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Abstract—Issue tracking systems are valuable resources during
software maintenance activities. These systems contain different
categories of issue reports such as bug, request for improvement
(RFE), documentation, refactoring, task etc. While logging issue
reports into a tracking system, reporters can indicate the category
of the reports. Herzig et al. recently reported that more than
40% of issue reports are given wrong categories in issue tracking
systems. Among issue reports that are marked as bugs, more
than 30% of them are not bug reports. The misclassification of
issue reports can adversely affects developers as they then need
to manually identify the categories of various issue reports. To
address this problem, in this paper we propose an automated
technique that reclassifies an issue report into an appropriate
category. Our approach extracts various feature values from a
bug report and predicts if a bug report needs to be reclassified
and its reclassified category. We have evaluated our approach
to reclassify more than 7,000 bug reports from HTTPClient,
Jackrabbit, Lucene-Java, Rhino, and Tomcat5 into 1 out of 13
categories. Our experiments show that we can achieve a weighted
precision, recall, and F1 (F-measure) score in the ranges of 0.58-
0.71, 0.61-0.72, and 0.57-0.71 respectively. In terms of F1, which
is the harmonic mean of precision and recall, our approach can
substantially outperform several baselines by 28.88%-416.66%.
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I. INTRODUCTION

Issue tracking system (IST), which contains information
related to issues faced during the development as well as
after the release of a software project, is an integral part of
software development activity. Using a tracking system, such
as a JIRA or Bugzilla system, issue reporters can submit
various kinds of reports, including, bug reports, documenta-
tions, feature requests, refactoring request, and many more.
The number of these issue reports however could be too
large for developers to handle. Anvik et al. quoted a Mozilla
developer who commented that “Everyday, almost 300 bugs
appear that need triaging. This is far too much for only the
Mozilla programmers to handle” [1]. This highlights the need
for solutions that can help developers to cope with the mass
of issue reports that are submitted to ISTs.

One problem that developers face is the incorrect assignment
of fields in bug reports. Xia et al. find that developers require
more time to fix issue reports whose fields are wrongly as-
signed than those that are assigned correctly [2]. An important
piece of information in an issue report is the category of
the report, which describes if the report is about a bug,
adaptive maintenance, perfective maintenance, documentation

update, test case creation, etc. These categories can be inferred
from the type field in JIRA and importance field in Bugzilla.
Based on these categories, developers can prioritize reports
and group related reports together. Herzig et al. study the
categories of more than 7,000 bugs across 5 software systems
and find that more than 40% of issue reports are given wrong
categories [3]. Among issue reports assigned as BUG, more
than 30% of them are not bug reports. The misclassification of
issue reports can adversely affect developers as they then need
to manually identify the categories of various issue reports.
Due to the overwhelming number of issues reported in issue
tracking systems, developers have to spend substantial amount
of time to manually analyze issue reports and assign them the
correct categories. This manual process is tedious and becomes
increasingly difficult as the project’s user base grows as there
would then be more users reporting issues.

To address the above-mentioned problem, there is a need for
an approach that can automatically reclassify issue reports to
their actual fine-grained categories. We refer to the correspond-
ing problem as fine-grained issue report reclassification. In this
work, we fill this need by proposing an approach that takes
in an issue report and outputs whether the issue report needs
to be reclassified or not and the reclassified category. Our tool
extracts a number of features from an issue report including
the words that appear in the summary and description fields of
a bug report, the bug reporter identifier, the presence of stack
trace, and the original category given by the reporter. Next,
based on a training set of issue reports, we build a statistical
model that can be used to predict if the category of a new
issue report needs to be changed and its reclassified category.

Antoniol et al. proposed an approach that can classify an
issue report as bugs or enhancements [4]. Our work is different
from Antoniol et al.’s work in two ways: first, different from
Antoniol et al. that only consider two categories (bug reports
vs. enhancements), we consider 13 categories based on the
categories used by Herzig et al. in their manual reclassification
effort [3]1; second, we consider a reclassification problem, and
thus we do not consider the reported category to be the ground
truth, rather we use the reported category as a feature to build
a statistical model.

We have evaluated our proposed approach on more than
7,000 bug reports from five software systems: HTTPClient,

1In their paper, 6 categories are identified. We use the categories in
their publicly downloadable dataset which include 14 categories. We merge
UNKNOWN to OTHERS.
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Jackrabbit, Lucene-Java, Rhino, and Tomcat5. These bug re-
ports have previously been manually analyzed by Herzig et
al. which reclassified the categories of more than 40% of
them [3]. We use Herzig et al.’s manually assigned categories
as ground truth to evaluate our proposed automated reclassifi-
cation approach. The experiment results show that across the
five software systems, we can achieve precision, recall, and
F-measure scores of up to 0.71, 0.72, and 0.71 respectively.
We have also compared our approach to a number of baseline
approaches. We show that we can outperform these baseline
approaches by 28.88%-414.66%.

The contributions of this paper are as follows:

1) We introduce the problem of fine-grained issue report
reclassification which extends the report classification
problem first proposed by Antoniol et al. [4]. The goal
of issue report reclassification is to predict issue reports
with wrong categories and assign to them fine-grained
new categories.

2) We propose an approach that extracts textual, author, and
stack trace feature values, and use them along with the
reported categories to build a statistical model that can
predict a fine-grained category that should be assigned to
an issue report. We have evaluated our approach on more
than 7,000 issue reports from five systems and compare
it with several baselines. Our experiments show that our
proposed approach can outperform the baselines by a
substantial margin.

The structure of this paper is as follows. In Section II, we
describe preliminary information on issue reports, text pre-
processing and classification algorithms that we use in this
study. In Section III, we present our proposed approach which
takes as input a bug report and predicts if its category is wrong
and if so, recommends a new category. In Section IV, we
present our experimental results. We discuss related work in
Section V. We finally conclude and mention future work in
Section VI.

II. PRELIMINARIES

In this section, we discuss some preliminary information
about issue reports, text-preprocessing, and classification al-
gorithms that we use in this work.

A. Issue Reports

Figure 1 shows an issue report from the JIRA system of
Jackrabbit project. Notice that an issue report contains several
fields that carry several pieces of information. In this work,
we are particularly interested in the following: short summary
(1), issue category (2), reporter (3), and longer description (4).

Herzig et al. have manually labeled issue reports
and they assign them to 13 categories: BUG, RFE,
IMPROVEMENT, DOCUMENTATION, TASK, BUILD
SYSTEM, REFACTORING, DESIGN DEFECT, TEST,
CLEANUP, BACKPORT, SPECIFICATION, and OTHERS.
We describe the meaning of each of these categories in
Table I.

Figure 1: Example Issue Report of Jackrabbit Project with
BugID JCR-2718.

B. Text Pre-Processing
The summary and description field of bug reports contain

textual contents. Several pre-processing strategies are typically
performed on textual contents. These include: stop-word re-
moval and stemming. After stop-word removal and stemming
process, we represent the summary and description field of
each bug report as a bag (i.e., a multiset) of words.

Stop-word removal refers to the removal of commonly used
words that carry little meaning. These words include “is”,
“are”, “am”, “if”, etc. To remove stop words, we consider a list
of stop words that are provided at http://dev.mysql.com/doc/
refman/5.6/en/fulltext-stopwords.html. Stemming refers to the
process of reducing a word to its root form. For example, the
word “reads” and “reading” would both be reduced to “read”.
By doing stemming, words that carry very similar meaning
would be mapped to the same token. We make use of Porter
stemmer, which removes the suffixes of words to reduce a word
to its root form [5]. We use the implementation of Porter Stem-
mer available from: http://tartarus.org/martin/PorterStemmer/.

C. Classification Algorithms
Here, we describe each of the classification algorithms that

is used in this study.

1) Support Vector Machine
Support Vector Machine (SVM) [6] constructs a
hyperplane or a set of hyperplanes in n-dimensional
space. Each training bug report is represented as a
point in a multi-dimensional space where each feature
represents a dimension. SVM selects a small number of
critical boundary instances as support vectors for each
class, and builds a discriminant function to form decision
boundaries with the principle of maximizing the margins
among training issue reports belonging to the different
labels. The discriminant function itself can be tuned
based on the kernel that is used. The most commonly
used one is linear kernel.

2) Naive Bayes
Naive Bayes [7] works under the assumption that each
feature is independent to other features in discriminat-
ing the class label (in our case: the 13 issue report
categories). Based on this assumption, for an instance
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Table I: Thirteen Issue Categories Manually Assigned By Herzig et al. to Issue Reports

Category Description
BUG Issue reports documenting a problem which impairs or prevents the correct functioning of a software and

causes deviation from expected results. A bug can be an error, defect, failure or fault.
RFE Issue reports which document request for enhancement (RFE) such as addition of new functionality or a new

feature.
IMPROVEMENT Issue reports specifying perfective maintenance task to improve the overall performance of a software, e.g.,

to change a piece of code to produce results from a database faster.
DOCUMENTATION Issue reports which refer to updating external links or documentation related to code, e.g., to update API

documentation in HTML format.
TASK Issue reports which specify a task that needs to be done.
BUILD SYSTEM Issue reports related to problems in build systems, which are used to automate several software build activities

such as compiling code and running test cases.
REFACTORING Issue reports specifying refactoring of source code, i.e., changing the non-functional attributes of a piece of

code which improves its maintainability.
DESIGN DEFECT Issue reports pertaining to problems in the design of a software, e.g., code smells.
TEST Issue reports which are related to test cases.
CLEANUP Issue reports pertaining to code cleanup, e.g., to clean unwanted code such as redundant code, dead code, etc.
BACKPORT Issue reports related to backporting where a fix or patch of any flaw on the current version is applied to an

older version of a system.
SPECIFICATION Issue reports related to changes in the requirement specification documents.
OTHERS Issue reports that cannot be classified to any of the above categories.

Ii = 〈f1, f2, ..., fn〉, where Ii is i-th data instance, fj
is the j-th feature that is extracted to classify Ii, n is
the number of features, and m is the number of classes,
we can compute the probability that an instance Ii is
categorized as class Ci by the following formula.

p(Ci = c|Ii) = p(Ci = c)× p(Ii|Ci = c)
∑

c′∈{c1,...,cm} p(Ci = c′)× p(Ii|Ci = c′)

=
p(Ci = c)×∏|Ii|

i=1 p(fi|Ci = c)
∑

c′∈{c1,...,cm} p(Ci = c′)×∏|Ii|
i=1 p(fi|Ci = c′)

The above equation can be used to predict a class
label for an instance Ii. For example, if ∀k∈c′\{c}
p(Ci = c|Ii) ≥ p(Ci = k|Ii), then we classify Ii as class
c. Due to the assumed independence of the features,
naive Bayes is computationally cheap compared to other
algorithms that assume no such independence. Despite
the inaccuracy of the assumption in many real world
problems, it has been shown to work pretty well.

3) Naive Bayes Multinomial
Naive Bayes Multinomial [7] is an extension of the
Naive Bayes algorithm. Notice that in Naive Bayes,
it only considers the presence or absence of a feature
in an instance, but not the actual value of the feature.
Naive Bayes Multinomial considers the actual value. In
general, Naive Bayes Multinomial performs better than
Naive Bayes when the total number of unique features
are large. It has been successfully used in many past
studies, e.g., [8].

4) K-Nearest Neighbor
K-nearest neighbor (kNN) [6] is an instance-based algo-
rithm based on the idea that a particular class instances

should be close to one another. Thus, to predict the label
of an instance, kNN perform two steps:

a) For each unlabeled instance, kNN searches for its first k
nearest neighbors in the labeled instances. Distance be-
tween two data instances is measured using a particular
distance metric (e.g., Euclidean distance, Minkowsky
distance, Manhattan distance, etc).

b) kNN then assigns to each unlabeled instance the
most frequent label that its k-nearest neighbors have.
For example, if the number of neighboring labeled
instances having class c is higher than those having
other class labels, kNN classifies it as class c.

5) Random Forest
Random Forest [9] is an extension of classification tree.
Classification tree is constructed by iteratively picking a
feature that can “best” separate the instances to different
classes. This is usually measured by an attribute selection
metric, e.g., information gain. The process continues
until the leafs of the tree contains only instances with
the same class label. Instead of making one classification
tree by considering the entire features in the data,
random forest builds many classification trees; each
corresponding to a randomly chosen subset of the entire
features. To classify a new instance, the feature vector
of the instance is input to each of the classification tree.
Each tree produces a particular classification. This is
often called the tree ”vote” for the class. The algorithm
then chooses the classification having the most votes.

6) RBF Network
RBF Network [10] is a variant of artificial neural network
whose activation function in the hidden layer of the
network is a radial basis function. It outputs a score
that is computed by linear combination of input, network
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parameter, and radial basis function. During training, each
class label is assigned a specific score. Given a labeled
instance, RBF Network then trains the network to output a
score as close as possible to the labeled score. To classify
an unlabeled instance, RBF Network picks the class label
whose score is the closest to the instance score.

III. PROPOSED APPROACH

In this section, we first present the overall framework of our
proposed approach. We then zoom-in to the feature extraction
component to describe the set of features that we use, and the
model building component to describe how we convert vectors
of feature values to a statistical model.

A. Overall Framework
Our framework, shown in Figure 2, is divided into two

phases: training and deployment. The goal of the training phase
is to create a statistical model to predict whether an issue
report needs to be reclassified and its reclassified category.
In the deployment phase, we use the model created during
the training phase to predict the reclassified category of a new
issue report.

Training Issue 
Reports 

Ground Truth 
Categories 

Feature Extraction 

Model Building 

New Issue 
Reports 

Model  
Predicted 

Reclassified 
Categories 

Training Phase Deployment Phase 

Figure 2: Overall Framework

To train the statistical model, in the training phase, our ap-
proach takes as input a training set of issue reports along with
their ground truth categories. These ground truth categories
can be obtained by manual inspection. Herzig et al. has a
good dataset that contains ground truth categories of more than
7,000 issue reports [3]. Based on these inputs, our approach
then extracts values of various features from each issue report.
Each feature corresponds to a characteristic of an issue report.
At the end of this step each issue report is represented by a
vector of feature values. These vectors are then input to the
model builder component which employs a machine learning
solution to build a statistical model that is able to predict the
reclassified category of an issue report.

After the model is built, it can then be used in the deploy-
ment phase to assign reclassified category to a new issue report.
To do so, we first extract values of various features from the
new issue report and create a representative feature vector. This

vector is then input to the model which outputs the reclassified
category.

In the next subsections, we elaborate our feature extraction
and model building processes.

B. Feature Extraction
We extract a number of features from an issue report which

include the preprocessed words extracted from its summary
and description fields as well as other information including:
the reported category of the report, the issue reporter identifier,
and the presence of a stack trace in the description field. Table
II describes the features that we extract in this study.

Each preprocessed word in the summary and description
fields is a feature and its value is the weight of the word
computed using the standard TF-IDF weighting scheme [11].
Using this weighting scheme, the weight of a word is the
product of its term frequency (TF) and inverse document
frequency (IDF). Term frequency of a word corresponds to the
number of times the word appear in an issue report. Inverse
document frequency of a word corresponds to the logarithm of
the ratio of the total number of issue reports to the number of
issue reports in which this word occurs. Higher value of IDF
shows that the term is rare and can be used to differentiate
between issue reports, whereas low value shows that the term
is very common. The weight of a word in an issue report can
then be computed as follows:

wi,D,C = TF i,D × IDF i,C

IDF i,C = log(Nni
)

In the above equations, TF i,D refers to the number of times
a word i appears in an issue report D. N is the total number
of issue reports and ni is the number of issue reports which
contain the word i.

For the stack trace feature (F2), we detect the existence
of a stack trace in the description field of an issue report by
checking the occurrence of one of the following patterns:

1) Phrase: “Exception in thread”

2) Regular expression:
[A-Za-z0-9$.]+Exception

3) Regular expression:
[A-Za-z0-9$.]+[A-Za-z0-9]+([A-Za-z0-9]+(j̇ava:[0-
9]+)?)

These patterns often appear in a stack trace of programs
written in Java. The five projects that we analyze in this study
are all written in Java.

C. Model Building
At the end of the feature extraction process, each issue report

is mapped to a vector of feature values (aka. a feature vector).
In the model building process, our approach takes as input a
set of feature vectors corresponding to training bug reports and
produces a statistical model. The model building process uses
a classification algorithm to build this model.
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Table II: List of Features

ID Feature
W1 - WN Each feature is a preprocessed word that appears in the summary or description fields of an issue

report. Here, N is the total number of words.
C1 - C13 Reported category of an issue report as indicated in an issue tracking system. For example, if the

issue report is marked as a bug by its reporter, the value of that feature is 1. This feature vector
would have one of the features as 1 and rest of the features as 0 (Table I).

S Boolean feature that indicates the presence or absence of a stack trace in the description field of
a bug report. Its value is 1 if a stack trace exists and 0 otherwise. We use a number of regular
expressions to automatically identify the presence or absence of a stack trace.

R1 - RM The identifier of the reporter of the issue report. Each reporter is treated as a feature in one-dimension
of the n-dimensional feature vector. The value of that feature is 1 if the reporter reported that bug.
Here, M is the total number of reporters.

We need a classification algorithm that is able to build
a model that can classify a data instance (i.e., an issue
report) into one out of 13 classes (i.e., the 13 categories).
A classification algorithm that is able to perform this task is
often known as a multi-class classification algorithm. There
are a number of such algorithms (some of them are presented
in Section II-C), in this paper, by default we make use of
an implementation of Support Vector Machine (SVM) named
LibSVM [12]2 which has been shown to be effective in many
prior studies, e.g., [13].

IV. EXPERIMENT

In this section, we first describe the datasets that we use and
our experiment methodology. Next we present our research
questions and our experiment results that answer these ques-
tions.

A. Datasets & Experiment Methodology
We use the manually reclassified issue report datasets from

Herzig et al. [3], which is made publicly available from
http://www.st.cs.uni-saarland.de/softevo//bugclassify/.
The dataset contains a total of 7401 closed, resolved, and
verified issue reports from 5 open source Java projects. Table
III describes this dataset.

Table III: Project Description

Project Organisation Tracker Type # of Bug
Reports

HTTPClient APACHE JIRA 746
Jackrabbit APACHE JIRA 2402
Lucene-Java APACHE JIRA 2443
Rhino MOZILLA BugZilla 1226
Tomcat5 APACHE BugZilla 584

To measure the effectiveness of our approach, we perform
a 10-fold stratified cross validation [14]. We divide the dataset
into 10 buckets, where each bucket contains similar proportion
of issue reports of various ground truth categories. We then use
nine of these buckets as training data, and one as test data.

2Available for download from: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

We evaluate the performance of a issue report reclassification
approach on the test data. We repeat the process ten times
and compute the average performance. We measure the per-
formance of an issue report reclassification approach in terms
of weighted precision, recall, and F-measure. We define these
three metrics as follows:

Preccategory =
#TPcategory

#TPcategory+#FPcategory

Reccategory =
#TPcategory

#TPcategory+#FNcategory

F1category =
2×Preccategory×Reccategory

Preccategory+Reccategory

WPrec = 1
N ×

∑#category
category=1 ncategory × Preccategory

WRec = 1
N ×

∑#category
category=1 ncategory ×Reccategory

WF1 = 1
N ×

∑#category
category=1 ncategory × F1category

In the above equations, #TPcategory, #FPcategory, and
#FNcategory are the number of true positives, false positives,
and false negatives of a particular category. N is the total
number of issue reports in the test data, and ncategory is the
number of issue reports of a particular category.

We compare our approach with the two baseline approaches.
The first baseline (Baseline-1) simply predicts the reclassified
category of an issue report to be the same as its original
category. For example, for the issue report in Figure 1, the
first baseline approach would predict its reclassified category
as “Bug”. The second baseline (Baseline-2) simply predicts the
reclassified category of every issue report as “Bug”. Note that
“Bug” is the most common category among all issue reports.

B. Research Questions
We investigate 5 research questions in our study:

RQ1: To what extent could our proposed approach predict
if an issue report needs to reclassified, and if so, outputs its
correct category? We use our proposed approach to predict
the correct category of an issue report and compare this
category with the ground truth which is manually created
by Herzig et al. We compute the weighted precision, recall
and F-measure of our approach and compare them with the
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Table IV: Effectiveness of Our Approach. Prec = Precision, Rec = Recall, F1 = F-Measure.

HTTPClient Jackrabbit Lucene-Java
% of Issue Reports Prec Rec F1 Prec Rec F1 Prec Rec F1

Ours 0.61 0.63 0.60 0.71 0.72 0.71 0.62 0.63 0.62
Baseline-1 0.54 0.52 0.43 0.61 0.62 0.54 0.50 0.50 0.43
Baseline-2 0.16 0.40 0.23 0.15 0.39 0.21 0.08 0.28 0.12

Improvement-1 (%) 12.96 21.15 39.53 16.39 16.12 31.48 24.00 26.00 44.18
Improvement-2 (%) 281.25 57.49 160.86 373.33 84.61 238.09 675.0 125.0 416.66

Rhino Tomcat5
% of Issue Reports Prec Rec F1 Prec Rec F1
Ours 0.58 0.61 0.57 0.58 0.62 0.58
Baseline-1 0.35 0.57 0.43 0.36 0.58 0.45
Baseline-2 0.26 0.51 0.35 0.30 0.54 0.38
Improvement-1 (%) 65.71 7.01 32.55 61.11 6.89 28.88
Improvement-2 (%) 123.07 19.60 62.85 93.33 14.81 52.63

baseline approaches.

RQ2: What is the effect of varying the amount of training
data on the effectiveness of our proposed approach? In RQ1,
we use ten-fold cross validation, which means that 90% of
the labeled issue reports are used as training data. In this
research questions, we would like to investigate the impact
of reducing the amount of training data on the performance of
our approach.

RQ3: What are the features that can discriminate between
different issue categories? We extract thousands of features
from issue reports. Here, we analyse and identify features
which are good at differentiating between different categories.
We use Fisher score [15] to infer the most discriminative
features. The Fisher score for a feature is computed as:

F (j) =

∑#class
class=1(x

(class)
j − xj)

2

∑#class
class=1(

1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x

(class)
j )2)

In the above equation, F (j) represents the Fisher score of
the jth feature, nclass is the numbers of issue reports of a
particular category, xj represents the average value of the jth

feature of all issue reports, x
(class)
j is the average value of the

jth feature of the ith category-labeled issue report and x
(class)
i,j

is the jth feature of the ith category-labeled issue report.

RQ4: What kinds of issue reports are often misclassified by
our proposed approach? In this question, we analyse the
issue reports which are classified correctly and those which
are misclassified by our proposed approach. We highlight the
weaknesses of our approach.

RQ5: What are the effectiveness of various common classifi-
cation algorithms for fine-grained issue report reclassification
problem? By default we use a Support Vector Machine (i.e.,
LibSVM) as the classification algorithm. In this RQ, we
compare the results of different classification algorithms with
those of LibSVM.

C. Experiment Results
In this subsection, we present our experiment results which

answer the five research questions presented earlier. We present

an answer to each of these questions one at a time in the
following subsections.

1) RQ1: Effectiveness of Our Approach: Table IV shows the
Precision (Prec), Recall (Rec) and F-measure (F1) scores for
our method and the two baselines. The results show that our
approach performs better than both the baseline approaches for
all the 5 projects. We can achieve a weighted precision, recall,
and F-measure scores in the ranges of 0.58-0.71, 0.61-0.72, and
0.58-0.71 respectively. In terms of F1, which is the harmonic
mean of precision and recall, our approach can substantially
outperform the baselines by 28.88%-416.66%. The values in
bold show the improvement of our approach over the two
baselines.

2) RQ2: Varying the Amount of Training Data: We use
different amount of training data ranging from 10% to 90 %
of all issue reports in a dataset. For each percentage level, we
randomly sample an issue report dataset 10 times to create
training and test data sets. We report the average performance
across the 10 iterations.

Table V shows the result of varying the amount of training
data to build a model. We can observe that for HTTPClient,
the F-measure remains stable when the amount of training data
is varied from 50% to 90%. However there is a substantial
reduction in F-measure when the amount of training data
is reduced to 40% or lower. For Jackrabbit, the F-measure
remains stable when the amount of training data is varied from
30% to 90%. However there is a substantial reduction in F-
measure when the amount of training data is reduced to 20%
or lower. For Lucene, the F-measure remains stable when the
amount of training data is varied from 50% to 90%. However
there is a substantial reduction in F-measure when the amount
of training data is reduced to 40% or lower. For Rhino, the
F-measure remains stable when the amount of training data
is varied from 60% to 90%. However there is a substantial
reduction in F-measure when the amount of training data is
reduced to 50% or lower. For Tomcat5, the F-measure remains
stable when the amount of training data is varied from 30%
to 90% (with the exception of 70%). However there is a
substantial reduction in F-measure when the amount of training
data is reduced to 20% or lower. The above result shows that
our approach requires a substantial number of training data
(i.e., 30-60% of all issue reports) for it to work optimally.
Note that even on the worst setting (i.e., 10% of all issue
reports), in general our approach still outperforms or has a
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Table V: Varying the Amount of Training Data. Prec = Precision, Rec = Recall, F1 = F-measure.

HTTPClient Jackrabbit Lucene-Java
% of Issue Reports Prec Rec F1 Prec Rec F1 Prec Rec F1

10 0.49 0.56 0.47 0.63 0.65 0.60 0.55 0.57 0.53
20 0.54 0.55 0.46 0.64 0.665 0.61 0.57 0.57 0.54
30 0.58 0.60 0.54 0.68 0.70 0.67 0.59 0.60 0.58
40 0.54 0.53 0.48 0.69 0.71 0.68 0.59 0.58 0.56
50 0.58 0.61 0.57 0.69 0.71 0.69 0.62 0.63 0.61
60 0.59 0.62 0.58 0.64 0.65 0.62 0.61 0.62 0.61
70 0.60 0.62 0.58 0.70 0.72 0.70 0.62 0.63 0.62
80 0.62 0.68 0.61 0.70 0.72 0.70 0.63 0.64 0.63
90 0.61 0.64 0.60 0.71 0.73 0.71 0.62 0.63 0.62

Rhino Tomcat5
% of Issue Reports Prec Rec F1 Prec Rec F1
10 0.45 0.52 0.40 0.47 0.54 0.43
20 0.46 0.50 0.39 0.50 0.55 0.45
30 0.46 0.50 0.40 0.54 0.60 0.53
40 0.47 0.48 0.40 0.56 0.62 0.56
50 0.52 0.58 0.50 0.56 0.61 0.56
60 0.55 0.59 0.53 0.50 0.48 0.42
70 0.56 0.60 0.54 0.49 0.44 0.38
80 0.58 0.61 0.56 0.57 0.62 0.58
90 0.59 0.61 0.56 0.54 0.59 0.55

similar performance to the baseline approaches.
3) RQ3: Most Discriminative Features: We compute a list

of top-10 most discriminative features for each project. Tables
VI-X shows the list of top-10 features with their corresponding
Fisher scores.

We note that many of the discriminative features correspond
to the value of the reported category. Some words are also
useful indicators to predict the correct category of an issue
report. For example, the presence of the word “test” often
indicates that an issue report is of category TEST, the presence
of the word “cleanup” often indicates that an issue report is of
category CLEANUP, the presence of the word “maven”3 often
indicates that an issue report is of category BUILD SYSTEM,
the presence of the word “design” often indicates that an issue
report is of category DESIGN DEFECT, and so on.

Table VI: Most Effective Features (HTTPClient)

No. Feature Fisher Score

1 Stemmed word ”test” 1.73
2 Reported Category (TASK) 0.58
3 Stemmed word ”privat” 0.56
4 Reported Category (BUG) 0.54
5 Stemmed word ”cleanup” 0.50
6 Stemmed word ”protect” 0.48
7 Stemmed word ”maven” 0.48
8 Stemmed word ”design” 0.43
9 Reported Category (TEST) 0.43
10 Stemmed word ”remov” 0.39

4) RQ4: Analysis of Correctly & Wrongly Classified Issue
Reports: We draw a confusion matrix to analyse issue reports
that are correctly and wrongly classified by our proposed
approach. Figure XI shows the confusion matrix. The x-
axis corresponds to categories predicted by our approach.

3Maven is a utility that developers can use to build a software project.

Table VII: Most Effective Features (Jackrabbit)

No. Feature Fisher Score

1 Reported Category (BUG) 0.72
2 Stemmed word ”test” 0.55
3 Stemmed word ”maven” 0.51
4 Stemmed word ”backport” 0.46
5 Reported Category (IMPR) 0.43
6 Stemmed word ”remov” 0.37
7 Reported Category (TASK) 0.34
8 Stemmed word ”branch” 0.34
9 Stemmed word ”open” 0.33

10 Stemmed word ”issu” 0.24

Table VIII: Most Effective Features (Lucene-Java)

No. Feature Fisher Score

1 Stemmed word ”test” 0.94
2 Reported Category (BUG) 0.61
3 Reported Category (TEST) 0.50
4 Stemmed word ”backport” 0.45
5 Stemmed word ”remov” 0.38
6 Stemmed word ”build” 0.37
7 Reported Category (TASK) 0.34
8 Stemmed word ”eol” 0.33
9 Issue Reporter ”brian.curnow@gfs.com” 0.33

10 Stemmed word ”doap” 0.33

The y-axis corresponds to the ground truth labels. A cell in
the confusion matrix indicates the number of issue reports
of a particular ground truth category that is classified as a
particular category by our approach. For example, from the
confusion matrix, we can learn that 95 issues whose ground
truth category is DOCUMENTATION are misclassified as BUG.
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Table XI: Confusion Matrix: Ground Truth Versus Predicted Categories

BU
G
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EA
NU
P

TE
ST

BA
CK
PO
RT

OT
HE
RS

BUG 2631 119 8 48 23 0 14 1 4 8 26 1 31
IMPROVEMENT 320 658 13 214 12 2 6 19 0 16 8 0 4
BUILD SYSTEM 29 19 127 17 10 0 0 1 0 5 11 0 5
RFE 139 223 7 765 13 1 15 31 5 13 6 0 3
DOCUMENTATION 95 37 13 39 209 2 0 2 0 17 0 0 9
TASK 4 6 2 12 4 4 0 0 0 0 1 0 0
DESIGN DEFECT 74 18 0 36 0 1 33 11 0 4 1 0 0
REFACTORING 20 61 0 51 2 0 6 91 0 16 1 0 1
SPECIFICATION 54 6 0 8 0 0 0 0 13 1 1 0 1
CLEANUP 58 42 5 30 11 0 5 12 0 104 6 0 2
TEST 84 15 8 12 1 0 0 3 0 4 220 0 2
BACKPORT 12 3 0 3 1 0 0 0 0 2 1 4 0
OTHERS 84 17 6 9 9 0 0 2 0 0 1 0 25

Note: IMPR=IMPROVEMENT, BUILD=BUILD SYSTEM, DOC=DOCUMENTATION, DESIGN-DEF=DESIGN DEFECT,
REFAC=REFACTORING, SPEC=SPECIFICATION

Table IX: Most Effective Features (Rhino)

No. Feature Fisher Score

1 Stemmed word ”test” 3.84
2 Stemmed word ”suit” 0.43
3 Stemmed word ”patch” 0.32
4 Stemmed word ”driver” 0.29
5 Stemmed word ”regress” 0.27
6 Stemmed word ”creat” 0.25
7 Stemmed word ”rhino” 0.22
8 Reported Category (BUG) 0.20
9 Reported Category (RFE) 0.20
10 Issue Reporter ”david” 0.20

Table X: Most Effective Features (Tomcat5)

No. Feature Fisher Score

1 Stemmed word ”longer” 1.15
2 Issue Reporter ”starksm” 0.71
3 Stemmed word ”class” 0.64
4 Stemmed word ”ant” 0.62
5 Reported Category (BUG) 0.56
6 Reported Category (RFE) 0.56
7 Stemmed word ”extern” 0.56
8 Stemmed word ”secur” 0.53
9 Stemmed word ”outdis” 0.49

10 Issue Reporter ”kroy” 0.49

From the confusion matrix, we can learn that issue reports of
category BUG are often misclassified as IMPROVEMENT. Issue
reports of category IMPROVEMENT are often misclassified
as BUG and RFE. Issue reports of category RFE are often
misclassified as IMPROVEMENT and BUG. Issue reports of
category DOCUMENTATION are often misclassified as BUG.
Issue reports of category REFACTORING are often misclas-
sified as IMPROVEMENT and RFE. Issue reports of category

CLEANUP are often misclassified as BUG and IMPROVEMENT.
Issue reports of category TEST are often misclassified as BUG.

Moreover, issue reports of category BUILD SYSTEM is
often well predicted. On the other hand, issue reports of
categories TASK, DESIGN DEFECT, SPECIFICATION, and
BACKPORT are often poorly predicted.

5) RQ5: Comparison to Other Classification Algorithms:
We use Weka [16] to evaluate various other algorithms which
support multi-class classification. We compare precision, recall
and F-measure of these algorithms with our approach (SVM).
We show the results in Table XII. We can note that SVM
(i.e., LibSVM) outperforms the other multi-class classification
algorithms.

D. Threats to Validity
Threats to internal validity relates to errors in our experi-

ments. We have rechecked our code, still there could be errors
that we missed. The validity of our ground truth depends on
the reliability of the categories that are manually produced by
Herzig et al. which is another threat to internal validity.

Threats to external validity relates to the generalizability of
our findings. We have evaluated our approach using more than
7,000 issue reports from 5 systems. In the future, we plan
to reduce this threat further by considering additional issue
reports from more systems.

Threats to construct validity refers to the suitability of our
evaluation metrics. We have used weighted precision, recall,
and F-measure which are well known metrics and they have
been used in many previous studies [17], [18]. Thus, we believe
there is little threat to construct validity.

V. RELATED WORK

In this section, we briefly describe related past studies. We
first describe studies that also categorize bug reports. Next,
we describe other studies that propose various ways to help
developers manage bug reports. We then describe empirical
studies on bug reports. Due to the space limitation, the survey
here is by no means complete.
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Table XII: Comparison with Other Algorithms

Approach
HTTPClient Jackrabbit Lucene-Java Rhino Tomcat5

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Ours (i.e., LibSVM) 0.61 0.63 0.60 0.71 0.72 0.71 0.62 0.63 0.62 0.58 0.61 0.57 0.58 0.62 0.58
Naive Bayes (NB) 0.49 0.47 0.48 0.51 0.39 0.43 0.46 0.37 0.40 0.51 0.51 0.51 0.48 0.40 0.42
NB Multinomial 0.53 0.60 0.54 0.64 0.66 0.61 0.60 0.59 0.56 0.52 0.58 0.49 0.51 0.58 0.47
K-Nearest Neighbors 0.47 0.29 0.34 0.60 0.58 0.59 0.46 0.40 0.42 0.50 0.43 0.43 0.43 0.43 0.42
Random Forest 0.45 0.56 0.46 0.54 0.58 0.53 0.45 0.48 0.43 0.51 0.56 0.47 0.45 0.56 0.46
RBF Network 0.37 0.39 0.37 0.39 0.41 0.40 0.31 0.31 0.30 0.40 0.43 0.41 0.33 0.54 0.39

A. Categorization of Issue/Bug Reports
The closest work to ours is the work by Antoniol et

al. which predicts if an issue report is a bug report or an
enhancement [4]. In this work, we extend Antoniol et al.’s
work by considering fine granularity category prediction, i.e.,
we predict not one out of two categories, but one out of thirteen
categories, which is a harder problem. We also consider the
reclassification setting where our goal is to reclassify the
categories of issue reports by taking into consideration the
original reported categories of the reports along with other
features.

There are also other studies that also employ classification
algorithms to categorize bugs into various labels. Gegick et al.
use a text classification approach to predict if a bug report is a
security bug or not [19]. Their model was able to classify 78%
of the security bug reports which were labeled as not-security
bug reports. Thung et al. propose a method to automatically
categorize bug reports into either a control and data flow bug,
or a structural bug [20]. Their results show that automatic
classification using multiclass classification algorithm can label
defects with an accuracy of 77.8%. Menzies and Marcus
present an approach that predict fine-grained severity labels
of bug reports [21]. Their work is extended by Lamkanfi et al.
which categorize bug reports into two categories: severe and
not severe [22]. They evaluate their approach on bug reports
from a number of open source projects. As a follow up to their
previous work, Lamkanfi et al. also investigate the performance
of a number of classification algorithms to predict bug reports
severity and show that Naive Bayes Multinomial performs the
best [23]. Tian et al. predict fine-grained severity labels by
using an extended BM25 to measure similarity between bug
reports and a nearest neighbor classification algorithm [24].
Huang et al. classify the impact of defects by analyzing
textual features extracted from bug reports [25]. Using these
features, they assign bug reports into one of the following
category labels: reliability, capability, integrity, usability, and
requirements category labels. They show that they can achieve
F-measure scores of 0.222, 0.885, 0.700, 0.629, and 0.393,
for each of the 5 category labels, respectively. Hindle et al.
propose an automated approach to assign large changes into
several maintenance categories [26]. They have experimented
with various classification algorithms and they show that these
algorithms can achieve accuracy scores of 13-70%.

B. Bug Report Management
There are other studies that propose ways to help developers

deal with a large number of bug reports. We highlight past
studies on duplicate bug report detection and bug triaging.

Bug reporting is an uncoordinated and distributed process.
Thus, often multiple reports are made which describe the

same problem. These bug reports are referred to as duplicate
bug reports. A number of studies have been proposed to
detect duplicate bug reports. Most of these studies take a
bug report and recommend top-k most similar older reports
to it. Runeson et al. extract textual contents from bug reports
and use various measures (e.g., cosine, dice and jaccard) to
compute the similarity of two bug reports [27]. The results
of their study shows that 2/3 of the duplicate bug reports
can be found using natural language processing techniques.
Wang et al. extend Runeson et al.’s work by augmenting the
textual information with execution trace information [28]. They
show that the execution trace information, when available, can
improve performance. Sun et al. propose a classification-based
approach and extend BM25F to retrieve duplicate reports [29],
[30]. Our work is orthogonal to the above as we aim to classify
the type of an issue report.

Bug triaging is the task of assigning a bug report to the
right developer to fix it [31], [32], [33], [34], [35]. Anvik et
al. and Cubranic et al. propose the usage of machine learning
algorithms such as Naive Bayes, SVM, and C4.5 to solve
bug triaging problem [31], [32]. More recently, Tamrawi et
al. propose an algorithm named Bugzie which uses fuzzy set
theory to recommend a bug report to an appropriate fixer [33].
The proposed approach keep in its cache the terms that
characterize each developer and uses this cache to measure
the suitability of a developer to a new bug report. Jeong et
al. investigate the reassignments of bug report fixers (aka.
bug report tossing) in Mozilla and Eclipse, and propose a
graph-based approach that uses the concept of Markov chain
to improve bug triaging [34]. Their model can help to find
team structures, find experts and assign developers to bug
reports. Their technique can reduce the tossing event by 72%
and improve prediction accuracy by upto 23%. Bhattacharya
et al. use several techniques such as refined classification using
additional attributes, ranking function for the potential tossees
and multi-feature tossing graphs [35]. Their technique can
achieve 83.62% prediction accuracy in bug triaging and reduce
the tossing path lengths to 1.5-2 tosses.

C. Empirical Studies of Bug Reports
Researchers have also done empirical studies on bug repos-

itories (aka. issue tracking system). Anvik et al. perform a
study that investigates the characteristics of a number of bug
repositories [1]. In their paper, they show the number of reports
submitted by developers and the percentages of different bug
resolutions. They also show that developers are overwhelmed
with the large number of bug reports in repositories. Sandusky
et al. analyze bug report networks in open source development
communities and report the nature, impact, and extent of these
networks [36]. Hooimeijer and Weimer predict bug report
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quality by building a statistical model based on various features
that are extracted from more than 27,000 bug reports in open
source projects [37]. Their model predicts whether a bug
report is triaged within the stipulated time and can reduce the
cost of software maintenance in specific situations. Bettenburg
et al. reports what makes a good bug report by surveying
developers of Eclipse, Mozilla, and Apache [38]. Their study
finds that a good bug report is one that provides enough
information for developers to perform debugging activities.
Most recently, Herzig et al. investigate more than 7,000 issue
reports and manually reclassify the categories of these issue
reports [3]. They highlight that misclassification impacts the
task of predicting bug-prone files.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose an approach that predicts if an
issue report is misclassified, and if so, outputs its new predicted
category. Our classification based approach extracts a number
of feature values from a training set of issue reports, and
creates a statistical model based on these feature values and
ground truth categories. The extracted features include pre-
processed words that appear in the summary and description
fields, presence of stack trace, issue reporter identifier, and
the reported issue category. Based on the values of these
features, we use LibSVM, which is a multi-label classification
algorithm, to create a statistical model. This model is then used
to predict the category that should be assigned to a new issue
report. We have evaluated our approach on more than 7,000
issue reports from 5 software systems and the results show that
our approach can achieve weighted F-measure scores of 0.57-
0.71 which improves the results of several baseline approaches
by 28.88%-414.66%.

As future work, we plan to design more advanced multi-
class classification solution that can achieve higher F-measure
scores. We also plan to reduce the threats to external validity
further by investigating more issue reports from more systems.
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[38] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?,” in ESEC/FSE, pp. 308–
318, 2008.

135


