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Abstract—Defects are inseparable part of software develop-
ment and evolution. To better comprehend problems affecting
a software system, developers often store historical defects and
these defects can be categorized into families. IBM proposes
Orthogonal Defect Categorization (ODC) which include various
classifications of defects based on a number of orthogonal
dimensions (e.g., symptoms and semantics of defects, root causes
of defects, etc.). To help developers categorize defects, several
approaches that employ machine learning have been proposed
in the literature. Unfortunately, these approaches often require
developers to manually label a large number of defect examples.
In practice, manually labelling a large number of examples is
both time-consuming and labor-intensive. Thus, reducing the
onerous burden of manual labelling while still being able to
achieve good performance is crucial towards the adoption of
such approaches. To deal with this challenge, in this work, we
propose an active semi-supervised defect prediction approach. It
is performed by actively selecting a small subset of diverse and
informative defect examples to label (i.e., active learning), and
by making use of both labeled and unlabeled defect examples
in the prediction model learning process (i.e., semi-supervised
learning). Using this principle, our approach is able to learn a
good model while minimizing the manual labeling effort.

To evaluate the effectiveness of our approach, we make use
of a benchmark dataset that contains 500 defects from three
software systems that have been manually labelled into several
families based on ODC. We investigate our approach’s ability
in achieving good classification performance, measured in terms
of weighted precision, recall, F-measure, and AUC, when only a
small number of manually labelled defect examples are available.
Our experiment results show that our active semi-supervised
defect categorization approach is able to achieve a weighted
precision, recall, F-measure, and AUC of 0.651, 0.669, 0.623,
and 0.710, respectively, when only 50 defects are manually
labelled. Furthermore, it outperforms an existing active multi-
class classification algorithm, proposed in the machine learning
community, by a substantial margin.

I. INTRODUCTION

Defects are prevalent in software systems. Managing and

understanding defects are thus important to not only better

maintain but also improve the reliability of software systems.

To better manage and understand defects, one would first need

to categorize the types of defects that appear in a system. For

example, Orthogonal Defect Classification (ODC) [9], [10] is

a defect classification scheme from IBM that has been widely

used to manage defects in various software projects [24],

[37]. By understanding the frequency and severity of each

defect type appearing in a system, one can then plan the best

course of action to minimize the future impact of defects.

Some possible courses of actions are deploying automated

bug finding tools, performing additional testing, and training

developers especially for the more frequent and severe types

of bugs that happened in the past.

Although categorizing defects presents obvious benefits for

software understanding and maintenance, manually labelling

the defects is a tedious and cumbersome task. Thus, several

studies have been proposed a number of approaches which

automate the defects categorization process [14], [33]. These

approaches typically rely on supervised learning in which a

portion of the defects are manually labelled, and these are

input to a machine learning technique to learn a discriminative

model, which is then used to automatically classify other un-

labelled defects. Still, training a good discriminative model in

this manner typically requires a large number of training data.

It may not be practical to ask a developer to manually label a

large number of defects due to time and cost constraints. Given

this situation, an effective active learning and semi-supervised

technique would be of tremendous value.

Active learning attempts to train a good classification model

with minimal labelled data. Given a budget specifying how

many defects we are willing to manually label, it then selects

a subset of defects that are the most informative. Developers

can then label this smaller subset of defects and the defects

can be used to train a model to label other unlabelled defects

with reasonable accuracy. Semi-supervised learning attempts

to use not only labelled data but also unlabelled data in

the model construction process. Active and semi-supervised

learning can then be combined together to reduce the amount

of training defect examples that need to be manually labelled

while maximizing accuracy.

In this paper, we extend the defect categorization work by

Thung et al. [33]. In that work, defects are categorized into

three families: control and data flow, structural, and non-code1.

These three families are based on IBM’s Orthogonal Defect

Classification (ODC). In their experiments, Thung et al.’s work

requires 90% of the data to be available for training a model,

and the model is then used to label the remaining 10% of the

data. However, in practice, it is not practical to ask developers

to manually label 90% of the defects, while only the labelling

of 10% of the defects are automated. Our primary goal is to

automatically label all unlabeled defects by leveraging active

learning to select a small set of defect examples to be labelled.

These labeled examples are then mixed with the remaining

unlabelled defect examples and the resultant set is used to

train a classification model using a semi-supervised learning

1Previously, this category was referred to as non-functional [33]
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strategy. The classification model is then used to classify each

unlabelled defect into one of the three defects families.
Our proposed approach works in three steps. In the first step,

we use a clustering algorithm to group defect examples. We

then pick one representative defect example for each cluster.

Our goal is to get a diverse yet small set of examples to

manually label. These initial examples are then used to learn

an initial classification model. In the second step, the initial

classification model is used to pick additional examples that

the model is most doubtful of (i.e., the model is uncertain

on the defect labels (families) of the examples). We propose

three different strategies for actively selecting examples to

label one-at-a-time. In the final step, we learn a discriminative

model that is able to differentiate defects of different families

by making use of labelled and unlabelled defect examples.

We follow a semi-supervised learning method, namely self-

training [7], to use the unlabelled defect examples. Following

self-training method, we learn another classification model

using all labelled training data. We then take the top unlabelled

defect examples that the model is most certain of their labels.

These unlabelled examples are then treated as labelled data and

used along with existing labelled data to train a final prediction

model.
We have evaluated our solution on 500 defects collected

from the JIRA repositories of three software systems. These

500 defects are manually labeled by Thung et al. [33]. Our

experiment shows that the effectiveness of our proposed ap-

proach is promising. With just 50 labeled defect examples,

our semi-supervised and active-learning based approach can

achieve a weighted precision, recall, F-measure, and AUC

of 0.651, 0.669, 0.623, and 0.710 respectively. Our proposed

approach is an active and semi-supervised learning method

for multi-class classification. To show the need for our ap-

proach(rather than using an off-the-shelf classifier), we have

also compared our approach against a state-of-the-art multi-

class classification algorithm that employs active learning

and comes with an off-the-shelf implementation [15]. The

experiment results show that our approach can outperform this

baseline approach by a substantial margin.
The contributions of this work are as follows:

1) We propose an automated defect categorization solution

that only requires a small set of defect examples to

manually label. To build a good classification model from

limited training examples, we propose an active and semi-

supervised approach that is able to pick a diverse and

informative set of defect examples to label and also make

good use of unlabelled defect examples.

2) We have performed an evaluation of our active and semi-

supervised approach. The results based on 500 labeled

defects show that our model can achieve a weighted

precision, recall, F-measure, and AUC of 0.651, 0.669,

0.623, and 0.710 respectively. We have compared our

approach against a state-of-the-art classification algorithm

that supports active learning and multi-class classifica-

tion [15] and show that our approach outperforms it by

a substantial margin.

The structure of this paper is as follows. In Section II,

we describe some preliminary materials. We present our

proposed approach in Section III. We present the results of

our empirical evaluation in Section IV. We discuss related

work in Section V. Section VI concludes with future work.

II. PRELIMINARIES

In this section, we first describe preliminary materials on

defect classification and automatic defect categorization. We

then provide details of the k-means clustering algorithm which

we use as part of our approach. Finally, we briefly state our

problem definition.

A. Defect Classification

In this work, we focus on the defect families defined by

Thung et al. [33]. There are three defect families: control and
data flow, structural, and non-code. This classification is de-

rived from IBM’s Orthogonal Defect Classification (ODC) [1]

which is widely used in the industry [9], [10], [14], [24], [37].

ODC provides a number of orthogonal ways to classify defects

and we particularly focus on a categorization of defects based

on their defect type.

Table I maps each of the three defect families to

the corresponding ODC’s defect types. First, control and
data flow defect family includes defects related to Assign-

ment/Initialization, Checking, Algorithm/Method, and Tim-

ing/Serialization. Second, structural defect family includes

defects related to Function/Class/Object, Interface/O-O Mes-

sages, and Relationship. A more detailed explanation on each

ODC defect is provided in IBM’s website2 and technical

report [1]. Last, non-code defect type is outside the scope

of ODC defect types, however Thung et al. encounter many

of such defects when they label hundreds of bug reports

from several projects, and thus they consider it too. This

family includes all defects that do not appear in the source

code, but instead in other parts of a software system, e.g., in

configuration and documentation files.

Thung et al. consider the 3 defect families rather than 7

original ODC defect types since building a machine learning

solution that accurately classifies defect families into 7 types

are much harder than one that can accurately classifies defects

into 3 families [33]. A multi-class classification problem gets

much harder as the number of classes (in our case, defect

types) increases. If the accuracy of a machine learning solution

is too low, it is no longer useful. Thus, similar to the original

work by Thung et al. we focus on these 3 defect families and

aim to get a reasonable classification accuracy.

B. Automatic Defect Categorization

Our work builds upon Thung et al.’s work [33]. Thung et

al.’s approach accepts as input a textual description of defect

report and the code for fixing the defect. Since their goal

is to automate post-mortem bug analysis, they assume that

developers have fixed the defects and the bug fixing code

is available. Post-mortem bug analysis is useful to find out

2http://researcher.watson.ibm.com/researcher/view group.php?id=480
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TABLE I
DEFECT FAMILIES WITH THEIR TYPES AND DESCRIPTIONS

Family ODC Defect Type Description

Control and Data Flow

Algorithm/Method
“Efficiency or correctness problems that affect the task and can be fixed by (re)implementing an
algorithm or local data structure without the need for requesting a design change ...” [1]

Assignment/Initialization “Value(s) assigned incorrectly or not assigned at all ...” [1]

Checking
“Errors caused by missing or incorrect validation of parameters or data in conditional statements
...” [1]

Timing/Serialization
“Necessary serialization of shared resource was missing, the wrong resource was serialized, or the
wrong serialization technique was employed ...” [1]

Structural

Function/Class/Object
“The error should require a formal design change, as it affects significant capability, end-user
interfaces, product interfaces, interface with hardware architecture, or global data structure(s) ...” [1]

Interface/O-O Messages
“Communication problems between modules, components, device drivers, objects, or functions
...” [1]

Relationship
“Problems related to associations among procedures, data structures and objects. Such associations
may be conditional ...” [1]

Non-Code Code-unrelated defects Wrong settings in a configuration file or wrong descriptions in documentation.

the kinds of defects that plague a software system. Such

information is valuable in preventing and dealing with future

bugs. Bug reports and bug fixing code are preprocessed

before a classification algorithm can be employed to learn a

discriminative model. There are two different pre-processing

steps in their approach: text pre-processing and code pre-

processing.

In the text pre-processing step, they perform the following

steps:

1) Tokenization. This process breaks a document into word

tokens. Before doing tokenization, HTML tags, numbers

and punctuation marks that appear in defect reports are

removed. The remaining word tokens are then extracted.

2) Stop-Word Removal. Stop words are words that appear

very frequently in English text. Since they appear very

frequently, they are of little use in discriminating a

document from another and thus are often removed. A

set of stop words from Ranks NL3 is used and these

words are removed from the extracted tokens.

3) Stemming. This process converts a word to its root form.

For example, “reads” and “reading” are all converted to

“read”. The well-known Porter stemmer4 is employed.

In the code pre-processing step, bug fixing code is extracted

from the version control system. The code version before

the fix is also extracted. The changed lines between these

two versions are identified using standard diff5. Next, the

abstract syntax trees (ASTs) of both versions are generated.

The nodes that correspond to the changed lines marked by diff
are identified. All nodes that are not related to the changed

lines are then removed.

After code and text pre-processing steps are completed, the

approach extracts some code and text features for learning

the classification model. These code and text features are

summarized in Table II.

3http://www.ranks.nl/resources/stopwords.html
4http://tartarus.org/∼martin/PorterStemmer/
5http://www.gnu.org/software/diffutils/

TABLE II
CODE AND TEXT FEATURES USED FOR CLASSIFICATION

ID Description
Code1 #Assignment Added
Code2 #Assignment Deleted
Code3 |Code1 − Code2|
Code4 − Code42 Similar to Code1 to Code3 for #BlockCom-

ment, #CharacterLiteral, #EnhancedForStatement,
#ExpressionStatement, #ForStatement, #IfState-
ment, #JavaDoc, #LineComment, #MethodInvoca-
tion, #ParenthesizedExpression, #ThrowStatement,
#WhileStatement, and #Line

Code43 DeletedAndAddedCodeSimilarity
Code44 hasJavaFile
Code45 hasXML/HTMLFile
Code46 hasXML/HTMLButNoJavaFile

TextT1 − TextTi Each feature is a unique word token from the title
of a defect report. The value is the number of word
token occurrences. i is the number of unique work
tokens in the title of bug report.

TextD1 − TextDj Similar like TextT for the description of a defect
report. j is the number of unique work tokens in
the description of bug report.

TextA1 − TextAk Similar like TextT for both the title and descrip-
tion of a defect report. k is the number of unique
work tokens in both the title and description of bug
report.

These features are extracted from a labelled training data

(i.e., a set of defects whose family/class labels are known).

It is then fed to the classification algorithm to create the

discriminative model. The SVMmulticlass [11] implementation

from http://svmlight.joachims.org/svm multiclass.html is used

as the classification algorithm. The same set of features can

then be extracted from unlabelled data (i.e., a set of defects

whose family/class labels are unknown) and the constructed

model can then be applied for assigning defect category labels

to the unlabelled data.

C. k-means Clustering

k-means clustering is an unsupervised learning technique

that has been widely used and studied among clustering

methods that are based on minimizing a formal objective

function. k-means algorithm attempts to group a given data
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set containing a number of data points to a certain number of

clusters (i.e., k clusters) so as to minimize the mean squared

distance from each data point to its nearest center [16]. To

achieve this goal, the initial step is to define k centroids, one

for each cluster, randomly. Next, every data point belonging

to the given data set is associated to the nearest centroid.

Afterwards, the centroids are re-calibrated to form new k
centroids and the whole process is repeated until the centroids

get stabilized.

D. Problem Definition

Given a number of unlabelled defects and a training budget

(e.g., a fixed number of defect examples), we incrementally

select the best set of training data to manually label (into one

of the three defect families) until the budget is reached to build

a classification model. This model is then used to label the

remaining unlabelled data. Our goal is two-fold: practicality

and accuracy. In other words, we want to minimize the cost of

labelling defects while still being able to build a model with as

much discriminative capability as possible based on the given

budget.

III. PROPOSED APPROACH

In this section, we present our active semi-supervised defect

categorization approach. We name it LeDEx which stands for

Learning with Diverse and Extreme Examples. Its framework

is illustrated in Figure 1. It is divided into three phases: the

initial sample selection phase, the active selection phase, and

the semi-supervised learning phase. In the initial sample se-

lection phase, our approach captures a diverse set of examples

to manually label. In the latter two phases, our approach learn

using extreme examples to generate a more effective prediction

model.

In the initial sample selection phase, Sample Selector would

select a subset of Unlabelled Defect Set and we refer to this

subset as Unlabelled Defect Sample. Note that this selection

is without replacement and thus it would reduce the total

number of unlabelled defects in the Unlabelled Defect Set.
The Unlabelled Defect Sample would then be output to an

Oracle. The Oracle will label the defects to their correct

categories and outputs the Labelled Defect Sample. In practice,

this Oracle would be a developer that manually categorizes the

small number of defects in the sample. This Labelled Defect
Sample is then put into the Labelled Defect Set.

In the active selection phase, using the initial Labelled
Defect Set from the initial sample selection phase, a Classifier
learns a classification model. Then, Defect Selector takes as

input the Classifier and the Unlabelled Defect Set and analyze

them to decide which defect from the Unlabelled Defect
Set should be labeled next – we refer to this defect as the

Unlabelled Selected Defect. Note that this selection is also

without replacement and thus would reduce the total number

of unlabelled defects in the Unlabelled Defect Set. We can then

send the Unlabelled Selected Defect to the Oracle for labelling.

Labelled Selected Defect would then be output. This labelled

defect would be added to the Labelled Defect Set. The steps

Unlabelled 
Defect Set 

Sample 
Selector 

Phase I: Initial Sample Selector 

Phase II: Active Selection 

Unlabelled 
Defect Set 

Defect 
Selector 

Labelled 
Defect 
Sample 

Unlabelled 
Defect 

 Sample 

Legend 

Oracle 

Data Process Model 

Classifier 

Labelled Defect 
Set 

 
Unlabelled 
Selected 
Defect 

  

Unlabelled 
Defect Set 

Phase III:Semi-supervised learning 

Final 
Classifier 

Self-Trainer 

Oracle Labelled Selected 
Defect 

Fig. 1. Our Active Semi-Supervised Learning Framework

in the active selection phase would then be repeated until a

training budget is reached (i.e., a maximum number of defects

have been labelled).

In the semi-supervised learning phase, we can no longer

ask the Oracle to label any defect example. However, the

unlabelled defects can still provide valuable information that

can help improve the classification model. In this phase, the

resultant Classifier which is trained using the latest training

data and the remaining Unlabelled Defect Set are input to Self-
Trainer for further analysis. Self-Trainer would then refine the

model by making use of the unlabelled defects. In a way,

the machine is learning by itself (i.e., without the help of the

Oracle). At the end, Self-Trainer outputs the Final Classifier.

We explain the details of the steps in the three phases of

LeDEx in the following sections. LeDEx makes use of an

underlying multi-class classification algorithm. In this work,

we make use of SVMmulticlass [11] as the underlying

classification algorithm. We use of the implementation of

SVMmulticlass made publicly available from http://svmlight.

joachims.org/svmmulticlass.html.

A. Phase I: Initial Sample Selection

In this phase, we pick some samples from Unlabelled Defect
Set to be labeled by the Oracle. In this selection process,

we want the sample defects to be as diverse as possible. In

other words, we want the defects inside the sample to be as
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dissimilar as possible to one another. Intuitively, this should

allow the classification algorithm to extract more information

from the defects as compared to learning from defects that are

similar to one another. Although learning to classify similar

defects may be beneficial if those defects are of different

labels, the model would have a very restricted knowledge

about other defects outside those particular set of defects.

There is also no guarantee that such benefit exists. In the

worst case, those similar defects may actually belong to a

one particular label and thus the classification algorithm would

have no idea about the characteristics of the other labels. Thus,

we would have a better chance to learn a model from a diverse

set of defects.

In this work, we make use of a clustering algorithm to

select a diverse set of defects. Clustering works by grouping

data points that are similar to one another (i.e., according to a

particular similarity measure) in the same cluster. Hence, data

points in one cluster will naturally be dissimilar with data

points in the other clusters. In our case, we use a clustering

algorithm named k-Means (c.f., Section II) to cluster the

unlabelled defects into k clusters. The parameter k is the

number of training sample defects that would be used to

construct the base model.

To use k-Means, we need to first define how distance

between two defects is computed. To compute this distance,

we first represent each defect by its feature vector which

contains values of features described in Table II. Distance

between two defects is then mapped to computing distance

between their representative feature vectors. We compute the

Euclidean distance between the two vectors and use it as the

distance between a pair of defects. The Euclidean distance

between two vectors A = 〈a1, . . . , an〉 and B = 〈b1, . . . , bn〉
can be computed by the following formula:

√
Σn

i=1(ai − bi)2.

This Euclidean distance will be used by k-means to group the

defects into k clusters.

After we have created the k clusters, we would pick only

one defect from each cluster. In doing so, we intend to

maximize the diversity of defects that we choose as the sample.

For each cluster, our approach would pick a defect that is

closest to the centroid. The centroid of a cluster of defects

is a vector whose elements are the arithmetic means of the

elements in the corresponding positions of the feature vectors

of the defects in the cluster. A defect closest to the centroid

would be able to represent the cluster better than any other

defect inside the cluster. We measure the distance between a

defect to the centroid by computing the Euclidean distance

between the feature vector representation of the defect with

the centroid. Mathematically, the centroid of a cluster can be

defined as follows. Let us denote the ith element of a feature

vector F as F [i]. Consider a cluster of m defects represented

by the following feature vectors F1, . . . , Fm, each of size n.

The centroid of the cluster is a vector 〈c1, . . . , cn〉, where ci
is defined as

Σm
j=1Fj [i]

m .

B. Phase II: Active Selection

In this phase, some additional defects would be selected for

manual labelling based on the information acquired from the

Unlabelled Defect Set and the Classifier constructed from the

initial sample.

First, we would apply the Classifier to the Unlabelled Defect
Set. For each of the defect in Unlabelled Defect Set, Classifier
would output a confidence score for each defect category. The

defect category with the highest confidence score is the most

probable defect category according to the Classifier. Next,

we then adopt uncertainty based active selection method [21]

adapted for the multi class setting. Intuitively, we want to pick

defect that the current Classifier is the most uncertain about.

We investigate the following three measures of uncertainty that

we can use as a strategy for active selection:

1) Margin Sampling [29]. This strategy selects a defect

for which the Classifier has the smallest difference in

confidence for two most probable defect categories. The

defect is selected following this equation:

CD = argmin
DF

P (D̂C1|DF )− P (D̂C2|DF )

where CD is the chosen defect, D̂C1 and D̂C2 are the

first and second most probable defect category, DF rep-

resents features used to represent a defect, P (D̂C1|DF )
represents the probability that the defect with feature DF
is a member of defect category D̂C1, and P (D̂C2|DF )
represents the probability that the defect with feature DF
is a member of defect category D̂C2. This measure is

designed based on the intuition that a large probabil-

ity margin/difference between two most probable defect

categories means that it is easy to differentiate between

different defect categories. Therefore, we will pick a

defect that is hard for the model to differentiate (i.e.,

defect with the smallest probability margin between the

two most probable categories).

2) Least Confidence [30]. This strategy selects a defect

that the Classifier is least confident about. The defect

is selected following this equation:

CD = argmax
DF

1− P (D̂C|DF )

where CD is the chosen defect, D̂C represents the most

probable defect category, DF represents features used

to represent the defect, and P (D̂C|DF ) represents the

probability that the defect with feature DF is the member

of defect category DC.

3) Shannon Entropy [31]. This strategy selects a defect with

the highest entropy. Entropy is an information theoretic

measure that quantifies the unpredictability of informa-

tion. Thus, it can be used to measure uncertainty. The

defect is selected following this equation:

CD = argmax
DF

−
#DC∑

i=1

P (DCi|DF )×log(P (DCi|DF ))
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where CD is the chosen defect, DF represents features

used to represent the defect, #DC is the number of defect

categories and P (DCi|DF ) is the probability that the

defect with feature DF belongs to defect category DCi.

Using one of the above uncertainty based active selection

strategies, Defect Selector would select the most uncertain

defect as Unlabelled Selected Defect. We choose to select

just the most uncertain defect instead of the top m defects

to maximize the benefit acquired from labelling, which is

limited by the training budget. Consider the case where the

most uncertain defect is labelled and then the classification

model is rebuilt. The previously second most probable defect

might be able to be labelled with a much higher certainty. As

such, it would be better to label the most uncertain defect after

the model is rebuild. Defect Selector would repeat this process

until the training budget is reached.

C. Phase III: Semi-Supervised Learning

In this phase, we would make use of the remaining defects

in the Unlabelled Defect Set to further refine our classification

model. We use a semi-supervised learning method to combine

information from Labelled Defect Set and Unlabelled Defect
Set. In particular, we employ the self-training method [7].

Following this method, our approach first builds a Classifier
from the labelled defects that are output by the previous phase.

This Classifier is then used to increase the size of the training

data by automatically labelling some of the unlabelled data,

which it is most certain of, by itself. This newly labelled data

is then used to retrain the Classifier.

Algorithm 1 shows the detail of the third phase of our

approach. It accepts as input the set of labelled defects L, the

set of unlabelled defects U , and the desired number of defects

to be self labelled size. Initially, the algorithm would initialize

counter to 0 (Line 1). This counter keeps track of the current

number of self-labelled defects that have been added to the

labelled defect set L. It also initializes a classifier C that is

built from the set of labelled defects L (Line 2). It then perform

the self-labelling process until the desired number of defects

to be self-labelled (i.e., size) is reached (Lines 3- 20).

Inside the loop, the algorithm first makes sure that the

number of defects that the classifier C will label would never

exceed size (Lines 4- 5). Next, for each unlabelled defect u
in U and each label l (i.e., each defect family) in the set of

labels LABEL, the classifier C would output the probability

that u belong to the label l. This probability can be considered

as classifier C’s confidence that u belongs to the label l.
The algorithm then takes the maximum of these confidence

scores (Line 7-10). Defects in U are then sorted based on their

confidence scores conf (Line 11). The top-k defects in U with

the highest conf is then removed from the unlabelled defect

sets U (Lines 12-13). We refer to this subset as su, and for

each member u in su, the classifier C assigns labels to each

of them (Lines 14-16). The self-labelled defects in su are then

added to the labeled defect set L (Line 17). Our approach then

trains the classifier C using the updated labelled defect set L
(Line 18). counter is then increased according to the size of

su (Line 19). The whole process repeats until counter is equal

to size. Finally, the algorithm returns the updated classifier C
(Line 21).

In our work, we set the total number of defects to be self-

labelled (i.e., size) to be half of the size of the remaining

unlabeled defects. We pick this choice in order to maximize

the use of the unlabelled defects and at the same time do not

overestimate the capability of the unlabelled defects in helping

us to refine the model.6 We also set k equals to 1 to further

minimize the risk of misclassification.

Algorithm 1: Self-Training Using Unlabelled Defects

Input : L = set of labelled defects
U = set of unlabelled defects
k = number of defects to be self labelled

in each iteration
size = total number of defects to be self labelled

Output: refined classifier C
1 Let counter = 0;
2 Let C = the classifier built from L;
3 while counter < size do
4 if size− counter < k then
5 k = size− counter;
6 end
7 conf = [ ];
8 for u ∈ U do
9 conf [u] =

maxl∈LABELS(C.labelsProbability(u, l));
10 end
11 Sort U by conf ;
12 Let su = top-k member of U ;
13 Remove su from U ;
14 for u ∈ su do
15 su.label = C.classify(su);
16 end
17 Add su to L;
18 Train C using L;
19 counter = counter + su.size;
20 end
21 return C;

IV. EMPIRICAL EVALUATION

In this section, we first describe our datasets and experiment

settings. Next, we describe our research questions, followed by

answers to these questions. Finally, we describe some threats

to validity.

A. Datasets & Experiment Settings

We analyze defects from three software systems: Ma-

hout [4], Lucene [3], and OpenNLP [5]. Mahout is a machine

learning library that has a capability to analyze large data

and performs task parallelization. It implements many popular

learning algorithms, such as clustering, classification, frequent

pattern mining, and collaborative filtering. As of version 0.6, it

contains 1,251 Java files and 175,295 lines of code. Lucene is a

search engine library that provides many options for retrieving

documents that are relevant to a query. As of version 3.6, it

contains 2,564 Java files and 554,036 lines of code. OpenNLP

6Note that some of the unlabelled defects may be wrongly self-labelled and
they may reduce the effectiveness of the retrained model/classifier.
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is a library for natural language processing with capabilities

to support tasks such as tokenization, segmentation, chunking,

etc. It contains 697 Java files and 78,224 lines of code.

We use the dataset that was used by Thung et al. [33]. It

consists of 200 bug reports from Mahout, 200 bug reports from

Lucene, and 100 bug reports from OpenNLP. In total, there

are 500 randomly selected defects. We show the distribution

of the 500 defects across the three defect families in Table III.

About half of the defects belong to the control & data flow
family, about 25% of them belong to the structural family and

the remaining defects belong to the non-code family.

TABLE III
DEFECT STATISTICS FROM MAHOUT, LUCENE, AND OPENNLP

Software Defect Families TotalControl & Data Structural Non-Code
Mahout 120 46 34 200
Lucene 120 32 48 200
OpenNLP 46 32 22 100

To measure the effectiveness of our proposed approach,

we use 4 standard effectiveness measures for multi-class

classification, namely precision, recall, F-measure, and AUC.

The first three measures are defined based on the number of

true positive (TP), false positive (FP), true negative (TN), and

false negative (FN). Consider a given defect label l and a

defect D with its actual defect category label c. If a classifier

outputs defect category label o for D, we can consider 5

possible cases:

1) If l = c and c = o, then D is a true positive for label l.
2) If l �= c and c = o, then D is a true negative for l.
3) If l = c and c �= o, then D is a false negative for l.
4) If l �= c, c �= o, and o = l, then D is a false positive for

l.
5) If l �= c, c �= o, and o �= l, then D is a true negative for

l.

The above are the definitions of TP, FP, TN, and FN for each

class label in a multi-class setting. Based on these definitions,

we can compute precision, recall, and F-measure for each label

as follows:

Precision =
#TP

#TP +#FP

Recall =
#TP

#TP +#FN

F -measure =
2× Precision×Recall

Precision+Recall

In the above equations, #TP, #TN, #FP, and #FN denote the

numbers of true positives, true negatives, false positives, and

false negatives respectively. F-measure is the harmonic mean

of precision and recall and it is a summary measure that

combines precision and recall. It is often used to judge whether

an increase in precision (recall) outweighs a decrease in recall

(precision).

AUC is the area under the Receiver Operating Characteris-

tics (ROC) curve [12], [22]. A ROC curve for a label l plots

the true positive rates for l (i.e., the number of true positives

out of the predictions for label l) versus the false positive

rates (i.e., the number of true positives out of the predictions

for label l). This curve could be created by considering the

likelihood of each data point (i.e., defect whose label is to be

predicted) to be assigned label l. A defect likelihood is then

considered as the classification threshold; allowing the rates

of true positives and false positives to be computed for each

defect. Thus, each defect contributes a point in ROC curve.

AUC is the area under this ROC curve.

In order to measure the overall performance of our ap-

proach, we compute the weighted average of each of the above

evaluation metrics across the category labels.

WPrecision =
1

N
×

#label∑

label=1

nlabel × Precisionlabel

WRecall =
1

N
×

#label∑

label=1

nlabel ×Recalllabel

WF -measure =
1

N
×

#label∑

label=1

nlabel × F -measurelabel

WAUC =
1

N
×

#label∑

label=1

nlabel ×AUClabel

In the above equations, WPrecision, WRecall,
WF -measure, and WAUC are the weighted averages

of precision, recall, F-measure, and AUC, respectively. N is

the total number of defect reports in the test data, and nlabel

is the number of defect reports whose category is label.
For the experimental setting, we consider all 500 defects to

be initially unlabelled. We then run our algorithm based on

a training budget (i.e., the number of defects to be manually

labeled). The remaining unlabelled data is used as the test

data to measure the effectiveness of our approach. Due to

some randomness in our approach (e.g., random seed for the

k-means algorithm), we repeat our experiment ten times and

report the average of each evaluation metric. By default, we

use margin sampling as the active selection technique, set the

training budget to 50, and set the initial sample size to be half

of the training budget.

B. Research Questions

We are interested in answering these research questions:

Research Question 1. How effective is our proposed approach

in selecting defects to be labelled?

In this research question, we want to measure the effective-

ness of our approach in selecting the best defect examples

given a training budget. We also want to investigate how

effective our approach is when compared against another

active learning approach. We browsed the machine learning

literature and searched for a multi-class active learning clas-

sification approach that has been published in top machine

learning conference/journal and comes with an off-the-shelf

implementation. We finally find a multi class active learning
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approach proposed by Jain and Kapoor [15] that matches

our criteria. Their algorithm is based on probabilistic k-

Nearest Neighbor (pkNN) and has been tested and shown

to be more effective than SVM for image data. Compared

to ours, their algorithm does not have a clustering and

a semi-supervised step. We use the original tool which

is available at http://research.microsoft.com/en-us/downloads/

16764958-77f9-4d36-8fdb-5131fb150f69/. For this RQ, we

set the training budget to 50 examples.

Research Question 2. What is the contribution of each step

of our approach?

There are three main steps in our approach. First, we pick

an initial sample for building a base classification model by

making use of a clustering algorithm. Second, we use active

learning to select defect examples until the training budget

is reached. Third, we perform semi-supervised learning to

further refine the model by making use of the remaining

unlabelled data. To measure the contribution of each step, we

create two baselines: CLUSTER and CLUSTER+ACTIVE.

For CLUSTER, we use the first step of our approach to

select a sample defect examples to be labelled. These labelled

examples are then used to build a classification model which

is then used to assign labels to the remaining unlabelled data.

For CLUSTER+ACTIVE, we use the first two steps of our

approach to select examples to label. These labelled examples

are then used to build a model which is used to assign labels

to the remaining unlabelled data.

Research Question 3. What is the effect of training size to

the effectiveness of our approach?

By default, we set the training budget to 50. In this research

question, we want to investigate whether increasing training

budget would increase the effectiveness of our approach.

If it does, we also want to analyze the performance gain

when we increase the training budget by a certain amount.

Practically, it can give us some idea on how to trade off

between performance and cost (in this case, the cost of

labelling additional defect examples). If increasing size does

not increase performance, we would also investigate why it is

the case. Either way, we would have an idea on what to expect

when changing training size and would be able to make better

decision in choosing a reasonable training size depending on

the situation.

Research Question 4. What is the performance of various

active selection strategies?

By default, we use Margin Sampling as the active selec-

tion strategy. In our approach, there are two other possible

strategies, namely Least Confident and Shannon Entropy active

selection strategies. In this research question, we run our

approach by using those two other active selection strategies.

We report which of these three strategies leads to the best

performance.

Research Question 5. What is the effect of using different

number of self-labelled examples to the effectiveness of our

approach?

By default, the number of self-labeled examples is set to

be half of the number of remaining unlabelled defects which

seems to be a reasonable compromise between performance

gain and misclassification risk (see Section III-C). In this re-

search question, we experiment with the following proportions

of self-labelled defects: 20%, 40%, 60%, 80%, and 100% of

the remaining unlabelled defects. We empirically investigate

the effect of increasing the number of self-labelled examples.

C. RQ1: Overall Effectiveness

Table IV shows the effectiveness of our approach. We find

that our approach can achieve a reasonable weighted precision,

recall, F-measure, and AUC scores. The AUC of our approach

is more than 0.7, and in many past studies, an AUC score

above 0.7 is often considered reasonable [20], [27]. Note

that we can achieve these reasonable scores by just using 50

labelled examples. Table IV also compares the effectiveness

of our approach against that of Jain and Kapoor’s approach.

We note that although the performance of Jain and Kapoor’s

approach is better than random (AUC = 0.5), it is substantially

worse than our approach. Our approach outperforms Jain and

Kapoor’s approach by 88.70%, 25.99%, 19.35%, and 36.34%

in terms of weighted precision, recall, F-measure, and AUC

respectively. The reason that our approach is better is likely

due to our clustering and semi-supervised step. Also, although

Jain and Kapoor’s algorithm has been show to be performing

well in image data (with a large number of classes), it had not

been tested on defect data prior to this work. The algorithm

might be adapted to the unique characteristics of image data

that are absent from defect data.

TABLE IV
EFFECTIVENESS OF OUR APPROACH OVER JAIN AND KAPOOR’S

APPROACH

Approach WPrec. WRec. WF-measure WAUC
Jain and Kapoor’s 0.345 0.531 0.522 0.520
Ours 0.651 0.669 0.623 0.709

Improv. 88.70% 25.99% 19.35% 36.34%

D. RQ2: Contributions of Each Step of Our Approach

Table V compares the performance of our approach with

the performance of two baselines: CLUSTERING and CLUS-

TERING+ACTIVE. CLUSTERING only uses the first step

of our approach. CLUSTERING+ACTIVE uses the first and

second steps of our approach. We use the same training budget

setting for these two baselines and our entire approach (i.e.,

ALL STEPS). From the table, we can note that in terms

of all evaluation metrics, the performance of our approach

is better than CLUSTERING and CLUSTERING+ACTIVE.

This shows that each step of our proposed approach contributes

to its final effectiveness.

E. RQ3: Effect of Different Training Size

Table VI shows the weighted precision, recall, F-measure,

and AUC of our approach using various training budget (i.e.,

number of labelled training data). From the table we can note
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TABLE V
CONTRIBUTION OF EACH STEP IN OUR APPROACH

Step WPrec. WRec. WF-measure WAUC
CLUSTERING 0.622 0.606 0.583 0.681
CLUSTERING+ACTIVE 0.630 0.638 0.613 0.700
ALL STEPS 0.651 0.669 0.623 0.710

that in general the weighted F-measure and AUC increase

as we increase the amount of labelled training data that our

algorithm selects. However, even when we double the amount

of training data (from 50 to 100), the average F-measure

is only increased by 4.17% and the average AUC is only

increased by 3.94%. This indicates that the first 50 samples

that our approach selects are of good quality and they can be

used to train a good model. Adding additional labelled samples

improves this model but not by a large margin.

TABLE VI
VARYING TRAINING SIZE

Size WPrec. WRec. WF-measure WAUC
50 0.651 0.669 0.623 0.710
60 0.653 0.677 0.628 0.714
70 0.647 0.677 0.628 0.717
80 0.661 0.684 0.647 0.730
90 0.659 0.683 0.642 0.733
100 0.669 0.692 0.649 0.738

F. RQ4: Effect of Different Active Selection Strategy

Table VII shows the effectiveness of our approach using var-

ious active selection strategies. In terms of weighted F-measure

and AUC, among the three strategies, we find Margin Sam-

pling to be performing the best, followed by Least Confident,

and Shannon Entropy. In terms of weighted F-measure, Margin

Sampling outperforms Least Confident and Shannon Entropy

by 1.63% and 2.98% respectively. In terms of weighted AUC,

Margin Sampling outperforms Least Confident and Shannon

Entropy by 1.43% and 2.01% respectively.

TABLE VII
VARYING ACTIVE SELECTION STRATEGY

Active Selection WPrec. WRec. WF-measure WAUC
Least Confident 0.631 0.666 0.613 0.700
Margin Sampling 0.651 0.669 0.623 0.710
Shannon Entropy 0.629 0.660 0.605 0.696

G. RQ5: Effect of Different Number of Self-Labelled Examples

Table VIII shows the effectiveness of our approach when

using different proportion of self-labelled examples. Increas-

ing the proportion of self-labelled examples from 20%-60%

generally has a positive impact towards the effectiveness of our

approach. Increasing the proportion from 60%-100% however

generally has a negative impact towards the effectiveness

of our approach. As suspected, using too little self-labelled

examples will prevent us from maximizing performance gain.

Moreover, adding too much would increase misclassification

risk and therefore decrease the classification performance.

Based on this finding, we believe that choosing the number of

self-labelled examples to be half of the remaining unlabelled

defects is indeed a reasonable choice.

TABLE VIII
VARYING PROPORTION OF SELF-LABELLED EXAMPLES

Proportion WPrec. WRec. WF-measure WAUC
20% 0.638 0.647 0.619 0.704
40% 0.649 0.661 0.622 0.708
60% 0.665 0.673 0.621 0.712
80% 0.667 0.673 0.607 0.707

100% 0.663 0.674 0.606 0.695

H. Threats to Validity

Threats to Construct Validity. These threats refer to the

appropriateness of our evaluation measures. We make use

of four commonly used evaluation measures for multi class

classification: precision, recall, F-measure, and AUC. These

measures have been used before in many past studies. Hence,

we believe there are minimal threats to construct validity.

Threats to Internal Validity. These threats refer to ex-

perimenter biases. We use 500 bug reports from Thung et

al.’s work [33]. They manually label the defects and double

check the labels. If there are any discrepancies, they were

resolved through discussion. Also, since our approach involves

randomness, we perform our experiment multiple times and

report the average performance over the multiple runs. Thus,

we believe there are minimal threats to internal validity.

Threats to External Validity. These threats refer to the

generalizability of our experimental results. We have only

investigated 500 random defects from three software systems.

These defects might not be representative enough. In the

future, we plan to reduce this threat by experimenting on more

defects from more software systems.

V. RELATED WORK

A. Classification of Issue Reports

Antoniol et al. propose a technique to automatically classify

issue reports as either bug or enchancement [2]. Ko and

Myers investigate the linguistic characteristics of summaries

and descriptions in issue reports to differentiate between bug

reports and feature requests [17]. Kochhar et al. consider the

problem of mislabelled issue reports (i.e., an issue report

labelled as bug report might not be a bug report at all)

and propose to automatically reclassify them [18]. Our work

complements the above studies. After bug reports are identified

among issues that are submitted to a bug tracking system, our

approach can categorize these bug reports into defect families.

Menzies and Marcus propose a prediction model which

enables the severity of bug reports to be automatically in-

ferred with F-measures of 0.14 to 0.86 for multiple severity

labels [26]. Lamkanfi et al. propose a prediction model to

classify severity of bug reports in open source systems, but

consider only two severity labels: severe or not [19]. Tian et al.

propose DRONE, a multi factor analysis technique to classify

the priority of bug reports [34]. Their approach outperforms
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Menzies and Marcus’s approach substantially in terms of F-

measure. While the above studies classify a bug report based

on its importance, our work classifies a bug report based on

its defect type. Both the importance of a bug and its defect

type are important pieces of information that developers can

potentially use for personnel training, test planning, and defect

mitigation purposes.

A number of studies propose ways to classify if a bug

report is a duplicate bug report or not [28], [32], [36].

Leveraging natural language text in bug reports, Runeson et al.

retrieve textually similar bug reports by using cosine, dice and

jaccard metrics to measure the similarity of reports [28]. To

further improve the retrieval performance, Wang et al. exploit

richer information available in bug reports, which include not

only text but also execution traces [36]. Sun et al. extend

BM25F, an effective similarity formula in the information

retrieval community, for accurate retrieval of duplicate re-

ports [32]. Our work is orthogonal to the above studies as

we aim to classify types of defects instead of whether a bug

report is a duplicate one or not.

By analyzing textual features obtained from bug reports,

Huang et al. classify defects based on their impact [14]. Based

on their approach, 403 defects from a software system can be

classified into different category labels, including reliability,

capability, integrity, usability, and requirement. For each of

these classes, their prediction model achieves F-measures

of 0.222, 0.885, 0.700, 0.629, and 0.393 respectively. More

recently, Thung et al. automatically categorize bug reports

based on their defect types into three families: control and data
flow, structural, and non-code [33]. They employ code and text

features and show that their approach can achieve an average

F-measure and AUC of 0.692 and 0.779 respectively. Our work

extends the prior work by Thung et al.. In the prior work,

90% of the defects are used to train an accurate discriminative

model to label the remaining 10% of the defects. The cost

of manually labelling 90% of the defects is often too high

in practice. In this work, we build upon the prior work

by proposing an active semi-supervised defect categorization

solution that is able to work well with much less manual

labelling effort.

B. Active Learning in Software Engineering

Several studies have proposed the usage of active learning

for automating software engineering tasks. Bowring et al. pro-

pose an automatic approach for classifying program behaviour

(i.e., execution traces) by leveraging Markov model and active

learning through bootstrapping [6]. Their approach classifies

execution traces as normal execution traces or failures. Lucia et

al. proposes an approach to actively incorporate user feedback

in ranking clone anomaly reports [23]. They show that their

approach can improve the ordering of clone anomaly reports.

Wang et al. propose a technique that can refine the results

of Portfolio, a code search engine, by actively incorporating

incremental user feedback [35]. They show that their proposed

refinement approach can improve Portfolio’s performance (i.e.,

in terms of NDCG) by up to 11.12%. Similar with our work,

the above studies also use active learning. However, they work

on binary classification and ranking problem while we work

on multi-class classification problem. The tasks that they focus

on are also different from ours.

C. Text Mining in Software Engineering

Various software engineering problems have been addressed

by employing text mining. Marcus and Maletic use Latent

Semantic Indexing, an information retrieval method, to recover

the documentation to source code traceability links [25]. Chen

et al. combine multiple techniques including regular expres-

sion matching and clustering to recover traceability links [8].

Hou and Mo use Naive Bayes to classify contents in Java

Swing Forum into 8 to 17 categories [13]. In this work,

we also analyze textual contents, however, we focus on a

different problem, namely the categorization of bug reports

into families.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a hybrid machine learning

approach, that combines clustering, active learning and semi-

supervised learning algorithms, to automatically categorize

defects. Our primary goal is to minimize the number of

training data that needs to be labelled while maximizing the

accuracy of the trained classification model. Our approach is

built on three main steps, including picking initial sample,

actively selecting defect examples that are most informative

for training classification model, and incrementally refining

the trained model. Each step is done by employing each of

the three learning algorithms accordingly. We evaluated our

approach on 500 defects collected from JIRA repositories of

three software systems. The evaluation results show that our

proposed approach is promising. With just 50 labeled defect

examples, our approach can achieve a weighted precision,

recall, F-measure and AUC of 0.651, 0.669, 0.623, and 0.710

respectively. Furthermore, our approach outperforms a base-

line approach by Jain and Kapoor [15], which is a state-of-

the-art active-learning multi-class classification algorithm with

a publicly available implementation, by a substantial margin.

As future work, we plan to further improve the precision,

recall, F-measure and AUC of our approach. To do so, we plan

to investigate the effectiveness of various clustering, active

learning, and semi-supervised learning techniques when they

are used as building blocks of our approach. We also plan

to extend the features that we use to train the classification

model, to help increase the discriminative capability of the

model and experiment with more data to further evaluate the

generalizability of our result. We also plan to perform an in-

depth analysis to get an insight on the reason why our approach

is less effective for some cases. Based on this analysis, we plan

to design an appropriate extension to our approach.
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