknesses of existing solutions. First,
we rely on rich contextual information for detecting links
between commits and bug reports. We do so by enriching
existing (oftentimes, very short or empty) commit messages
with automatically generated content. We make use of a
recently proposed technique, namely ChangeScribe [15], [36],
which analyzes code changes and generates commit messages
by combining several code summarization techniques. These
automatically generated commit messages capture rich con-
textual information including commits’ intent, summaries of
fine-grained and structural code changes, as well as impact
of committed code changes. Second, differently from past
approaches, we propose a new classification-based technique
to create a discriminative model that can predict if a link exists
between an issue report and a commit. However, it should
be noted that past approaches do not rely on classification
algorithms to establish the links. We coin our approach as
RCLinker, which stands for Rich Context Linker.

We evaluated our proposed approach on 385 bug reports
and 3,249 commits from six software projects: CLI, IO,
Collections, Math, Lang, and CSV. These bug reports were
extracted from the projects’ JIRA bug tracking systems. Our
decision toward using JIRA was mostly based on the fact
that Bissyande et al. found that bug reports extracted from
JIRA tended to be better linked as compared to other bug
tracking systems [5]. We perform ten-fold cross-validation by
omitting some of the links and use RCLinker to predict some
of the omitted links. We then compute precision, recall, and
F-measure of our proposed approach. Aside from evaluating
the effectiveness of our approach, we also compare RCLinker



to MLink, the latest state-of-the-art approach for linking bug
reports to their corresponding commits.

Overall, our work provides the following contributions:
1) We are first to use rich contextual information that

captures intent behind the commits, fine-grained and
structural source code changes, impact of code changes,
and many more, for establishing links between issue
reports and commits;

2) We propose a classification-based approach which ex-
tracts 20 textual and metadata features from a training set
of links to build a discriminative model that can predict if
a link exists between an issue report and a commit. None
of the existing linking approaches is based on a classifier
to tackle this task;

3) We have performed experiments on bug reports from
six software systems. Our experiments demonstrate that
RCLinker outperforms existing state-of-the-art approach
MLink in terms of F-measure by 138.66%.

We organize the rest of the paper as follows. We briefly
discuss background materials used in our work in Section II.
Next, Section III mainly describes our proposed approach. We
evaluate the experimental results in Section IV. Section V
discusses the related work to our study. Finally, we conclude
the paper with some of the directions for the future work in
Section VI.

II. BACKGROUND

In this section, we first describe ChangeScribe, an approach
that can generate commit messages by analyzing code changes.
Next, we describe the classification algorithm that is used in
this paper, namely the random forest algorithm.

A. ChangeScribe

ChangeScribe [15], [36] is an approach for automatic
generation of commit messages, which combines code sum-
marization techniques [25], [45], stereotypes detection [16],
[17], [44], and impact analysis. ChangeScribe extracts and
analyzes the differences between two versions of the source
code, and also performs a commit characterization based on
the stereotype of methods modified, added and removed. The
result is a commit message that provides an overview of
the changes and classifies and describes in detail each of
the changes; the message describes the what and why of a
change using natural language. ChangeScribe also allows
controlling the length of the message by using an impact set-
based heuristic.
ChangeScribe uses change types from the change-set and

fine-grained changes to generate the two parts of the commit
message: general description and detailed description. The
general description characterizes the change-set with a general
overview of the commit, which includes the following: (i)
a phrase describing whether it is an initial commit, (ii) a
phrase describing commits intent, (iii) a phrase indicating class
renaming operations, (iv) a sentence listing new modules, and
(v) a sentence indicating whether the commit includes changes
to properties or internationalization files. Sentences (i) and

(iii)-(v) are generated with ChangeScribe specific templates
[15], and the commits intent in sentence (ii) is based on the
commit stereotypes proposed by Dragan et al. [17].

The second part of the message (i.e., detailed description)
characterizes the changes made to the Java files, and the
changes are organized according to packages. ChangeScribe
describes the class’ goal and its relationships with other
objects, for the case of new and removed files. Moreover,
if an existing file is modified, ChangeScribe describes
the changes for each inserted, modified and deleted code
snippet. ChangeScribe generates descriptive phrases for all
changes at class/method/statement level. For instance, for
added/removed classes, ChangeScribe describes the class
responsibility based on the approach by Hill et al. [25],
and for describing the class signatures ChangeScribe uses
the class stereotypes defined by Moreno et al. [44]. For
modified classes, ChangeScribe generates descriptions for
all the changes at statement level by using fine-grained
source code changes extracted with ChangeDistiller [20]
and fourteen templates aimed at describing structural changes
such as class/method renames, functionality addition/removal,
parameter type change, among others. For example, when a
new method is added, the following sentence is generated: Add
an additional functionality to <Object>. But, if the method
is removed, the resulting sentence is remove functionality
to <Object>. In addition, the descriptions include context
information such as method’s visibility or whether a method is
unused: remove an unused functionality from <Object>. For
each added, removed or modified type (i.e., class), a sentence
is added to describe the impact of the change in two ways:
(i) references to the type in the change set, and (ii) co-lateral
changes triggered when a method was added to or removed
from an existing class.

Because the detailed description of all the changes can lead
to long and superfluous messages, ChangeScribe controls
the length of the messages by using a heuristic, which is
based on impact analysis [15], [36]. In summary, the detailed
description lists only the most representative classes in the
change set, because representative classes contribute more to
the description of the change-set and are more related to the
rationale behind the commit. These classes are defined as the
ones with changes that have high impact on the change-set,
and the threshold for the impact is defined by the developer.

Figure 1 shows examples of commit messages generated
by ChangeScribe for commits of SpringSocial, Apache Solr,
JFreeChart and Retrofit from GitHub.

B. Random Forest

Random forest is an ensemble classification approach that
utilizes several weaker classifiers (i.e., classification algo-
rithms) to create a more powerful classifier. Each weaker
classifier is trained by a decision tree learning algorithm on
a sampled subset of training data. In RCLinker, we combine
random forest with an under-sampling strategy to construct
a prediction model for recovering missing links. We utilize



Regarding describing impact sets, ChangeScribe de-
tects when a change at method level (i.e., method addi-
tion/removal) triggers changes in other classes/methods. For
instance, ChangeScribe’s message for a commit in JFreeChart
repository (http://goo.gl/StXeJS) warns the new method in
LineUtitiles.java triggered changes to the RingPlot
class:

This is a small modifier commit that does not change the
system significantly. This change set is mainly composed
of: 1. Changes to package org.jfree.chart:
1.1. Modifications to TestUtilities.java:
1.1.1. Add javadoc at serialised(Object) method
2. Changes to package org.jfree.chart.util:
2.1. ModiFIcations to LineUtilities.java:
2.1.1. Add a functionality to extend line
The added/removed methods triggered changes to Ring-
Plot class

ChangeScribe also describes the purpose of new classes. For
example, the generated for message for a commit to Retrofit
is the following (http://goo.gl/mmbxzC):

This is a large modifier commit: this is a commit with
many methods and combines multiple roles. This commit
includes changes to internationalization, properties or
configuration files (pom.xml). This change set is mainly
composed of:
1. Changes to package retrofit.converter:
1.1. Add a Converter implementation for simple XML
converter. It allows to: Instantiate simple XML converter
with serializer; Process simple XML converter simple
XML converter from body; Convert simple XML converter
to body
Referenced by: SimpleXMLConverterTest class

The original message is "Add a SimpleXML converter",
and ChangeScribe’s includes details such as the class purpose
(e.g., It allows to ...), implementation details (the class is an
implementation of the Converter interface), and the classes
referencing the new class (impact set).

E. Future Work

Current implementation of ChangeScribe only works with
Git-based repositories, however, we will extend the plugin to
work also with Subversion. ChangeScribe works as a plugin
running on top of Eclipse, which is useful for developers.
However, automatic generation of messages for large number
of commits, for example when Mining Software repositories
(MSR), can benefit researchers. Therefore, future work will be
devoted to implement (i) a command line version and (ii) Ap-
plication Programming Interface (API), which can be used for
large scale studies related to MSR, program comprehension,
evolution and maintenance. We want to improve the quality
of the detailed descriptions by defining more templates, and
detecting refactorings (the refactoring description will be part
of the general description). Finally, ChangeScribe does not
link automatically commits to issue/bug reports in a tracking

system, thus, a following version will augment the commit
message with information from the bug tracking system(s).

IV. CONCLUSION

We introduced ChangeScribe, a tool that implements the
approach for generating commit messages via summarization
of source changes, presented in our previous work [3]. The
evaluation in [3] indicates that ChangeScribe can be useful
as an online assistant to aid developers in writing commit
messages or to automatically generate commit messages when
they do not exist or their quality is low. Therefore Change-
Scribe can assists developers when committing changes to
a repository, by generating an overview of the changes and
classifying/describing in detail each of the changes made
by a developer in the source code. ChangeScribe can be
also used as a tool for (re)documenting history of a system
between adjacent versions, or between non-adjacent versions;
this scenario is useful for evolution/maintenance tasks when
no documentation is available or the quality of the commit
messages is low.
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Figure 1. The three windows in the ChangeScribe Plugin: Preferences window (a) allows developer to set variables such as the impact threshold, and the
author name; Main window (b) is displayed when a developer executes the "Commit" action in the Eclipse GUI; The help window (c) lists stereotypes (method
and commit) and their descriptions.

representative classes contribute more to the description of
the change-set and are more related to the rationale behind the
commit. If change descriptions focus only on classes with high
impact set, detailed descriptions of non-interesting classes can
be removed to reduce description length. In summary, the idea
is to include in the description only the descriptions of classes
with high impact, and the threshold for deciding between high
or low impact is provided by the code owner, i.e., the developer
in charge of the commit should be able to set the threshold
that distinguish representative and non-representative classes.

The impact of a class Ci in the change-set S is computed as
the relative number of methods in the set S−Ci impacted by
any change related to Ci. For instance, the impact value of new
class Ci is the number of methods calling a method/attribute
in Ci over the total of methods in the change set; if Ci is
deleted, the impact value is the number of methods modified
because of Ci deletion over the total of methods in S; or if
there is any change in Ci that generates modifications in the
rest of classes, the impact value is the number of methods
modified in S because of the changes in Ci.

For each class Ci in the change set S, ChangeScribe
computes the impact value, then, the detailed description of a
class is included in the commit message if its impact-value is
greater than or equal to the impact threshold defined by the
software developer. The threshold is set (by demand) in the
Preferences Window (See Figure 1-a).

C. Availability

More information about ChangeScribe can be found on our
webpage3, which contains (i) a video demonstrating its main
features, (ii) link for downloading the eclipse plugin, (iii) link
for downloading and Eclipse bundle with ChangeScribe, (iv)
architecture description, and (v) examples of commit messages
for real commits of Open Source applications. The source code
is also available at GitHub4.

3http://www.cs.wm.edu/semeru/changescribe
4https://github.com/SEMERU-WM/ChangeScribe

D. Usage Example
The underlying approach used by ChangeScribe was evalu-

ate previously [3] with 50 commits of six Open Source projects
(Elastic search, Retrofit, Spring social, JFreeChart, Apache
Felix, Apache Solr). ChangeScribe is able to describe initial
commits and non-initial commits, and generates messages
with important information such as file renames, impact set
of a change, new modules added to the system, removal of
unused functionality, among others. For instance, the following
snippet shows part of a message generated for a commit
(http://goo.gl/IV6aWm) of Apache Solar at GitHub:

This is a state update modifier commit: this change set
is composed only of mutator methods, and these methods
provide changes related to updates of an object’s state.
This change set is mainly composed of:
1. Changes to package org.apache.solr.common.cloud:
1.1. Modifications to ClusterState.java:
1.1.1. Remove an unused functionality to get shard

Although the real commit message is "SOLR-2592:
realtime-get support", ChangeScribe’s is more descriptive and
provided augmented information that helps to understand the
rationale behind the change (i.e., the getShard method at
ClusterState.java was removed because the method
was dead code).

Another example is ChangeScribe’s message for the initial
commit (http://goo.gl/5Igx1s) of Spring Social:

Initial commit. This is a degenerate modifier commit: this
change set is composed of empty, incidental, and abstract
methods. These methods indicate that a new feature is
planned. This commit includes changes to internation-
alization, properties or configuration files (.classpath,
.gitignore, .project, ... ). The commit includes these new
modules:
- facebook
- twitter [...]

The real message is "initial commit", but ChangeScribe’s
includes the commit stereotype and mentions the modules
included in the initial commit.
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1. Changes to package org.apache.solr.common.cloud:
1.1. Modifications to ClusterState.java:
1.1.1. Remove an unused functionality to get shard

Although the real commit message is "SOLR-2592:
realtime-get support", ChangeScribe’s is more descriptive and
provided augmented information that helps to understand the
rationale behind the change (i.e., the getShard method at
ClusterState.java was removed because the method
was dead code).

Another example is ChangeScribe’s message for the initial
commit (http://goo.gl/5Igx1s) of Spring Social:

Initial commit. This is a degenerate modifier commit: this
change set is composed of empty, incidental, and abstract
methods. These methods indicate that a new feature is
planned. This commit includes changes to internation-
alization, properties or configuration files (.classpath,
.gitignore, .project, ... ). The commit includes these new
modules:
- facebook
- twitter [...]

The real message is "initial commit", but ChangeScribe’s
includes the commit stereotype and mentions the modules
included in the initial commit.

a) Initial commit of Spring social
http://goo.gl/5Igx1s 

b) A commit of Apache Solr
http://goo.gl/IV6aWm

c) A commit of JFreeChart
http://goo.gl/StXeJS

d) A commit of RetroFit
http://goo.gl/mmbxzC

Fig. 1. Examples of Commit Messages Generated with ChangeScribe.

the implementation of random forest that is available in Weka
toolkit with default settings [22].

III. PROPOSED APPROACH

This section describes our proposed approach in detail. We
describe the overall framework in Section III-A. Section III-B
describes a list of features that we extract from ChangeScribe
generated and developer-written commit messages, and bug
reports. We describe our strategy to construct a discriminative
model to predict the existence of a link between a commit and
a bug report in Section III-C.
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A. Overall Framework

Figure 2 shows the overall framework of our approach. The
figure depicts the two main phases in RCLinker: Training
Phase and Deployment Phase. The training phase takes as
input a predefined set of issue-commit links. An issue-commit
link is a pair of issue report and commit for which there
exists either a true link (i.e., the commit fixes the issue
report) or false link (i.e., the commit does not fix the issue
report) between them. Figure 3 shows a sample issue report
from CLI. In this work, we are especially interested with the
following fields available for bug reports in JIRA: report date,
last update date, reporter, priority, summary, description, and
a list of comments with the identifiers of the commenters.
The output of the training phase is a prediction model which
is able to discover missing issue-commit links. Next, in the
deployment phase, our approach takes as input the prediction
model constructed in the training phase and a set of unseen
link candidates. Using the prediction model, in the deployment
phase, our approach recovers missing true issue-commit links
from the set of input link candidates. The following paragraphs
describe details of the two phases.

a) Training Phase: The issue-commit links used for
training are created from a set of issues in an issue-tracking
system and a set of commits from a source code repository.
Each link comes with the following information:

1) Metadata and textual description (i.e., summary, descrip-
tion, and comments) of the corresponding issue.

2) Commit messages and source code of the previous and
updated revision of the corresponding commit.

3) A label which indicates whether there is an actual link
between the issue and the commit. If there is a link



Report Date: 31/Jul/09 23:00
Last Update Date: 02/Mar/13 14:19
Reporter: Kristoff Kiefer
Priority: 3 (Major)
Summary: Standard help text will not show mandatory
arguments for first option
Description: The generated help text will not show
“<arg>” for the first argument added ...
Comments:
Commenter: Kristoff Kiefer
Content: Underlying cause is something in OptionBuilder
Commenter: Emmanuel Bourg
Content: Kristoff what version of Commons CLI did you
use? I tried your test case on the trunk and ...

Fig. 3. Issue Report CLI-186 of CLI.

between the issue and commit, the link is labeled as true
link. Otherwise, its label is false link.

In the training phase, there are three major steps. They
are Change Summarization, Feature Extraction, and Model
Learning. In the Change Summarization step, we apply
ChangeScribe [15], [36] to summarize source code changes
in each commit. The automatically generated message output
by ChangeScribe for each commit is then combined with
the developer-written message of the corresponding commit.
After this step, we perform Feature Extraction to retrieve
important characteristics from the training links. The extracted
characteristics are forwarded to the Model Learning step for
constructing a prediction model. The output of this phase is a
model that is capable of recovering missing true links from a
set of unseen link candidates in the deployment phase.

b) Deployment Phase: In the deployment phase, our
approach takes as input the prediction model constructed in the
training phase, and a set of unseen link candidates (i.e., which
are not part of the training set). Link candidates are created by
pairing unlinked commits with all issues in the issue tracking
system. These link candidates are then processed to recover
missing links. In this phase, we also execute ChangeScribe
in the Change Summarization process, and extract important
characteristics from each link candidate in the Features Ex-
traction process. The extracted characteristics (i.e., features)
are then input to the prediction model. Given a set of features
from a link candidate, the prediction model classifies whether
the link candidate is a true link or not. The output of our
approach during the deployment phase is a list of predicted
true links that are recovered from the input link candidates.

B. Feature Extraction

In this section, we describe details of features extracted from
issue-commit links and link candidates. In total, we have 20
features that are divided into two different types: text features
and metadata features. Table II describes the features using the
notations listed in Table I. The following paragraphs describe
these features in more details.

1) Text Features: Intuitively, if a commit and an issue
are linked together, their textual contents are likely to be
similar. Therefore, we extract text features by capturing textual

TABLE I
LIST OF NOTATIONS

Notation Description
Commit Notations

MSG Human-writen commit message
CSMSG Commit message generated by ChangeScribe
CDATE Commit date

Issue Notations
SUM Summary of an issue
DES Description of an issue
PRI Priority of an issue (PRI ∈ {1, 2, 3, 4, 5, 6})

NCOM Number of comments posted in an issue
COMi ith comment in an issue (1 ≤ i ≤ NCOM)

WS(D) Set of distinct words in document D
+ text concatenation operator

RDATE Report date of the issue
UDATE Last updated date of the issue

DATE(COMi) Created date of comment ith in an issue

TABLE II
LIST OF EXTRACTED FEATURES. NOTATIONS SHOWN IN TABLE I ARE

USED TO COMPUTE FEATURE VALUES.
Feature Description

Text Features
T1 cosine(SUM + DES +

∑
COMi,MSG + CSMSG)

T2
average of cosine(Ia,Cb)
(Ia ∈ {SUM,DES,COMi},Cb ∈ {MSG,CSMSG})

T3
max of cosine(Ia,Cb)
(Ia ∈ {SUM,DES,COMi},Cb ∈ {MSG,CSMSG})

T4 T2/T3

T5 T2/T1

T6 |WS(SUM+DES+
∑

COMi)∩WS(MSG+CSMSG)|

T7
|WS(SUM+DES+

∑
COMi)∩WS(MSG+CSMSG)|

|WS(SUM+DES+
∑

COMi)∪WS(MSG+CSMSG)|

T8
|WS(SUM+DES+

∑
COMi)∩WS(MSG+CSMSG)|

|WS(SUM+DES+
∑

COMi)|

T9
|WS(SUM+DES+

∑
COMi)∩WS(MSG+CSMSG)|

|WS(MSG+CSMSG)|

Metadata Features

M1
Number of changed files in the commit that are men-
tioned in the issue text

M2
M1

NCOM+PRI

M3
M3 = 1 if the issue reporter is also the committer.
Otherwise, M3 = 0.

M4
M4 = 1 if the committer posts comments in the issue.
Otherwise, M3 = 0.

M5
M5 = 1 if the commit date is between the report date and
the last updated date of the issue. Otherwise, M5 = 0.

M6 CDATE− RDATE
M7 UDATE− CDATE
M8 M6/M7

M9 min1...NCOM{
∣∣CDATE− DATE(COMi)

∣∣}
M10

∣∣CDATE− DATE(COMNCOM)
∣∣

M11
∣∣CDATE− DATE(COMNCOM-1)

∣∣
similarities (measured in different ways) between issue reports
and commits.

Before computing values of text features, we perform text
preprocessing on the textual contents of issues (i.e., contents
in the summary and description fields, and comments in issue
reports) and commits (i.e., developer-written commit messages
and automatically generated messages by ChangeScribe). The
purpose of the preprocessing is to convert text to its normal-
ized form which maximizes the chance of matching relevant
issues and commits. We perform three text preprocessing
steps, which are text normalization, stop word removal, and



stemming, described below:
1) Text Normalization: In this step, special symbols and

punctuation marks are deleted from the text. Then, the
text is separated into words. If a word follows Camel-
Casing, it is split into separate tokens. We include the
original word and its split tokens into the normalized
text. Including original words helps increase chances of
matching rare identifiers. For example, “bugLinking” is
split to “bug” and “linking”. Next, “bugLinking”, “bug”,
and “linking” are all included in the normalized text.

2) Stopword Removal: In information retrieval (IR), English
stopwords are often excluded from text documents as they
frequently appear in documents and are likely to be less
helpful in retrieving relevant documents. Similarly, in this
step, we also remove English stopwords from normalized
text. These stopwords are frequently used by developers,
and are unlikely to be helpful while recovering missing
links. We use the list of stopwords obtained from [46].

3) Stemming: In this step, we run the Porter Stemming
algorithm [51] to convert words to their root forms.
For example, “linked”, “linkage”, and “linking” are all
transformed to “link”.

After performing text preprocessing, we compute values of
features T1 to T9. Among the nine text features, T1 to T5 are
calculated based on cosine similarities. To find the values of
these features, we represent the corresponding textual contents
of an issue report and a commit as two document vectors
whose dimensions correspond to the number of words in their
contents. We assign a weight to each word by utilizing the
term frequency-inverse document frequency (tf-idf) weighting
scheme. The following is the tf-idf formula of a word w in a
document d of corpus D (i.e., a collection of documents):

tfidf(w, d,D) = f(w, d)× log |D|
|{di ∈ D|w ∈ di|

(1)

In Equation 1, f(w, d) is the number of times word w occurs
in document d, and w ∈ di denotes that the word w appears
in the document di. Using this formula, the cosine similarity
of two documents is calculated based on the cosine similarity
of their corresponding document vectors [40].

T1 captures the cosine similarity between the text in an
issue report (i.e., summary, description, and all comments) and
the text in a commit (i.e., developer-written commit message
and ChangeScribe’s message). If T1 is high, intuitively, the
corresponding issue and commit are likely to be linked with
each other. T2 and T3 are the average and maximum cosine
similarity between the various textual parts of an issue report
and a commit. Similar to T1, T2 and T3 are also good
indicators of textual relevance between an issue report and
a commit. T4 and T5 are normalized forms of T2 with respect
to T3 and T1, respectively.

Different from the first five text features, T6 to T9 are
computed based on the number of common words shared
between the textual contents of an issue report and a commit.
T6 captures the number of shared words between all text
in an issue report and a commit. T7 is the ratio of T6 to

the number of distinct words in the corresponding issue and
commit pair. Similarly, T8 and T9 are the ratio of T6 to
the number of distinct words in the corresponding issue and
commit respectively.

Overall, our textual features measure the likelihood of a link
between issues and commits based on their textual similarities.

2) Metadata Features: There are totally 11 metadata fea-
tures that we extract from issues and commits. Values of these
metadata features are computed based on metadata information
of issues, e.g., report date, last update date, priority, reporter
name, etc., and of commits, e.g., commit date, committer
name, list of changed files, etc.

In particular, M1 captures the relevance between an issue
and a commit based on the number of changed files modified
by the commit that are mentioned in the textual description of
an issue (i.e., in the summary, description, or comments). If
the value of M1 is high, it means more changed files of the
commit are being referred to in the issue report. Hence, higher
M1 is an indication of an existing link between an issue and
a commit. M2 is the ratio of M1 to the sum of the number
of comments and the priority value of an issue, where the
denominator of M2 reflects the importance level of an issue.

Next, M3 and M4 take into account the involvement of a
committer in handling an issue. If a commit is linked with an
issue, its committer likely submits at least one comment to the
issue. In many cases, the reporter of an issue is also assigned
to fix that issue.

Features M5 to M8 capture various relationships between
the time commits are made and their corresponding issues
are created or updated. Intuitively, in most cases, the date
a commit is made and the date its corresponding issue is
submitted or updated should be close to each other. M5 is
a boolean feature that indicates if the commit date is between
the issue report reporting date and its last update date. M6

and M7 are the time difference between the date a commit is
made against the date an issue report is submitted and the last
update date of an issue report, respectively. M8 is the ratio of
M6 to M7.

The last three metadata features, i.e., M9 to M11, are
computed based on the time difference between the date when
a commit is made and the date when a comment of an issue
report is posted. Usually, when a committer submits a fix
for an issue to the repository, he or she is likely to inform
other developers that the issue has been addressed by posting
a comment to that issue. Following this intuition, M9 captures
the minimum absolute time difference between the commit
date and the date when comments for an issue are posted.
Furthermore, unless an issue is not completely resolved, there
are likely to be no or only a few other comments (e.g., a thank
you comment) after the comment informing the fix. To capture
this intuition, for M10 and M11, we compute the absolute time
difference between the commit date and the date the last and
second last comment of an issue are posted, respectively.

Overall, our metadata features capture relationships between
metadata information in commits and issues that can be used
to predict missing links between them.



C. Model Learning

Algorithm 1: Undersampling
Input: T: Set of training links

N: Number of selected nearest neighbors
I: Set of issues of links in T
C: Set of commits of links in T
NNI : Nearest neighbors of issues in I
NNC : Nearest neighbors of commits in C

Output: D: Undersampled set of training links
1 TrueLinks← extract true links from T
2 FalseLinks← extract false links from T
3 foreach tl ∈ TrueLinks do
4 curIssue← tl.issue
5 curCommit← tl.commit
6 nnIssCnt← 0
7 foreach issue ∈ NNI [curIssue] do
8 lc← link of issue and curCommit
9 if lc ∈ FalseLinks ∧ lc /∈ D then

10 include lc to D
11 nnIssCnt← nnIssCnt + 1
12 end
13 if nnIssCnt > N then
14 break
15 end
16 end
17 nnCmtCnt← 0
18 foreach commit ∈ NNC [curCommit] do
19 lc← link of curIssue and commit
20 if lc ∈ FalseLinks ∧ lc /∈ D then
21 include lc to D
22 nnCmtCnt← nnCmtCnt + 1
23 end
24 if nnCmtCnt > N then
25 break
26 end
27 end
28 end
29 Append TrueLinks to D
30 return D

Using the features extracted from the training links, we con-
struct a prediction model, which is capable of differentiating
true links from false links. In particular, we use the Random
Forest algorithm [6] as part of the Model Learning process in
RCLinker (Figure 2).

A problem that makes effective learning of this model hard
is imbalanced training data [27]. Usually, there are fewer
true links than false links in the training links as an issue
is typically only linked to a few commits. For that reason,
we balance the set of training links by using undersampling.
Balancing data not only helps reducing the cost of learning
but also improves the performance of the prediction. In our
undersampling strategy, for each true link, we select a number
of false links whose issues and commits are nearest neighbors

TABLE III
DATASET: COLUMN “#FISSUES” INDICATES THE NUMBER OF FIXED
ISSUES OBTAINED FROM THE ISSUE TRACKING SYSTEMS. COLUMN

“#CHANGES” IS THE NUMBER OF COMMITS EXTRACTED FROM SOURCE
CODE REPOSITORIES. COLUMN “#LINKS” IS THE NUMBER OF TRUE

ISSUE-COMMIT LINKS INDICATED IN THE ISSUE TRACKING SYSTEM (I.E.,
JIRA).

Project #FIssues #Changes #Links Study
Period

CLI 56 410 70 2006–2013
Collections 63 617 102 2012–2013
CSV 49 766 75 2010–2014
IO 65 371 97 2009–2011
Lang 64 648 105 2011
Math 88 437 160 2010
Total 385 3249 609

to the true link in terms of their textual descriptions.
Our undersampling algorithm is shown in Algorithm 1. It

takes as input a set of training links T , the number of selected
nearest neighbors N , the sets of issues and commits of links
in T , as well as their lists of nearest neighbors. The output
of our algorithm is an undersampled set of training links
where the degree of imbalance is proportional to the value
of N . To construct the list of nearest neighbors of an issue
report, we sort the other issue reports in descending order of
the cosine similarities (c.f., Equation 1) between their textual
contents (i.e., summary, description, and comments). Similarly,
for each commit, we sort the other commits in descending
order of the cosine similarities between their textual contents
(i.e., developer-written message and ChangeScribe message)
to generate the list of its nearest neighbors.

In Algorithm 1, at line #3 we enumerate each link labeled
as a true link in the training data. Next, for each true link, lines
#4 to #5, we extract its issue report and commit. Lines #7 to
#16 select issues that are the nearest to the true link’s issue
(i.e., NNI [curIssue]). These issues are then paired with the true
link’s commit to create false links. These false links are then
included in the output set D if they are in the training data and
not part of D yet. We stop this process after we have added
N links to D. Lines #18 to #26 select false links by finding
commits that are the most similar to the commit of the true
link (i.e., NNC [curCommit]). These commits are paired with
the true link’s issue to create false links. These false links are
then included in the output set D if they are in the training
data and not part of D yet. We stop this process after we have
added an additional N links to D. Finally, line #28 merges
the set of true links to the output set D, and our algorithm
returns the undersampled set of links at line #30.

IV. EXPERIMENTAL EVALUATION

A. Dataset

In our experiments, we collected a large number of
issues and commits coming from several Apache soft-
ware projects. The projects included in our evaluation are
Commons CLI [9], Commons IO [12], Commons Collec-
tions [10], Commons Math [14], Commons Lang [13], Com-
mons CSV [11]. All these projects use JIRA1 as the issue

1https://issues.apache.org/jira

https://issues.apache.org/jira 


tracking system. For each project, a study period was chosen
(see Table III), and all the issues and changes that had been
submitted and committed in that study period were included,
respectively. With the collected changes, we executed Change-
Scribe to generate commit messages summarizing all source
code changes. We also collected true links in JIRA. The
number of true links is shown in column “#Links” in Table III.
Noticeably, according to the table, the number of true links
accounts for a small percentage (i.e., less than 1%) over the
number of possible combinations between issues and commits
(i.e., link candidates). Table III also describes other detailed
information of our dataset.

B. Evaluation Metrics

To evaluate the performance of our approach, we computed
Precision, Recall, and F-measure. These metrics are widely
used in machine learning and data mining to assess the
effectiveness of classification algorithms. We estimated the
values of Precision, Recall, and F-measure based on four
statistics: True Positives (TP), False Positives (FP), True
Negatives (TN), False Negatives (FN). Their definitions are
as follows:

True Positives: Number of true issue-commit links that
are predicted correctly.

False Positives: Number of false issue-commit links that
are predicted incorrectly.

True Negatives: Number of false issue-commit links that
are predicted correctly.

False Negatives: Number of true issue-commit links that
are predicted incorrectly

We use the above statistics to estimate Precision, Recall, and
F-measure using the following formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure =
2× Precision×Recall
Precision+Recall

Both Precision and Recall reflect the effectiveness of our
prediction model. According to the above formulas, Precision
is the ratio between the number of true positives over the
number of link candidates that are predicted as true links by
our model. On the other hand, Recall is the percentage of the
number of true positives over the total amount of true links.
Importantly, between Precision and Recall, there is usually
an inverse relation where higher Precision might come with
lower Recall, and vice versa. Thus, F-measure, which is the
harmonic mean of Precision and Recall, is used to combine
the two metrics into one single summary measure.

C. Experimental Settings

Ten-fold cross-validation is a standard way of estimating
the accuracy of a prediction engine in data mining [23]. Its
purpose is to evaluate how the result of a prediction engine

generalizes to an independent test data. In our experiments,
we also conducted ten-fold cross-validation on the set of
issue-commit links to assess the performance of our proposed
approach. Our experiments are performed on a Intel Xeon E5-
2667 server with 189 GB RAM running Linux 2.6 OS.

Furthermore, we observed that most of issue-commit links
labeled by JIRA or other issue tracking systems were explicit
links (i.e., issue IDs were mentioned in commit messages,
or revision IDs were mentioned in issues). In such cases of
explicit links, it was trivial to determine true links between
issues and commits. For that reason, we excluded issue IDs
from commit messages, and vice versa, to ensure that all
the links were implicit in the deployment phase. In our
experiments, we set the number of nearest neighbors N used
for the undersampling process to 5. With this setting, the
number of true links accounts for approximately 9% of the
undersampled training data.

D. Research Questions

a) RQ1: How effective is our proposed approach in
recovering missing traceability links between issues and com-
mitted changes? In this research question, we evaluate the
performance of RCLinker using the dataset, metrics, and set-
tings described earlier. We set the number of selected nearest
neighbors to N = 5.

b) RQ2: How effective is our approach as compared to
other state-of-the-art approaches for detecting issue-commit
links? There are several approaches for recovering missing
issue–commit links where MLink [47] is one of the state-of-
the-art techniques. In this research question, we compare our
approach to MLink. Similarly to RQ1, we also perform ten-fold
cross-validation on our proposed approach as well as MLink.
Finally, we evaluate the two approaches based on the metrics.

c) RQ3: What is the impact of varying the number of
nearest neighbors N on the performance of RCLinker? In this
research question, we investigate the performance of approach
when varying the number of selected nearest neighbors N
in the Algorithm 1 used in Model Learning process (see
Section III-C). By default, we set N = 5 where the number
of true links accounts for approximately 9% of the training
data. When the value of N increases, there are more negative
instances (i.e., false links) included in the training data, and
vice versa. To understand the impact of N , we considered the
values of N ∈ {1, 5, 10, 15, 20} and compared the changes in
the resulting metrics.

d) RQ4: Which of the extracted features best discrimi-
nate true links from the other ones? In this research question,
we examine which of the proposed features (see Table II) are
most helpful in differentiating true links from the other ones.
To do that, we rank the extracted features based on their Fisher
scores. In machine learning, Fisher score is a standard mea-
surement to estimate how discriminative the features are [18].
In software engineering, several studies also employ Fisher
scores to evaluate the importance of features [56], [33], [34],



TABLE IV
RCLINKER: PRECISIONS, RECALLS, AND F-MEASURES

Project Precision Recall F-measure
CLI 45.71% 91.43% 60.95%
Collections 43.32% 92.16% 58.93%
CSV 39.05% 88.00% 54.10%
IO 58.74% 86.60% 70.00%
Lang 57.89% 94.29% 71.74%
Math 60.73% 83.13% 70.18%
Average 50.91% 89.27% 64.32%

[35]. Fisher score of a feature is calculated as follow:

FS(j) =

∑#class
class=1(x̄

(class)
j − x̄j)2∑#class

class=1( 1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄(class)j )2)

(2)
In Equation 2, FS(j) is the Fisher score of the jth feature,
nclass is the number of data points (i.e., number of links)
with label class (i.e., true link or false link), x̄j is the
average value of the jth feature over all data points (i.e.,
links), x̄(class)j is the average value of the jth feature over
all data instances with label class. According to the formula,
if a feature has a Fisher score of zero, that feature is not
discriminative enough to distinguish true links from the other
ones. On the other hand, a feature is very discriminative if
its Fisher score is considerably larger than zero. The more
discriminative a feature is, the more important it is. In this
research question, for each project, we calculate and rank the
features based on their Fisher scores.

E. Experimental Results

1) RQ1 – Effectiveness of Our Approach: In this RQ,
we inspect the performance of our approach on different
projects in the dataset. Table IV shows the Precision, Recall,
and F-measure of our approach. According to the table, our
approach achieves an average Precision, Recall, and F-measure
of 50.91%, 89.27%, and 64.32%, respectively. Among the six
projects, Lang obtains the best F-measure (i.e., 72.90%), and
CSV is the one that has the lowest F-measure (i.e., 41.91%).
Noticeably, our approach has higher Recall as compared to
Precision for all the projects. On average, our approach’s
Recall (i.e., 89.27%) is higher than its Precision (i.e., 50.91%).
We believe recall is more important than precision since
finding true links is important, and not too many links are
generated, and thus developers can quickly inspect the gener-
ated candidate links to remove the false positives.

2) RQ2 – Our Approach vs. the Baseline: In this RQ, we
perform ten-fold cross-validation to compare the performance
of MLink [47] with our approach. In particular, MLink takes
as input a set of issue reports, a set of commits, and four
parameters θp, θn, θt, and θa. Thus, we perform the Hill-
Climbing algorithm for tuning θp, θn, θt, and θa for MLink
(following the description in [47]) in each fold. MLink uses
explicit links mentioned in the commit logs to train a set
of thresholds to infer missing links. In each fold of our
experiment, we inject explicit links into the commit logs
based on the training data. To do that, we labeled commit
messages with issue IDs whose pair forms a training true

TABLE V
MLINK: PRECISIONS, RECALLS, AND F-MEASURES

Project Precision Recall F-measure
CLI 78.57% 31.43% 44.90%
Collections 68.42% 25.49% 37.14%
CSV 30.00% 4.00% 7.06%
IO 34.48% 10.31% 15.87%
Lang 58.06% 17.14% 26.47%
Math 68.89% 19.38% 30.24%
Average 56.40% 17.96% 26.95%

link. Using the tuned parameters, we used MLink to recover
missing links. Table V presents the Precision, Recall, and F-
measure of MLink on recovering missing links in our dataset.
According to the table, MLink achieves an average Precision,
Recall, and F-measure of 56.40%, 17.96%, 26.95%. Among
the projects, CLI has the highest F-measure (i.e., 44.90%),
and CSV has the lowest F-measure (i.e., 7.06%). Comparing
to Table IV, even though MLink has higher average Precision
(i.e., 56.40% vs. 50.91%), RCLinker still outperforms MLink
in terms of average Recall and F-measure by 397.05% and
138.66% respectively. Furthermore, F-measure of RCLinker is
higher than MLink on all the projects. F-measure is a standard
metric that is often used to evaluate if an increase in recall
(precision) outweighs a reduction in precision (recall).

3) RQ3 – Varying Amount of Training Data: In this re-
search question, we varied the value of N in Algorithm 1, and
inspected the impact of N on the effectiveness of RCLinker.
Table VI indicates the average Precision, Recall, and F-
measure when varying N ∈ {1, 5, 10, 15, 20, 25}. According
to the table, RCLinker significantly loses its effectiveness
when N = 1 as compared to the other values of N . At
N = 1, RCLinker achieves a high Recall of 92.34%, but
it loses its effectiveness due to low Precision (i.e., 19.70%).
This is because the amount of false links in undersampled
training data is not sufficiently enough for the prediction
model to distinguish between false links and true links. As
the result, the rate of false positives (FP) increases as the
prediction model misinterprets many false link instances as
true link instances. For that reason, our F-measure when
N = 1 is as low as 31.76%. Next, for ∈ {5, 10, 15, 20, 25}, the
Precision of RCLinker is improved, and ranges from 50.91%
and 73.73%. As Precision increases, Recall of our approach
slightly decreases, but still maintains high rate (which ranges
from 84.50% to 89.27%). Overall, the value of N has sub-
stantial effect on the effectiveness of our approach where
large values of N help improving RCLinker’s effectiveness.
However, larger values of N increases the runtime cost of
RCLinker. The average execution time of RCLinker across the
six projects increases steadily, between 2.42 to 5.26 seconds,
as we increase N from 1 to 25.

4) RQ4 – Important Features: In this research question,
we sort features in descending order of their Fisher scores.
Table VII presents top-10 features that have the highest Fisher
scores in each project. From the table, T3 is the most discrim-
inative feature in all the projects. T3 is a text feature that
captures the maximum cosine similarity between the various
textual parts of an issue report (i.e., summary, description,



TABLE VI
VARYING NUMBER OF NEAREST NEIGHBORS N : AVERAGE PRECISIONS,

RECALLS, AND F-MEASURES

N Precision Recall F-measure
1 19.70% 92.34% 31.76%
5 50.91% 89.27% 64.32%

10 61.95% 87.04% 72.12%
15 66.23% 85.96% 74.62%
20 72.87% 85.30% 78.41%
25 73.73% 84.50% 78.68%

TABLE VII
TOP-10 IMPORTANT FEATURES

CLI Collections CSV IO Lang Math
1 T3 T3 T3 T3 T3 T3

2 M5 T2 T2 T1 T1 T2

3 T1 T1 T1 T2 T2 T1

4 T2 T5 T5 T7 M5 T5

5 T5 T8 T7 T8 T7 T7

6 T7 T7 T8 T6 T5 T4

7 T4 T4 M5 M1 T9 T8

8 T8 M5 M8 T5 T4 M5

9 T9 M10 T4 T4 T8 T6

10 M9 T9 T6 T9 M1 M1

and comments) and a commit (i.e., commit message and
ChangeScribe message). In addition to T3, T1 and T2 are
also important as they are in the top-3 features of at least
five out of the six projects. T1, T2, and T3 capture the cosine
similarities between issue reports and commits (but in different
ways). Among M1 to M11 (i.e., metadata features), M5 are in
the top-10 important features of five out of the six projects.
M5 is a boolean feature that captures if the commit date is
between the report date and last updated date of an issue
report. Noticeably, text features account for at least 80% of
the important features in each project. This indicates that text
features are more discriminative than metadata features.

F. Threats to Validity

There are a number of threats that might affect the validity
of our study. These are broadly classified into internal, external
and construct validity threats. Threats to internal validity relate
to experimenter’s errors. We inspected our implementation
many times, however, there might still be hidden errors that
we were not aware of. Threats to external validity relate to the
generalizability of our findings. In the experiments, we only
used six Apache projects with 385 issue reports and 3,249
commits. Furthermore, all of the projects are relying on SVN
as the version control system and JIRA as an issue tracking
system. All these projects are written in Java programming
language. In the future, we are planning on minimizing this
threat by experimenting on more projects written in various
programming languages. We also plan to conduct experiments
on more issue reports and commits. Threats to construct valid-
ity relate to the suitability of our evaluation metrics. We used
standard metrics to evaluate the performance of our approach.
Precision, recall and F-measure metrics are well known [23]
and have been used in many software engineering studies [60],
[47]. Thus, we believe that we sufficiently minimized threats
to construct validity in our study.

V. RELATED WORK

In this section, we highlight research studies that are closely
related to our work. These are studies in recovering missing
links and application classification algorithm for software
engineering tasks. The following two subsections present and
discuss these two main lines of research.

A. Recovering Missing Links

Several studies proposed approaches for recovering missing
links between issue reports and their corresponding commits.
The latest studies include the following:

1) Wu et al. proposed ReLink [60], which recovers missing
links by generating a set of candidate links and filtering
them based on three criteria: textual similarity between
commit messages and issue reports, time duration be-
tween issue report submission and code change commit,
and mapping between committers and bug report com-
menters. ReLink learns several thresholds based on a
training set of true links that are explicitly marked by
developers. To learn these thresholds, ReLink enumerates
a set of threshold values and selects values that work best
for the training data.

2) Bissyande et al. proposed a simple information retrieval
model based on vector space modeling to recommend
missing links and showed that its performance is not too
far away from that one of ReLink [5]. They are also the
first to show that JIRA dataset is suitable for evaluating
bug linking techniques since the ground truth answers
are typically well maintained by developers. Also, JIRA
provides an easier mechanism (as compared to Bugzilla)
to link commits and bug reports.

3) Nguyen et al. proposed MLink which is a multi-layered
approach for recovering missing links between issue
reports and commits [47]. MLink generates a set of candi-
date links and filters them based on a set of criteria includ-
ing textual similarity between commits and code changes
with bug reports, similarity between changed source code
and code fragments in bug reports, and time constraint
that a relevant commit must be made in-between bug
report open and close time. MLink also learns several
thresholds by enumerating a set of threshold values
and selecting those that work best for a training data.
Differently from ReLink, MLink analyzes code changes
in addition to commit logs, however it ignores mapping
between committers and bug report comments, and time
duration between bug report submission and code change
commit. MLink has been shown to outperform ReLink.

Among the bug report linking techniques, MLink is the
state-of-the-art approach since it has been shown to outperform
ReLink. We have shown that our approach RCLinker is able
to outperform MLink by a substantial margin. Our work is
different from these existing approaches in the following
ways. First, we use ChangeScribe to generate rich contextual
information for code changes. ChangeScribe is able to extract
rich information including code elements that are not changed



by a commit but are affected by it. Second, we make use
of machine learning, in particular a classification algorithm
with our undersampling strategy, to predict the existence of
links between a commit and an issue report. None of the past
approaches leverages the power of a classification algorithm.
Third, features used by our approach to characterize true and
false links capture additional dimensions that are not captured
by the criteria used by ReLink and those used by MLink.
Indeed, our features capture criteria that are considered by
ReLink but ignored by MLink and vice versa, as well as
additional criteria.

In addition to ReLink and MLink, there are also other
research studies on recovering missing links. Cleland-Huang
et al. proposed two approaches that link regulatory codes to
product specific requirements [8]. The first approach computes
the probability of a word to relate to a regulation and use
these probabilities to compute the probability of a requirement
document to be linked to a regulation. The second approach
uses a web mining approach to link requirement document
to regulation. There also a number of techniques that infer
missing links between duplicated bug reports [52], [59], [26],
[55], [54], [58], [48], [1]. These approaches typically compare
textual similarities between bug reports to recommend a list of
bug reports that are very similar to each other. Different from
these past studies, we focus on a different problem, namely the
linking of bug reports to their corresponding commits. One of
the latest approaches by Alipour et al. compares bug reports
based on their contextual similarities measured by comparing
each bug report to a list of contextual words (e.g., words
related to efficiency, functionality, maintainability, etc.) [1]. In
this work, we also use contextual information, however this
information is inferred using code summarization techniques.

B. Application of Classification Algorithm in Software Engi-
neering Tasks

There have been many research studies that apply classi-
fication techniques to automate various software engineering
tasks. We present some of these studies.

Classification techniques have been applied to predict im-
portant information of issues opened in bug tracking systems.
Menzies and Marcus, Lamkafi et al., and Tian et al. made
use of various classification algorithms to predict the values
of the severity fields of bug reports [42], [31], [32], [57].
Lamkafi et al. predicted coarse-grained bug severity labels,
while Menzies and Marcus and Tian et al. predicted fine-
grained severity labels. Tian et al. built a statistical model
that considers multiple factors to predict the priority of bug
reports [61]. Different from severity, which is assigned based
on a user perspective, priority is assigned based on the
developer perspective. Tian et al. considered different familes
of features including temporal, textual, author, related-report,
severity, and product features to predict the priority of bug
reports. Antoniol et al. introduced a framework to predict
whether an issue is a feature request or a bug report [2]. Ko
and Myers investigate and compare linguistic characteristics
of issue report summaries and descriptions to differentiate

between bug reports and feature requests [29]. Kochhar et
al. extended Antoniol et al. work by predicting fine-grained
issue reclassifications [30]. In their work, an issue can be
classified as a bug, a request for improvement, documentation,
refactoring task, etc. Zhang et al. proposed a classification-
based technique that can estimate if the time needed to resolve
a bug report will be short or long [62].

A number of classification techniques have been used to
predict modules that are likely to contain bugs and vulnerabili-
ties. Lu et al. proposed approaches that utilize semi-supervised
learning and active learning with dimensionality reduction
to predict defect prone modules [38], [37]. Panichella et al.
predicted defect prone software entities by leveraging defect
data from another project [50]. Scandariato et al. proposed
a vulnerability prediction model learned from text features
extracted from source code files to predict which components
of a software application are more likely to contain security
vulnerabilities [53].

VI. CONCLUSION AND FUTURE WORK

Links between issue reports and their corresponding com-
mits are often missing. However, these links are important for
software maintenance tasks including assessing the reliability
of a particular part of a software system or predicting future
defective software components (e.g., classes, files, etc.). To
deal with this issue, a number of past approaches have been
proposed to link bug reports to their corresponding commits,
however, their performance still has significant room for
improvement. In this work, we propose a new bug linking
approach RCLinker that leverages rich contextual information
that are generated by ChangeScribe and a text classification
solution that creates a discriminative model based on 20
different features to differentiate between true and false links.
We have compared RCLinker against MLink, which is the
latest state-of-the-art bug linking approach. Our experiments
on bug reports from six projects demonstrate that RCLinker
outperforms MLink in terms of F-measure by 138.66%.

In the future, we are planning on improving the effectiveness
of RCLinker even further. We will experiment with various
classification algorithms and investigate their effectiveness.
We will also investigate additional features that can be more
effective than the current set of features. We are also planning
on further minimizing the threats to external validity by exper-
imenting with more bug reports from more software projects.
We also plan to perform additional experiments (e.g., wrapper
subset evaluation) to gain more insight into the features by
investigating if we can use a reduced set of features to obtain
similar effectiveness.
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