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ABSTRACT

During the evolution of a software system, a large number
of bug reports are submitted. Locating the source code files
that need to be fixed to resolve the bugs is a challenging
problem. Thus, there is a need for a technique that can
automatically figure out these buggy files. A number of bug
localization solutions that take in a bug report and output
a ranked list of files sorted based on their likelihood to be
buggy have been proposed in the literature. However, the
accuracy of these tools still need to be improved.

In this paper, to address this need, we propose Amal.gam,
a new method for locating relevant buggy files that puts
together version history, similar reports, and structure. To
do this, Amal.gam integrates a bug prediction technique
used in Google which analyzes version history, with a bug
localization technique named Buglocator which analyzes
similar reports from bug report system, and the state-of-
the-art bug localization technique BLUiR which considers
structure. We perform a large-scale experiment on four open
source projects, namely AspectJ, Eclipse, SWT and ZXing
to localize more than 3,000 bugs. Compared with a history-
aware bug localization solution of Sisman and Kak, our
approach achieves a 46.1% improvement in terms of mean
average precision (MAP). Compared with BugLocator, our
approach achieves a 24.4% improvement in terms of MAP.
Compared with BLUIR, our approach achieves a 16.4%
improvement in terms of MAP.
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1. INTRODUCTION

Software systems are often plagued with bugs. To improve
the reliability of systems, developers often allow users to
submit bug reports to bug tracking systems. Unfortunately
the number of these reports is often too large for the
developers to handle manually in a timely manner. Anvik et
al. cited a Mozilla triager that mentioned “Everyday, almost
300 bugs appear that need triaging. This is far too much for
Mozilla programmers to handle” [4]. One of the most time
consuming task to resolve a bug report is to find the buggy
files that are responsible for a reported bug. A system may
contains thousands or more files and often only one or a few
of these files need to be changed to fix a bug. Lucia et al.
analyze 374 bugs from Rhino, AspectJ and Lucene and find
that 84-93% of the bugs reside in 1-2 source code files [19].
Thus, localizing these buggy files is like finding one or two
needles in a big haystack.

To address the above mentioned challenge a number
of studies have proposed ways to identify buggy program
files given a bug report. Many of these approaches are
information retrieval-based and they work by computing
similarities between a reported bug and source code files [28,
30,31, 35]. The source code files are then ranked based on
their similarities to a reported bug. In this work, we are
particularly interested in three recent approaches and we
highlight each of them below.

Sisman and Kak leverage version history data for bug
localization [31]. Their approach makes use of history data
to compute a probability score of a file to be buggy. They
also compute a similarity score between a file and a bug
report. The probability and the similarity scores are then
added up, and the resultant score is used to rank source code
files (see [31], equation 9). They propose various variants
and the best performing one is named TFIDF-DHbPd.

Zhou et al. leverage similarities among bug reports for bug
localization [35]. Given a new bug report, their approach,
named BugLocator, finds files that are fixed to resolve
similar older bug reports. Based on the similarity of the new
and older bug reports, and the number of files that are fixed
in each of the older bug reports, their proposed approach
computes a bugginess score (referred to as SimiScore) for
each source code file. They also compute a similarity score
between a file and a bug report (referred to as rVSMScore).
Weighted SimiScore and rVSMScore are then added up, and
the resultant score is used to rank source code files.



Table 1: Comparison of Our Approach to State-of-
The-Art Bug Localization Techniques

Approach Version Similar Structure
History Report

TFIDF-DHbPd [31] | Yes No No

BugLocator [35] No Yes No

BLUIR [30] No No Yes

BLUiR+ [30] No Yes Yes

Our Approach Yes Yes Yes

To measure similarity between a bug report and a file, Sa-
ha et al. propose an approach named BLUiR which leverages
the structure of a bug report and a source code file [30]. A
bug report has many fields (description and summary) and
a file has many parts (class names, method names, variable
names, and comments). They thus transform a bug report
and a file to structured documents and employ structured
information retrieval. In structured information retrieval,
textual contents of each field in a bug report and each part
of a source code file are considered separately. Each field of
a bug report is compared to each part of a source code file,
and a similarity score is computed for each comparison. The
summation of these scores is then used to rank source code
files. Saha et al. also creates an extension of BLUiR, we refer
to as BLUiR+, which integrates similar report information
into BLUiR, in the same manner as BugLocator integrates
SimiScore to rVSMScore.

The three approaches presented in the preceding para-
graphs leverage different sources of information — see Ta-
ble 1. Sisman and Kak’s approach uses version history
but neither related reports nor structure. Zhou et al.’s
approach uses related reports but neither version history
nor structure. Saha et al. approach uses both related
reports and structure (i.e., for BLUIR+) but does not use
version history. Thus, none of these approaches combine
version history, related reports, and structure together.
Based on this observation, in this work, we combine these
three together, and investigate if the resultant approach
works better. To do so, we combine a bug prediction
technique used in Google, with the works of Zhou et al.
and Saha et al. The bug prediction technique computes the
probability of a file to be buggy based on historical data in
a version control system. We then have a solution that puts
together version history, similar report, and structure. We
name our approach Amal.gam, which stands for Automated
Localization of Bug using Various Information. The way
AmalLgam combines historical information is different from
that of Sisman and Kak in the following respects:

1. Our approach uses a well-tested bug prediction formula
that is used in Google and it takes into consideration
the effect of change burst [17].

2. Sisman and Kak consider the complete version history
to compute a probability. Our approach only considers
very recent version history and totally discards histor-
ical information that are more than k days away from
the time a new bug report is submitted.

3. Sisman and Kak simply sums up the probability of
a file to be buggy and the similarity of a bug report
to the file. Our approach assigns weights that govern
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the contribution of the probability of a file to be
buggy (computed by the bug prediction technique) and
the similarity of a bug report to a file (computed by
integrating BugLocator and BLUIR).

We have experimented our approach on a dataset of more
than 3,000 bug reports from AspectJ, Eclipse, SWT, and
ZXing. The AspectJ bug reports are taken from the iBugs
benchmark [7] which have been used to evaluate Sisman
and Kak’s, Zhou et al.’s, and Saha et al’s approaches. The
Eclipse, SWT, and ZXing bug reports have been used before
to evaluate Zhou et al.’s and Saha et al.’s approaches. The
experiment results show that our approach can achieve an
MAP score of 0.33, 0.35, 0.62, and 0.41 respectively. MAP
score is a standard score used in information retrieval and
it has been used as a yardstick to evaluate Sisman and
Kak’s, Zhou et al.’s, and Saha et al’s approaches before.
Comparing our approach’s MAP scores to those of Saha
et al.’s, on average, we can improve their approach’s MAP
score by 12.5%. Comparing our approach’s MAP scores to
those of Zhou et al.’s, on average, we can improve their
approach’s MAP score by 24.4%. Comparing our approach’s
MAP scores to those of Sisman and Kak’s, we can improve
their approach’s MAP score on the Aspect]J bug reports by
46.1%.

The contributions of our work are as follows:

1. We are the first to put together version history, similar
reports and structure for bug localization. Past bug
localization studies have only used one or two of these
3 sources of information. We have experimented our
approach on more than 3,000 bug reports from 4 open
source programs: AspectJ, Eclipse, SWT, and ZXing.
Our experiments show that we can achieve an MAP of
0.33, 0.35, 0.62, and 0.41 for each of the 4 programs
respectively.

2. The MAP scores of our proposed approach improves
those of Saha et al. (i.e., BLUiR+) that put together
similar reports and structure by an average of 12.5%.
The MAP scores of our proposed approach improves
those of BLUIR and Zhou et al. (BugLocator) by an
average of 16.4% and 24.4%, respectively. Comparing
with the reported results of the history-aware bug
localization solution of Sisman and Kak (TFIDF-
DHbPd), which was also evaluated on AspectJ bug
reports from the iBugs dataset, our approach improves
the MAP score by 46.1%.

The structure of the remainder of the paper is as follows.
In Section 2, we first present preliminary information on bug
reports and a motivating example. We elaborate the details
of our approach in Section 3. We describe our experimental
setup and results in Section 4. We describe related work in
Section 5. We finally conclude and mention future work in
Section 6.

2. PRELIMINARIES AND EXAMPLE

In this section, we first describe some preliminary infor-
mation on bug reports. We then outline some text pre-
processing steps that are applied to the bug reports. Finally,
we show an example to illustrate why it is useful to consider
version history, similar report, and structure.



2.1 Bug Reports

A bug report is a document submitted by users to describe
an error that they experience when they use a system. A
bug report contains a number of fields; we are particularly
interested on 4 of them, namely bug identifier (id), the date
a bug report was submitted (open date), summary of the
error (summary), and more detailed description of the error
(description).

We present a bug report from Eclipse in Figure 1 which
can be downloaded from Eclipse’s Bugzilla'. The identifier
of this bug report is 76138 and it describes a problem
with the ant editor which does not follow a display setting.
The bug id provides a reference number that can be used
to identify commits in version control systems that fix it,
c.f. [35]. The open date helps us to identify bug reports that
are submitted a number of days prior to bug 76138. The
summary and description fields help us to understand the
error that the user experienced.

A bug localization tool takes as input a bug report and
returns the potential buggy files. The corresponding buggy
Java files for the bug report shown in Figure 1, which are
identified by checking the corresponding bug fixing commits,
are AntEditor.java and AntEditorSourceViewerConfigura-
tion.java.

Bug ID 76138

Open date 2004-10-12 21:53:00

Summary Ant editor not following tab/space setting on shift

right

Description | Thisis from 3.1 M2. | have Ant->Editor->Display tab
width set to 2, insert spaces for tab when typing"
checked. | also have Ant->Editor->Formatter->Tab size
set to 2, and "Use tab character instead of spaces
_unchecked_.

Now when | open a build.xml and try to do some
indentation, everything works fine according to the
above settings, except when | highlight a block and
press tab to indent it. It's the tab character instead
of 2 spaces that's inserted in this case.

Fixed Files org.eclipse.ant.internal.ui.editor.AntEditor.java
org.eclipse.ant.internal.ui.editor.AntEditorSourceView

erConfiguration.java

Figure 1: An Eclipse’s Bug Report and the Buggy
Source Code Files Corresponding to It

2.2 Text Pre-processing

An information-retrieval based bug localization technique
usually performs three pre-processing steps: text normal-
ization, stopword removal, and stemming. The goal of the
text pre-processing steps is to break a bug report or a
source code file into terms that can then be analyzed by an
information retrieval technique. In the pre-processing step,
some compound words (e.g., program identifiers) are broken
into parts, and some related words are mapped to the same
term. We briefly describe these three pre-processing steps
below.

'https://bugs.eclipse.org/bugs/show_bug.cgi?id=
76138
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First, text normalization would be performed which in-
volves the removal of punctuation marks, tokenization (i.e.,
extraction of words from paragraphs or identifiers from
source code), and identifier splitting. During this step,
when a source code is processed, it would be converted
into an Abstract Syntax Tree (AST) and using this tree,
identifiers would be identified. These identifiers are split into
its constituent words following Camel Case splitting [3]. For
example the identifier “getMethodName” is split to “get”,
“Method”, and “name”. In this study, both the split words
and the full identifier name are kept. For example, for the
class name “AntEditorSourceViewerConfiguration” which is
one of the buggy files corresponding to the bug report shown
in Figure 1, we convert it to 6 words: “ant”, “editor”,
“source”, “viewer”, “configuration” and the full identifier
name “AntEditorSourceViewerConfiguration”.

Second, we remove stopwords such as “on”, “the”, “are”,
“is”, and so on. These stopwords carry little meaning and
thus we remove them. Finally, we perform stemming which
reduces inflected or derived words into a common root form.
For example the word “reading” and “reads” are reduced to
the root form “read”. By doing this, similar words would
be represented using the same term. We use the standard
Porter Stemmer [24] to perform this stemming step.?

2.3 Motivating Example

A traditional IR-based bug localization approach usually
first performs text pre-precessing on a query (a bug report)
and the documents in a corpus (source code files). Then,
a similarity score between the query and each of the docu-
ments would be computed based on a particular information
retrieval technique (e.g., TFIDF, LDA, LSI, etc), e.g., [28].
From Figure 1, we note that the buggy source code file
names share a number of common words with the summary
and description of the bug report, i.e., “ant” and “editor”.
Based on these common words a traditional IR-based bug
localization approach would try to link the bug report with
the source code files. In this sub-section, we highlight
how version history, similar reports, and structure can be
used to improve the accuracy of traditional IR-based bug
localization techniques.

Version History. There are lots of historical data of
changes to source code files that are stored in a version
control system during program evolution. This historical
data can be used to improve bug localization performance.
Kim et al. found that bugs happen in bursts, and not
in isolation [15]. The files responsible for a bug recently
are more likely to be responsible for other bugs in the
near future. Figure 2 presents the commit logs of Eclipse
before bug 76138 occurred. We could see that the class
files “AntEditor.java” and “AntEditorSourceViewerConfigu-
ration.java”, which were responsible for bug 76138, were also
responsible for other bugs that happen prior to the reporting
of bug 76138 (they are highlighted in bold). ‘AntEditor.java”
is fixed just one day prior to the reporting of bug 76138 and
“AntEditorSourceViewerConfiguration.java” is fixed just 7
days prior to the reporting of bug 76138. Thus, we could
see that historical data can be used to better locate bug.

Similar Reports. User often submit many similar bug
reports that correspond to different errors that affect the

’http://tartarus.org/martin/PorterStemmer/



hash:3532306

author:darins

commit_date:2004-10-12 04:28:35 +0000

message:Bug 76051 - Navigation to property resource or file

M ant/org.eclipse.ant.ui/Ant
Editor/org/eclipse/ant/internal/ui/editor/AntEditor.java
hash:3d1a68b

author:darins

commit_date:2004-10-07 01:02:22 +0000

message:Bug 50583 - Patternsets, path and fileset hovering (F2)

M ant/org.eclipse.ant.ui/Ant
Editor/org/eclipse/ant/internal/ui/editor/AntEditorSourceViewerCon
figuration.java

A ant/org.eclipse.ant.ui/Ant
Editor/org/eclipse/ant/internal/ui/editor/text/AntinformationProvider
java

Figure 2: Recent Commit Logs Prior to the
Reporting of Bug Report 76138

same buggy program elements. For example, Figure 3 shows
an older report with identifier 503032, which were reported
9 months before bug report 76138. Note that this report
shares the common words “ant” and “editor” with bug report
76138. Bug report 50303 was fixed on March 17, 2004 and
was re-fixed on March 18, 2004 and “AntEditor.java” was
modified on both fix instances. By analyzing bug report
50303, we can get a hint on files that need to be changed
to fix 76138. From the example, we could see that similar
reports can be used to better locate bug.

Bug ID 50303
Open date 2004-01-20 20:55
Summary Ant Editor outline "Link with Editor"
Description | Similar to the Java Editor it would be a nice
enhancement to have a "Link with
Editor" toggle button for the Ant Editor outline page.
FixedFiles org.eclipse.ant.internal.ui.editor.AntEditor.java
7 other files

Figure 3: An Older Eclipse’s Bug Report and the
Buggy Source Code Files Corresponding to It

Structure. Bug reports and source code files have struc-
tures. Bug reports have several fields including summary
and description. Source code files can be split into class
names, method names, variable names, and comments. This
structural information can be leveraged for bug localization.
Traditional IR-based bug localization approaches compute
the similarity between a bug report and the entire content
of a source code file (which contains a class name, many
variable names, and many comments). For localizing the
bug report in Figure 1, the class names contain the most
important terms. Unfortunately, the impact of the terms

*https://bugs.eclipse.org/bugs/show_bug.cgi?id=
50303
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“ant” and “editor” in the class names would be weaken
by other tokens, which would make the performance poor.
Structural information could be used to overcome this
problem by computing the similarities of a query against
different fields (e.g., class, method, variable, comment)
in a source code file separately and summing up those
similarities. In this way, the tokens “ant” and “editor” would
have stronger impact to the overall similarity. Thus, we
could see that structure can be used to better locate bug.

3. APPROACH

In this section, we first describe our overall framework
named Amalgam. We then present each of the four main
components of Amal.gam.

3.1 Overall Framework of Amal.gam

Figure 4 presents the overall framework of AmalLgam.
Amal.gam takes as input a bug report to be localized (new
bug report), a set of source code files of the system for which
the bug report is submitted (source code files), a history of
commits made to the system as stored in a version control
system (version history data), and a set of older bug reports
stored in a bug tracking system (bug repository).

The inputs would be processed by three components
of Amal.gam namely: version history component, similar
report component, and structure component. Version
history component makes use of version history information
to rank files. Similar report component makes use of older
reports in bug repository to rank files. Structure component
makes use of the structure of bug reports and source code
files to rank files. The three components would each outputs
a suspiciousness score for each source code file. These three
sets of suspiciousness scores would be input to the composer
component which would produce the final ranked files.

3.2 Version History Component

For the version history component, we make use of
studies on bug prediction whose goal is to predict which
files are likely to be buggy in the future, e.g., [15, 27].
Kim et al. propose BugCache which predicts future bugs
by maintaining a relatively short list of most fault-prone
program entities [15]. Rahman et al. propose a cheaper
algorithm which only sorts files based on the number of bug
fixing commits that touch each of them [27]. Rahman et al.
show that this simple and cheap approach achieves almost
the same performance as BugCache. Google’s developers
adapt the simple algorithm proposed by Rahman et al to
predict bugs on their large systems [17]. The resultant
algorithm is simple and fast. Thus, we decide to adapt this
well-tested bug prediction algorithm of Google as our version
history component. We briefly describe how we adapt this
algorithm in the following paragraphs.

The algorithm takes as input commit logs and outputs
a list of files with their suspiciousness scores. It first
identifies relevant bug-fixing commits. The relevant bug
fixing commits are identified by following two rules:

1. The commit log must match the following regular
expression regex: (. * fix.x)|(. * bug.*). This regular
expression specifies that all commit logs containing the
word “fix” or “bug” would be matched.

2. The commit must be made in the past k days
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Figure 4: The Overall Framework of AmaLgam

We modify Google’s approach by including the second re-
quirement. Our experience shows that including older bug-
fixing commits do not affect performance much and even can
slightly decrease performance. Also, it is computationally
cheaper to only consider recent commits. Parameter k£ could
be set empirically. By default, we set k to 15. The algorithm
analyzes these relevant commits and assigns a suspiciousness
score to each source file f using the following equation:

score™ (f,k,R) =

1
> 1+ el20—((h—to)/k)) (1)

ceRAfEC

In the above equation, R refers to the set of relevant
commits and t. is the number of days that has elapsed
between a commit ¢ and the input bug report. The output of
this algorithm is a set of suspiciousness scores, one for each
file. We denote the suspiciousness score of file f assigned by
the version history component as Susp™ (f).

Example: Consider the input bug report in Figure 1 and
the two commit logs in Figure 2. For simplicity sake, let’s
assume that there are no other commit logs. We would
like to illustrate how Equation 1 is used to compute the
suspiciousness scores of files AntEditor.java and AntEdi-
torSourceViewerConfiguration.java. As both commits with
identifiers 3532306 and 3d1a68b contain the word “bug” and
they are committed within 15 days before the time bug
report 76138 was submitted (i.e., Oct 12, 2004, at 21:53:00),
they are considered relevant bug fixing commits. The value
of (k-t.)/k for commit 3532306 is 0.95 (since the commit
was made around 17 hours, i.e., 0.7 day, before the time
bug report 76138 was submitted). Thus, the suspiciousness
score for AntEditor.java is 1.82. The suspiciousness score of
AntEditorSourceViewerConfiguration.java can be computed
in a similar way and it is 0.009.

3.3 Similar Report Component

For our similar report component, we adapt BuglLoca-
tor [35], in particular the algorithm that computes SimiRank
scores. We describe briefly how we use this algorithm in the
following paragraphs.

The algorithm takes in an input bug report and older bug
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reports that have been fixed in the bug repository. It then
measures the similarity of the input bug report to the older
fixed bug reports. Based on the similarity scores of the
bug reports and the number of files that are modified to
fix each bug report, we compute a suspiciousness score for
each source code file.

To measure the similarity of two bug reports, the following
steps are followed. First, each bug report is represented
by their constituent pre-processed terms. Considering the
universe of all terms as {t1,...,¢,}, we can compute for a

bug report b, a vector b :

T = tfo(t2)idf (t1), £ o (t2)idf (b2), - . - £ faltn)idf (t)

In the above formula, tf(¢;) corresponds to the number
of times term t; appears in bug report b, idf (¢;) corresponds
to the reciprocal of the number of documents that contain
term t;. Given vector representations of two bug reports b
and b_2)7 their similarity can be measured by computing the
standard cosine similarity [5] of their vector representations.

To compute a suspiciousness score for source code file f,
we use the following equation:

sim(b, )

scorer(f,b, B) = v Fiz|

b e{b'|b' EBAFEY .Fix}

(2)

In the above equation, b is the input bug report, B is the
set of older fixed bug reports, sim(b,b’) is the similarity of
bug report b and b, b'. Fiz is the set of files that are modified
to fix bug report b', and |b’. Fiiz| is the size of set b’. Fiz. The
output of this algorithm is a set of suspiciousness scores,
one for each file. In this component, we do not enforce a
similarity threshold following what Zhou et al. did in their
work [35]. We take all older bug reports to compute the
suspiciousness score. We denote the suspiciousness score of
file f assigned by the similar report component as SuspR(f)A

Example: Consider the input bug report shown in Figure 1
and the older bug report in Figure 3. For simplicity
sake, let us assume that there are no other bug reports



in the bug repository. We would like to illustrate how
Equation 3.3 is used to compute the suspiciousness scores
of files AntEditor.java. Let us assume for simplicity sake
that the similarity of the two bug reports is 0.15. The
suspiciousness score of AntEditor.java can then be computed
as: 0.15*8 = 1.2.

3.4 Structure Component

For the structure component we use BLUIR [30] which
performs structured retrieval for bug localization. For
completeness-sake, we briefly describe BLUIR in the follow-
ing paragraphs.

BLUiIR breaks a bug report into 2 parts: summary and
description. It breaks a source code file into 4 parts: class
names, method names, variable names, and comments. Each
of these parts can be converted into a vector following a sim-
ilar procedure described in Section 3.3. The suspiciousness
score of a source code file f given an input bug report b can
then be computed as:

scores(f,b) = Z Z sim(fp, bp)
fpef bpeb

where fp is a part of file f, bp is a field in bug report
b, and sim(fp,bp) is the cosine similarity of the vector
representations of fp and bp. The output of the structure
component is a set of suspiciousness scores, one for each file.
We denote the suspiciousness score of file f assigned by the
structure component as Susp®(f).

Example: Consider a bug report and a file shown in
Figure 5. After pre-processing, the terms in the summary
field of the bug report are: “bug”, “average”, and “function”.
The terms in the description field of the bug report are: “us”,
“average”, “function”, “measure”, “class”, “comput”, “got”,
“wrong”, and “result”. The term in the class name of the
file is “measure”. The term in the method name of the file
is “average”. The terms in the variable names of the file are
“list”; “sum”, and “d”. The set of terms in the comments of
the file is . Based on these fields of the bug report and these
parts of the source code file, we can compute a suspiciousness
score which would be a summation of 8 similarity scores.

Bug summary: bug in average function

Bug description: When | used the average function in measure class
to compute average, | got a wrong result.

Fixed file:
public class Measure{
static double average(double[] lists){
double sum =0;
for(double d : lists)
sum +=d;
return sum;

Figure 5: Example Bug Report and Source Code
File

3.5 Composer Component

This component processes the 3 sets of suspiciousness
scores output by the first 3 components of Amal.gam and

computes a set of final suspiciousness scores. The composer
component first combines the scores output by the structure
component and the similar report component for a file f, as
follows:

Susp™(f) = (1= a) x Susp®(f) +a x Susp™(f)

The value of a can be empirically determined. Saha et
al. has also tried to combine standard BLUiR with similar
report data and they set the value of a to be 0.2. We
use the same value of a. The impact of various a on the
effectiveness of incorporating similar report information has
been shown in [35]. Based on Susp®® we compute the final
suspiciousness score of f as follows:

SuspS T (f) =

(1 = b) x Susp>®(f) + b x Susp™ (f), ifSusp>T(f) >0
0, otherwise

In the above equation, we set the final suspiciousness score
to 0, if Susp®E(f) is 0. We do this since we observe that
the likelihood of a file to be relevant to a bug report is very
small if Susp®®(f) is 0. The value of b can be empirically
determined. By default, we set this value to 0.3.

In the end, the composer component would sort all source
code files based on their final suspiciousness scores and this
ranked list of files would be the output of AmalLgam.

Example: Suppose, Susp™¥ scores of 3 files are {f1 =0.2,
fo =0.1, f3 = 0 } and the Susp® scores of the 3 files are
{fi =01, fo = 0.5, fs = 0.9 }. Since the Susp™® score
of f3 is 0, then the final suspiciousness score of f3 would
still be 0 even though its Susp® is large. Thus, the final
suspiciousness scores are fi = 0.17, fo = 0.22, f3 = 0.

4. EXPERIMENTS

In this section, we first describe the dataset that we use
to evaluate our approach. Next, we describe our evaluation
metrics, followed by our research questions. Finally, we
describe our experiment results which answer the research
questions.

4.1 Dataset

We use the same dataset used by Zhou et.al and Saha et.al
to evaluate BugLocator and BLUIR respectively [30, 35].
This dataset contains a total of 3,379 bug reports from four
popular open source projects, AspectJ, Eclipse, SWT, and
ZXing. For each bug report, information on files that were
modified to fix the bug is also provided in the dataset. The
AspectJ bug reports originate from the iBugs benchmark [7]
which was also used by Sisman and Kak to evaluate their
proposed approach [31]. Table 2 describes the dataset in
more detail. For our version history component, we collect
commit logs from Git repositories of those four projects.

4.2 Evaluation Metrics

To measure the effectiveness of the proposed bug localiza-
tion approach, we use the following metrics:

e Top-N Rank (Hit@N): This metric calculates the
number of bug reports where one of the buggy files
appears in the top N (i.e., 1, 5, 10) ranked files. Given
a bug report, if at least one of its buggy files is in
the top N results, we consider the bug is successfully



Table 2: Dataset Details

Project | Description Period #Fixed Bugs #Source Files
AspectJ | Aspect-oriented extension of Java 07/2002-10/2010 | 286 6485

Eclipse | Open source IDE 10/2004-03/2011 | 3075 12863

SWT Open source widget toolkit 10/2004-04/2010 | 98 484

ZXing Barcode image processing library for | 03/2010-09/2010 | 20 391

Android platform

located. The higher the value of this metric is, the
better the performance of an approach is.

e Mean Average Precision (MAP): MAP is the
most commonly used IR metric to evaluate ranking
approaches. It considers the ranks of all buggy files
into consideration. Therefore, MAP emphasizes all of
the buggy files instead of only the first one. MAP is
computed by taking the mean of the average precision
scores across all queries. The average precision of a
single query is computed as:

M
=y

k=1

where k is a rank in the returned ranked files, M is the
number of ranked files and pos(k) indicates whether

the k' file is a buggy file or not. P(k) is the precision
at a given top k files and is computed as follows:

P(k) x pos(k)
number of positive instances’

_ Fbuggy files
=

e Mean Reciprocal Rank (MRR): The reciprocal
rank for a query is the reciprocal of the position of
the first buggy file in the returned ranked files. MRR
is the mean of the reciprocal ranks over a set of queries
Q@ and it can be computed by following equation:

2]
1 1
@ ; rank;

where rank; is the position of the first buggy file in
the returned ranked files for the first query in Q.

P(k)

MRR =

4.3 Research Questions

Research Question 1 How effectiveness is AmalLgam for
bug localization?

To answer this research question, we apply Amal.gam to
the 4 sets of bug reports in our dataset. We then evaluate
the returned ranked lists and compute Hit@N, MAP, and
MRR to characterize the effectiveness of Amal.gam.

Research Question 2 Does AmalLgam outperform other
bug localization techniques?

Amalgam combines 3 state-of-the-art approaches: TFIDF-
DHbPd by Sisman and Kak [31], BugLocator by Zhou et
al. [35], and BLUiIR by Saha et al. [30]. TFIDF-DHbPd
is the best performing variant of the approach proposed
by Sisman and Kak. Saha et al. also tried to compose
similar report information in the same way as Zhou et al.
We refer to this variant of BLUIR as BLUiR4. We would
like to investigate whether and to what extent Amalgam
outperforms these existing state-of-the-art approaches. We
compare the results of AmalLgam with the results reported
in past papers [30,31,35].
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Research Question 3 How does the performance of
Amal.gam vary for various settings of parameters k and b?

Amal.gam accepts 3 parameters: k, a, and b. The
setting of parameter a follows the setting used by Saha
et al. [30] which actually follows the setting used by Zhou
et al. [35]. In this research question, we would like to
investigate the effect of varying the other two parameters
of k and b. Kk is a parameter of the version history
component which determines the number of days for which
we cache the history. b is a parameter of the composer
component that determines the contribution of the history-
based suspiciousness score (Susp™).

4.4 Experiment Results

The following subsections describe our experimental re-
sults which answer the 3 research questions. We answer one
research question at a time.

4.4.1 RQI: Effectiveness of Amalgam

To answer the RQ1, we measure the effectiveness of
Amal.gam in terms of the metrics we listed in Section 4.2.
Table 3 presents the results for all programs. For 127
(44.4%) AspectJ bug reports, AmaLgam successfully locates
a buggy source code file in the top 1 ranked files. For 187
(65.4%) AspectJ bugs, at least one buggy source code file
is among the top 5 ranked files. For 209 (73.1%) AspectJ
bugs, at least one buggy source code file is among the top
10 ranked files. In terms of MAP and MRR, AmalLgam
achieves a score of 0.33 and 0.45, respectively.

For Eclipse, 1060 (34.5%) and 1775 (57.7%) bugs could be
localized by inspecting top 1 and 5 ranked files, respectively.
Also, 2059 (67.0%) bugs could be localized when only the
top 10 ranked files are inspected. The scores of MAP and
MRR that AmalLgam gets for Eclipse are 0.35 and 0.45,
respectively. For SWT, 61 (62.2%) bugs have a buggy file
at the top 1 ranked file. Also, 80 (81.6%) and 88 (89.8%)
bugs are successfully localized when only the top 5 and
10 ranked files are inspected, respectively. Amal.gam gets
MAP and MRR scores of 0.62 and 0.71, respectively. For
ZXing, AmaLgam is able to localize 8 (40.0%), 13 (65.0%),
and 14 (70%) bugs when only the top 1, 5 and 10 ranked
files are inspected, respectively. In terms of MAP and MRR,
AmalLgam achieves a score of 0.41 and 0.51, respectively.

4.4.2 RQ2: AmaLgam VS. Other Bug Localization
Approaches

Table 3 compares the results of Amalgam with those of
TFIDF-DHbPd, Buglocator, and two versions of BLUiR
(BLUIR and BLUiR+4) in terms of Hit@1, Hit@5, Hit@10,
MAP and MRR. For TFIDF-DHbPd, Sisman and Kak
only evaluates it using AspectJ bug reports from the iBugs
benchmark. They also did not compute Hit@N or MRR.
Thus, in the table, we only show the MAP score of TFIDF-
DHbPd for AspectJ. Comparing our approach with TFIDF-



Table 3: Comparison among

AmaLgam, TFIDF-DHbPd, BugLocator, BLUIR, and BLUiR+

Project | Approach Hit@1 Hit@5 Hit@10 MAP | MRR
AmaLgam 127 (44.4%) | 187 (65.4%) | 209 (73.1%) | 0.33 | 0.54
AspectJ | TFIDF-DHbPd | N/A N/A N/A 0.23 N/A
BugLocator 88 (30.8%) 146 (50.1%) 170 (59.4%) 0.22 0.41
BLUiR 92 (32.2%) 146 (51.0%) 173 (60.5%) 0.24 0.41
BLUiR+ 97 (33.9%) 150 (52.4%) 176 (61.5%) 0.25 | 0.43
AmaLgam 1060 (34.5%) | 1775 (57.7%) | 2059 (67.0%) | 0.35 | 0.45
Eclipse | BugLocator 896 (29.1%) 1653 (53.8%) 1925 (62.6%) 0.30 0.41
BLUiR 952 (31.0%) 1636 (53.2%) 1933 (62.9%) 0.32 0.42
BLUiR+ 1013 (32.9%) 1729 (56.2%) 2010 (65.4%) 0.33 0.44
AmaLgam 61 (62.2%) | 80 (81.6%) | 88 (89.8%) | 0.62 | 0.71
SWT BugLocator 39 (39.8%) 66 (67.3%) 81 (62.6%) 0.45 0.53
BLUiR 54 (55.1%) 75 (76.5%) 85 (86.7%) 0.56 0.65
BLUiR+ 55 (56.1%) 75 (76.5%) 86 (87.8%) 0.58 0.66
AmaLgam 8 (40.0%) 13 (65.0%) | 14 (70.0%) | 041 | 0.51
ZXing BugLocator 8 (40.0%) 12 (60.0%) 14 (70.0%) 0.44 | 0.50
BLUiR 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.38 0.49
BLUiR+ 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.39 0.49
DHbPd, we can improve their approach’s MAP score on 065 4 B 4 Zxing
AspectJ bug reports by 46.1%. Oos'g ] —=swT
Comparing our approach with BugLocator, Amal.gam 6'5 | _’_As’fec‘
outperforms BugLocator with respect to all metrics for % ous e Eclipse
AspectJ, Eclipse, and SWT bug reports. Both techniques = 04 - +—
have the same performance in terms of Hit@Ql, Hit@5, 0354 ——
and Hit@10 for ZXing. For ZXing, Amalgam improves 0.3 - /
BugLocator in terms of MRR, bug marginally loses to 0.25 +—— — —
BugLocator in terms of MAP. On average, Amalgam 5 10 15 20 25 30 35 40 45 50
improves the MAP and MRR scores of BugLocator by 24.4% Value of k
and 19.3%, respectively.
Comparing AmaLgam with BLUIR and BLUIiR+, we Figure 6: Impact of Varying the Value of k£ on

could note that Amal.gam consistently outperforms BLUiR
and BLUiR+ in terms of MAP and MRR for all programs.
The Hit@N scores of Amal.gam are better than those of
BLUiR and BLUiR+ for all programs except ZXing. For
ZXing, the Hit@N scores of Amal.gam are the same with
those of BLUIR and BLUiR+. On average, AmalLgam
improves the MAP and MRR scores of BLUiR+, which per-
forms better than BLUIR, by 12.5% and 9.9% respectively.
We perform Wilcoxon signed-rank test [34] to test whether
the improvements obtained by Amal.gam over BLUIR+ are
significant. We found that the improvements in terms of
MAP and MRR are significant.

4.4.3 RQ3: Effect of Varying k and b

In this study, we select k € {5,10,15,20,25,30,35,40,45,50}
and compute MAP and MRR for all bug reports in our
dataset. The results are presented in Figures 6 and 7.

When k increases from 0 to 15, the MAP and MRR scores
increase for all programs. Increasing the value of k further
from 20 to 50 generally does not improve performance much.
For SWT, the MAP and MRR slightly decrease when we
increase k from 15 to 50. These results show that there is
no need to consider old history. The most important part of
the history is commits in the last 15-20 days.

Next, we investigate the impact of different values of b on
the performance of AmaLgam. We vary the values of b from
0 to 1 with an interval of 0.1. Figures 8 and 9 show how the
performance of Amalgam varies due to different b values,
in terms of MAP and MRR. For ZXing, Eclipse and SWT,
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AmaLgam in Terms of MAP
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Figure 7: Impact of Varying the Value of k£ on

AmaLgam in terms of MRR

both MAP and MRR slightly increase when the value of b is
varied from 0 to 0.3; when the value of b is varied from 0.3
to 1, in general the performance goes down.* The impact
of varying b values for Aspect] is different from the other
programs: MAP value keeps increasing when the value of b
is varied from 0 to 0.7, remains relatively stable when b is
varied from 0.7 to 0.9, and decreases when b is increased from
0.9 to 1; In terms of MRR, the performance improves when
b is varied from 0 to 0.5, remains stable when b is varied
from 0.5 to 0.7, and decreases when b is varied from 0.7

4The performance slightly increases for ZXing when b is
varied from 0.4 to 0.9.



to 1.0. For three of the four programs, Amalgam achieves
the best performance when b is 0.3. Averaging across the 4
programs, the performance of Amal.gam remains relatively
stable when we vary b between 0.3-0.4.
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Figure 8: Impact of Varying the Value of b on
AmaLgam in terms of MAP
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Figure 9: Impact of Varying the Value of b on
AmaLgam in terms of MRR

4.5 Threats to Validity

Threats to internal validity includes experimenter bias.
To reduce this threat, we reuse the bug reports dataset that
has been used before to evaluate prior approaches. Thus,
the evaluation is not biased to our approach.

Threats to external validity relates to the generalizability
of our findings. To reduce this threat, we have analyzed
more than 3,000 bug reports from 4 popular projects. Still
in the future, we plan to reduce these threats further by
analyzing more bug reports from more projects written in
multiple programming languages.

Threats to construct validity refers to the suitability of the
set of evaluation metrics that we use in this study. Three
metrics are used namely Hit@N, MAP, and MRR. These
metrics are well-known information retrieval metrics and
have been used before to evaluate many past bug localization
approaches, e.g., [28,30,31,35]. Thus, we believe there is
little threat to construct validity.

S. RELATED WORK

In this section, we first describe a number of bug local-
ization works. We then describe some bug prediction and
feature location works. The survey here is by no means
complete.

5.1 Bug Localization

In recent years, many bug localization approaches have
been proposed. These methods can be categorized into two:
dynamic and static approaches.
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Generally, dynamic approaches can localize a bug much
more precisely than static approaches, e.g., pinpoint a
buggy statement or basic block. However, they usually
require a test suite to execute a program to collect passing
and failure execution traces. Thus the effectiveness of a
dynamic approach is often dependent on the quality of a
test suite. Unfortunately, Kocchar et al. have shown that
the adoption of software testing in many projects is often
poor [16]. Spectrum-based fault localization, e.g., [2, 14,
18,29] and model-based fault localization, e.g., [10,22], are
some of the well known dynamic approaches. Spectrum-
based fault localization approaches often use program traces
to correlate program elements at various granularity levels
(e.g., statements, basic blocks, functions, and components)
with program failures often with the help of a statistical
analysis. Tarantula [14] and Ochiai [2] are two well known
techniques and they are proposed to rank program elements
according to their suspiciousness scores computed based on
the executions of a program with a test suite. The basic
idea of Tarantula and Ochiai is that a program element
is considered to be more suspicious if it appears more
frequently in failed executions than in correct ones. Saha
et al. propose a customized automated fault localization
technique for data-centric programs which interact with
databases [29]. Model-based fault localization approaches,
e.g., [10,22] are based on more expensive logic reasoning over
formal models of programs which are often more accurate
than spectrum-based fault localization approaches.

Static approaches do not require any test suite to be
run to generate execution traces. They only need program
source code files and bug reports to localize a bug. The
static approaches usually can be categorized into two groups:
program analysis based approaches and IR-based approach-
es. FindBugs is a program analysis based approach that
locates a bug based on some predefined bug patterns [13].
However, it often detects too many false positives and misses
many real bugs [32]. IR-based approaches use information
retrieval techniques (such as, TFIDF, LSA, LDA, etc.)
to calculate the similarity between a bug report and a
source code file. Rao and Kak investigates many standard
information retrieval techniques for bug localization and find
that simpler techniques, e.g., TFIDF and SUM, perform the
best [28]. Lukins et al. use Latent Dirichlet Allocation
(LDA), which is a well-known topic modeling approach,
to localize bug [20]. Sisman and Kak propose a history-
aware IR-based bug localization solution to achieve a better
result [31]. Zhou et al. propose BugLocator which leverages
similarities among bug reports and uses a refined vector
space model (rVSM) to perform bug localization [35]. Saha
et al. consider the structure of bug reports and source
code files and employ structured retrieval to achieve a
better result [30]. Different from the existing IR-based bug
localization approaches, we put together version history,
similar report, and structure, to achieve better performance.

5.2 Bug Prediction

There are many approaches proposed for bug prediction.
One family of bug prediction approaches uses change logs to
predict buggy files. Change log-based approaches extract
historical information from a version control system and
assume that recently or frequently changed files have the
most potential to be buggy. Hassan measures the complexity
of a code change and proposes several code change models



which are based on the concept of entropy and shows that
the code change models can be used to predict future faults
[12]. Kim et al propose BugCache which stores a list of
recent buggy files in a cache and use it to predict future
buggy files [15]. BugCache is based on an assumption that
similar bugs happen in bursts and not in isolation. Rahman
et al. perform an empirical study to evaluate BugCache
and shows that it is not substantially better than a basic
prediction model which computes the suspiciousness of a file
based on the number of bug-fixing commits that touch the
file [27].

Another family of approaches do not require historical
data but only analyzes the current version of a system
using various metrics. One well-known set of metrics is the
Chidamber and Kemerer (CK) metrics [6]. These metrics
and several coupling metrics have been used by El Emam
et al. to predict faults on commercial Java application [1].
Nagappan et al. use a number of source code metrics
(including CK metrics) to predict module-level defects on
five Microsoft systems [23]. They find that no predictor
could perform well on all the projects. Marcus et al.
propose the notion of conceptual cohesion of classes (C3)
which is based on the analysis of unstructured text (e.g.,
comments and identifiers) in a code base, and use C3 for
defect prediction [21].

There are also other approaches that do not belong to the
two families described above. For example, Zimmermann
and Nagappan use network analysis to analyze the depen-
dencies between binaries in Windows server 2003 and predict
defects based on that analysis [36].

5.3 Feature/Concept/Concern Location

Feature/concept /concern location is a task that is closely
related to bug localization. Its goal is to map a description
of a feature or concept or concern to the program units (e.g.,
package, file, method) that implement it. Many approaches
have been proposed to perform feature/concept/concern
localization with information retrieval techniques.

Poshyvanyk et al. make use of Latent Semantic Indexing
(LSI) to map a software feature to its relevant program
units, and then apply Formal Concept Analysis (FCA) to
cluster the results [25]. In another work, they also make
use of execution traces in addition to textual description
of a feature to locate relevant program units [26]. Dit
et al. combine information retrieval, execution and link
analysis algorithms to improve feature location techniques
that analyze textual description and execution traces by
using data fusion model [9]. Gethers et al. combine
information retrieval (IR), dynamic analysis, and software
repository mining techniques to recommend relevant source
code entities given a change request and its contextual
information, i.e., execution trace and initial source code
entity to be changed [11]. Wang et al. perform an empirical
study on Linux kernel to evaluate the performance of 10
different IR models for feature location [33]. They shows
that vector space model (VSM) outperforms other models.
There are many other feature location approaches. For a
comprehensive description of these studies, please refer to a
recent survey paper by Dit et al. [8].

6. CONCLUSION AND FUTURE WORK

A large number of bug reports are submitted during the
evolution of a software system. For a large system, locating
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the source code files responsible for a bug is a tedious and
expensive work. Thus, there is a need to develop a technique
that can automatically figure out these buggy files given
a bug report. A number of bug localization tools have
been proposed in recent years. However, the accuracy of
these tools still need to be improved. In this paper, we
propose Amalgam, a new method for locating relevant
buggy files that combines historical data, similar report,
and structural information to achieve a higher accuracy.
We perform a large-scale experiments on four projects,
namely AspectJ, Eclipse, SWT and ZXing to localize more
than 3,000 bugs. Compared with the state-of-the-art bug
localization approaches, BLUiR+ and BLUIiR, our approach,
on average, achieves 12.5% and 16.4% improvements in
terms of mean average precision (MAP). Compared with
BugLocator which considers similar reports, our approach,
on average, achieves a 24.4% improvement in terms of MAP.
Compared with a history-aware bug localization approach
proposed by Sisman and Kak, our approach achieves a 46.1%
improvement in terms of MAP.

In the future, we would like to reduce the threats to
external validity further by applying our approach on more
bug reports from various systems. We are also interested
to integrate other bug prediction approaches to Amal.gam.
Furthermore, we want to investigate different ways to
combine the scores from the three components of AmalLgam.
We are also interested to use Principal Component Analysis
(PCA) to analyze which component (i.e., version history,
similar report, or structure) contributes the most to the final
results.
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