
Software Internationalization and Localization:
An Industrial Experience

Xin Xia∗�, David Lo†, Feng Zhu‡, Xinyu Wang∗, and Bo Zhou∗§
∗College of Computer Science and Technology, Zhejiang University

{xxkidd, wangxinyu, bzhou}@zju.edu.cn
†School of Information Systems, Singapore Management University

davidlo@smu.edu.sg
‡State Street Corporation

FZhu3@statestreet.com

Abstract—Software internationalization and localization are
important steps in distributing and deploying software to differ-
ent regions of the world. Internationalization refers to the process
of reengineering a system such that it could support various
languages and regions without further modification. Localization
refers to the process of adapting an internationalized software
for a specific language or region. Due to various reasons, many
large legacy systems did not consider internationalization and
localization at the early stage of development. In this paper, we
present our experience on, and propose a process along with
tool supports for software internationalization and localization.
We reengineer a large legacy commercial financial system called
PAM of State Street Corporation, which is written in C/C++,
containing 30 different modules, and more than 5 millions of
lines of source code. We propose a source code ranker that
recovers important source code to be analyzed. Based on this
code, we extract general patterns of the source code that need to
be reengineered for internationalization. We divide the patterns
into 2 categories: convertible patterns and suspicious patterns. To
locate the source code that need to be modified, we develop an
automated tool I18nLocator, that consumes these patterns and
outputs the locations that match the patterns. The source codes
matching the convertible patterns are automatically converted,
and those matching the suspicious patterns are converted by
developers considering the context of the corresponding codes.
For localization, we extract hard-coded strings, translate them,
and store them into resource data files. Out of the 504 thousands
of lines of source code that are modified using our proposed
approach, we can automatically modify 79.76% of them, saving
much valuable developers’ time. The quality of the resultant
system is also good. The number of bugs per lines of code
modified found during user acceptance test and deployment to
the production environment is 0.000218 bugs/LOC.

Keywords—Software Internationalization, Software Localiza-
tion, Reengineering, Industry Experience

I. INTRODUCTION

Nowadays, software applications always need to be dis-
tributed to different countries and regions over the world. It
is common to see that a popular software has many local
versions, for example, Windows 7 has US version, French
version, simplified Chinese version, etc. The local versions
of software help local users better understand and use it,

�The work was done while the author was visiting Singapore Management
University.

§Corresponding author.

attract more users, and increase software sales. Unfortunately,
not all software products are originally designed with multi-
language support. Some legacy systems developed between
1980s and 1990s did not take software internationalization and
localization into consideration, and they still provide service
around the world due to various reasons.

Reengineering a legacy system to support multiple lan-
guages and providing local versions require modification of
considerable amount of source code. We need an effective
process and efficient tools in order to reduce development
effort. One naive way to internationalize and localize software
is to locate all the places in the source codes that require mod-
ifications manually, and modify those codes. But in practice,
this is ineffective since there are millions of lines of source
code in legacy systems. It is hard to cover all the source
code by manual inspection. This work requires hundreds of
human resources, which will significantly increase the software
development and maintenance cost.

At present, a couple of books have been published on
software internationalization and localization [1], [2]. These
books are good sources of information for software interna-
tionalization and localization, and introduce many technolo-
gies and tools. However, in a real commercial project, the
process of software internationalization and localization is
a bit different, and no industrial experience is reported in
these books. Generally speaking, software internationalization
and localization refer to two different tasks to reengineer
legacy systems. Internationalization is the process of making
a software application adapts to various languages and regions
without engineering modifications; Localization is the process
of adapting internationalized software for a specific region or
language by adding locale-specific components and translating
text [2].

In this paper, we present our experience in software in-
ternationalization and localization. We propose a process and
tool supports for software internalization and localization. We
reengineer PAM, which is a large-scale legacy financial system
of State Street Corporation, containing more than 5 millions
of C/C++ source codes, and 30 different modules grouped
into clusters. The whole project lasts for 2 years, from 2009-
2011, and 25 developers and 8 quality assurance personnel
(QAs) are involved. We iterate the reengineering work from
cluster to cluster. For each iteration, we use our source code

2013 International Conference on Engineering of Complex Computer Systems

978-0-7695-5007-7/13 $26.00 © 2013 IEEE

DOI 10.1109/ICECCS.2013.40

222

ranker IRanker to find the most important source files. We
extract some patterns from these files, and use them in our
automated code search tool I18nLocator. These patterns are
divided into 2 categories: convertible patterns and suspicious
patterns, and I18nLocator automatically converts the source
code located by convertible patterns, and highlights the source
code located by suspicious patterns. By considering the context
of source codes located by suspicious patterns, developers will
reengineer them. There might be some patterns that we miss
by just analyzing the important files highlighted by IRanker.
We run unit tests and perform other internal quality assurance
(QA) activities to find bugs caused by the missing patterns.
Additional patterns to address these bugs are then identified.
After we internationalize PAM, we extract hard-coded strings
and put these in a separate resource data file.

The main contributions of this paper are as follows:

1) We present our experience in reengineering a large
financial legacy system consisting of more than 5
million lines of code to support internalization and
localize it to Chinese language. To our best knowl-
edge, it is the first time an industrial experience
on software internationalization and localization is
reported. We reengineer an actual legacy system,
propose a framework, and present the experience we
learned from the project. We believe our experience
and proposed process can help others perform other
internationalization and localization projects.

2) We propose a source code ranker IRanker to select
a small proportion of source code files from which
important patterns are inferred by manual inspection.
We extract two types of patterns: convertible patterns,
and suspicious patterns.

3) We develop an internationalization tool I18nLocator
to locate and convert source codes. It processes the
convertible and suspicious patterns.

The remainder of the paper is organized as follows. In
Section II, we present a brief introduction of PAM. In Sec-
tion III, we elaborate our framework for internationalizing
and localizing PAM. In Section IV, we present our software
internationalization methodology. In Section V, we present
our software localization methodology. In Section VI, we
report our assessment on the effectiveness of our proposed
methodologies. In Section VII, we briefly introduce the related
work. In Section VIII, we conclude and present future work.

II. PAM: A BRIEF INTRODUCTION

PAM is developed in 1990s, and it has a traditional
client/server architecture. The architecture of PAM is presented
in Figure 1. PAM uses Microsoft Foundation Class (MFC)
technology to build its client, and socket communication
to transfer messages between client and server. The server
contains three parts: application server handles messages from
client, and decides whether to communicate with data servers
to generate the required data; Data servers mainly fetch data
from a database or execute some operations on the database
(such as add, modify, remove, and delete records) according to
the requests from the application server; Database stores and
persists data. The four layers of our client/server architecture

Fig. 1. The Architecture of PAM

����������	
�
������

������	������
���������

��������

�������
�������������

�������
������	���

����� �����
��������

��� ���
��������

��������������

��	�������������

!���������������
��������

������	����������

����������"����#
���	$��

�		�������������
��	������

%��
����� ��
������� ������	������ �����
��	������

�������������

%�
�
��������

&�$���'���(��(���
������

��������	��
�������

��$����)��������

'���(��(��

��������	���

����������	
 ��	�����

��������
�������

��
������	��
��������

��"�������
������

 �	��'��
������

Fig. 2. PAM Modules

could be mapped to MFC Framework layer, application layer,
data access layer, and database layer, as shown in Figure 1.

Figure 2 presents the modules of PAM, which contains 30
different modules. According to the functionalities of these
modules, we divide them into 6 clusters as grouped in boxes.

III. OVERALL FRAMEWORK

Software internationalization and localization refer to two
different processes in reengineering PAM. Localization de-
pends on the internationalized version of PAM. Figure 3
presents our proposed internationalization and localization
framework. We believe that this framework could be used for
other internationalization and localization projects.

We first extract important source code files using our source
code ranker IRanker (Step 1). Then, we analyze the important
source codes to extract convertible patterns and suspicious
patterns (Step 2 and 3). Next, we input these patterns into

223

�������

���������	��
�����	�

������

�	�
�����	�

����	��������
�������

���(����*���"������#
���"�	�����"������

�	
�������

������������+���
������

!��������# �	��
����

,��-	������������
.���	����

������	�� �*����
����������� ��

���������

/!����0��������

 �	��+���
������

1

2

3

4

5

6

7

8

9

1: 11
12

13

14

15

Fig. 3. The Overall Framework of PAM Internationalization and Localization

I18nLocator (Step 4), an automated tool to locate the source
codes which match these patterns. I18nLocator automatically
converts the source codes matching convertible patterns, and
highlights the source codes matching suspicious patterns to the
developers for manual conversion (Step 5). After the above
reengineering steps, we also perform unit testing and local
quality assurance checks (Step 6). We analyze the failures cap-
tured by the unit tests and quality assurance checks, discover
the patterns we missed, and remove/edit the incorrect patterns
(Step 7). We again locate these patterns using I18nLocator
(Step 8). By iterating the above steps many times for each
cluster of PAM modules, we finally internationalize PAM.

For PAM localization, we first extract the hard-coded
strings from the source codes (Step 11). Then we translate
these hard-coded strings to Chinese language (Step 12), and
for each of the different languages (i.e., English and Chinese),
we provide different resource library files to cleanly separate
resource data from source codes (Step 13). Finally, we adjust
the GUI widgets to ensure that they have enough space to
display texts in different languages (Step 14).

IV. SOFTWARE INTERNATIONALIZATION METHODOLOGY

In this section, we first present the general idea of our
software internationalization process in Section IV-A, then we
elaborate IRanker which extracts important source code files
for manual analysis in Section IV-B. After manual analysis, we
extract convertible and suspicious patterns from the extracted
codes. We describe some of these patterns in Section IV-C.
Finally, we present I18nLocator, an automated tool that locates
the codes matching the patterns in Section IV-D.

A. General Idea

The main task for system internationalization is Unicode
transformation, i.e., replace the types and functions in source

codes which do not support Unicode standard to Unicode
compatible ones. Concretely, Unicode transformation includes
the transformation of the following 5 program element types:

1) Character Variable: We transform regular character
variables to Unicode compatible character variables.
For example, we need to replace char or char* with
TCHAR or TCHAR* respectively, and replace LPSTR
with LPTSTR.

2) Function: We replace the invocations of functions
that perform unsuitable string-related operations with
appropriate ones. These functions mainly include
string processing functions in standard C library and
Win32 API. For example, we need to replace the
invocations of function strcpy defined in the standard
C library with function tcscpy defined in the same
library. We need to replace the invocations of func-
tion SetWindowTextA defined in the Win32 API with
function SetWindowText defined in the same API.

3) Windows Macro: In standard C language, macro
T and Text are used to represent constant char-

acters and constant strings respectively [3]. These
two macros are compatible with both Unicode and
ASCII. If a system follows ASCII standard, T and
TEXT will use ASCII characters and strings, i.e., char
type which takes one byte in Windows. Otherwise,
they will use Unicode characters and strings, i.e.,
TCHAR type which takes 2 bytes in Windows. We
need to extract all these constant characters and
constant strings, and replace them with macro T and
TEXT, respectively. For example, for a constant string
“Hello”, we need to replace it with TEXT(“Hello”).
TEXT(“Hello”) will correspond to “Hello” in ASCII
standard if a system follows ASCII standard, or
L“Hello” in Unicode standard otherwise.

224

4) Database Fields: We transform database fields to
wide character type, and codes that access the
database to support Unicode. Since PAM was de-
veloped in 1990s, at that time there is no wide
character type and Unicode support. Fortunately, cur-
rently ODBC provides Unicode compatible functions.
Thus, we need to modify types and functions for
source codes related to database access such that they
support Unicode.

5) Text Processing: We need to support writing and
reading from Unicode files. In non-Unicode project,
it is easy to write to and read from files. But when we
would like to make the project internationalized, the
input and output files can be in various formats, i.e.,
ASCII or Unicode. Even Unicode files have various
formats, such as UTF-8, UTF-16 BE (Big Endian),
and UTF-16 LE (Little Endien).

It seems the transformation of the above 5 types of program
elements involve only replacement: we just need to replace the
source codes based on some defined patterns. For example, we
can simply replace all char with TCHAR. However, we meet
the following two problems when we internationalize PAM:

1) What are the simple transformation patterns? Since
PAM is a legacy system, there is not many documents
that describe the system. We need to read source
codes to extract the patterns. However, it is impossi-
ble to read all the source codes since there are more
than 5 million lines of codes. Thus, we need to find
a small yet representative set of codes that allows us
to extract these patterns.

2) Are these simple transformation patterns enough for
internationalization? We find that simple replacement
patterns do not handle all cases. There are compli-
cated code patterns. For example, in ASCII standard,
one character occupies one byte which make develop-
ers not differentiate character and byte: character ar-
rays are actually used as byte arrays, and byte arrays
are used to store characters. For internationalization,
we need to convert char into TCHAR which no longer
occupies one byte. Also, in some cases, null pointer
void* are used as a parameter to pass string pointer
to another function for writing or reading operations.
Thus, we need to consider the context of the source
code whenever we meet a null pointer void* before
performing any transformation. We refer to simple
transformation patterns as convertible patterns. We
automatically perform transformations for these con-
vertible patterns. We refer to patterns that highlight
codes that require more complex transformations as
suspicious patterns. We need to locate codes matching
these patterns and refer them to developers for manual
inspections and modifications.

B. IRanker: Ranking Important Codes

Large-scale legacy systems, such as PAM, do not have
many documents that describe them, and as discussed in
Section IV-A, we need to find the transformation patterns from
a small yet representative set of source codes. In this section,
we propose IRanker which is used to detect a representative set

�;	""%;	""

�;	""

';	

.;	�;	""

Fig. 4. An Example Dependency Graph which Contains 6 Source Files

of codes for manual identification of convertible and suspicious
patterns.

We build a dependency graph [4], [5] at source code file
level. We use a directed graph to represent the dependency
relationships among source files, and for any two source files
A and B, if A uses any of the methods in B, then A and B
have a dependency relationship and there is an edge from A to
B. In C/C++ language, the dependency is defined at the top of
source files, by statements like “include <stdio.h>”. We use
these “include” statements to build a dependency graph among
source files, and we use the corresponding source code files to
replace the header files referred to in the “include” statements.
For example, in source file “A.c”, it includes “B.h”, and in
our dependency graph, we just use “B.c” to replace “B.h”.
We remove the standard C/C++ libraries and other libraries
(e.g., Oracle libraries, MFC libraries) as we do not want to
re-engineer them.

Figure 4 presents an example dependency graph which
contains 6 source files. We notice several source files such
as B.cpp, C.cpp, E.c and F.cpp depend on A.cpp, and A.cpp
depends on D.c. To extract a subset containing representative
files from these 6 source files, we consider the relative im-
portance of each of the source files. The general rationales
behind our measurements of how important a file is are: (1)
Important source files will depend on important source files;
(2) The more times one source file is depended by other
source files, the more important it is. Based on the above
two rationales, we leverage PageRank [6], [7] to discover the
set of representative files. PageRank is used to measure the
importance of a webpage in the world wide web and has been
deployed in web search engines.

Our PageRank based approach follows the following sce-
nario: We start by reading a source file A. When we decide to
read the next source files, we have two choices: (1) we read
the source files which A depends on with the probability α; (2)
we randomly choose another source files in the system with
probability 1−α. By iterating the above steps enough times, we
can get convergence values for the probability of each source
file to be read. The source files can then be ranked or sorted
based on their probabilities. For example, we begin by reading
source file B.cpp in Figure 4, and we choose the next source
file. Since B.cpp only depends on A.cpp and F.cpp, we may
choose A.cpp or F.cpp as the next source file. Otherwise, we
may decide after reading B.cpp to randomly choose a source
file to be read.

Formally, suppose there are n source files, let us denote
Ranki as a vector containing the ranks of source files at

225

iteration i, and denote Bu as a collection of source files which
u depends on. Moreover, let us denote an n × n matrix P
being the transition matrix with Puv being the probability that
a random surfer moves from source file u to source file v, and
Puv is defined as follows:

{
Puv = 1/|Bu|, if v ∈ Bu

Puv = 0, else
(1)

The Ranki matrix is updated at each iteration by applying
the following equation:

RankTi = RankTi−1 ∗ (αP + (1− α)eeT /n) (2)

In the above equation, RankTi represents the transpose of
vector Ranki, and e = {1, 1, ...1} represents a unit vector.
After we iterate Equation (2) enough times, we will get the
final ranking scores of each source file. We set the transfer
probability α as 0.85, which is the same α value used in the
original PageRank paper [6], [7].

After we get the ranking scores for the source files, we
choose the top 2% files based on the scores as the set of
representative files, and we read these source files to detect
common patterns which are used for PAM internationalization.
As we described in the previous section, there are more than 5
million lines of source code, and if we consider top 2% source
files, there are approximately 5, 000, 000×2% = 100, 000 lines
of source code. Although this is a lot of lines of code, reading
these lines requires much less effort than reading the original
5 million lines of code.

C. Convertible Patterns vs. Suspicious Patterns

We represent these patterns by regular expressions. We
refer to the patterns that identify codes that can be automat-
ically converted to their corresponding Unicode compatible
counterparts as convertible patterns. We refer to the patterns
that identify codes that require developers’ judgement as
suspicious patterns.

Figure 5 summarizes the process of convertible and suspi-
cious patterns extraction. We first review representative set of
codes collected by IRanker or analyze the bugs identified by
unit tests and local checks, and modify these codes for inter-
nationalization. We analyze the modified codes one by one. If
a modified code contains convertible code patterns, we extract
the code patterns and represent them with regular expressions,
and check whether these patterns have already existed in the
convertible pattern repository. If these patterns are not in the
convertible pattern repository, we add these patterns into the
repository. If a modified code does not contain convertible code
patterns, we further check whether it contain suspicious code
patterns. If it does, we extract the suspicious code patterns
and add them into the suspicious pattern repository if they
have not been added there before. Finally, if we could not
decide whether a modified code contains either convertible or
suspicious code patterns, we record it, and re-analyze it when
more of such modified codes are analyzed.

Suspicious patterns require developer inspection as the
modifications of the corresponding codes need to consider the

��"��������(���������(��)�
���%����������

�����������	����

������(����*�������< ���(����*����������.���	�����
������"�����

=��

������"�	���������<

�����������������

���"�	������������.���	�����
������"�����

=��

��	���������������	����

��

Fig. 5. Suspicious and Convertible Patterns Extraction Process

1: char str1[12] = "Hello, World";
2: char str2[12], str3[12];
3: strncpy(str2,str1, 12); //A
4: size = strlen(str1) + 1;//B
5: memcpy(str2, str1, size); //C

Fig. 6. An Piece of Source Code where its Context Needs to be Taken into
Consideration for Internationalization.

context of the codes. Often the root cause of the modifications
corresponding to the suspicious patterns is that the size of
a character increases from 1 byte to 2 bytes, which makes
the memory space requirement of related data structures and
operations changes. For example, Figure 6 presents a piece
of source code for which we need to consider its context. In
ASCII, the size of a char is one byte. The source code in
Figure 6 makes this assumption. If we directly convert Lines
1 and 2 as

1: TCHAR str1[12] = "Hello, World";
2: TCHAR str2[12], str3[12];

Then at Line 3, we just copy half of str1 into str2;
similarly for Line 5. These kinds of code patterns are difficult
to be automatically converted, since we need to consider the
contextual information to get the true meaning of “12” at Line
3. The right way to modify the codes in Figure 6 is presented
in Figure 7. We consider five suspicious pattern types, i.e.,
string pointer, function, COM component, file operation, and
third-party component.

1) String Pointer: In C/C++ language, we use pointer to
store the memory address of a variable. The source codes

1: TCHAR str1[12] = "Hello, World";
2: TCHAR str2[12], str3[12];
3: _tcsncpy(str2,str1, 12*sizeof(TCHAR));

//A
4: size = _tcslen(str1) + 1;//B
5: memcpy(str2, str1, size *

sizeof(TCHAR)); //C

Fig. 7. The Correct Way to Modify the Code Shown in Figure 6

226

which compute the address using pointer and its offset address
are suspicious codes. For example, the following source code
is deemed suspicious:

1: char buffer[MAX_SIZE];
2: memcpy(pCache, (LPSTR)buffer + 1,

count);

In ASCII standard, developers did not differentiate char
and byte. We need to read the context of these pieces of
source codes to decide whether the array buffer is a byte or a
char array. For different usages of the array buffer, there are
different ways to modify them. If it is used as a byte array, we
do not need to modify it, i.e.,

1: char buffer[MAX_SIZE];
2: memcpy(pCache, (LPBYTE)buffer + 1,

count);

And if it is used as a char array, we need to modify it as
follows:

1: TCHAR buffer[MAX_SIZE];
2: memcpy(pCache, (LPTSTR)buffer + 1,

count*sizeof(TCHAR));

2) Function: There are 3 types of suspicious patterns
related to function definitions and invocations:

1) No corresponding Unicode-compatible function:
Not all functions have their Unicode compatible
version. For example, the functions fcvt and gcvt
in standard C library which transform from double
type to string type do not have their corresponding
Unicode versions. For these kinds of functions, we
need to locate them, and write a new function to make
it compatible with Unicode.

2) Parameter difference between corresponding Uni-
code and ASCII functions: The corresponding
ASCII and Unicode compatible versions may accept
different parameters. For example, the ASCII and
Unicode versions of memset accept different param-
eters:

1: void *memset(void *dest, int c,
size_t count);

2: wchar_t *wmemset(wchar_t *dest,
wchar_t c, size_t count);

For these kinds of functions, we need to locate
the invocations of these functions, and modify them
accordingly.

3) Parameter Misuse: Many functions have the same
parameters for their ASCII and Unicode versions.
However, for some function invocations, although
the arguments being passed in work for the ASCII
version, these arguments need to be modified when
invoking the Unicode version. We need to consider
the contextual information and modify them accord-
ingly. Figure 6 shows a typical example of parameter
misuse. The correct way to modify the code is shown
in Figure 7.

3) COM Component: Some COM related API functions
only accept wide characters, and in the original PAM, develop-
ers use “MultiByteToWideChar” and “WideCharToMultiByte”

&"��������)��$�
%����������

�$�	
�
%&��������� !��-8���

������ ��������!��-16

��������������-*����
	$�	�������)����	$�	����
>�����%�����?����$�@�

!��	�����$�	����
&"������

!��-16<
���������)����	$�	�������

�����-*����	$�	�����
>?����$��������%���@�

�� ?�����������2�
*����������%&�

=��

?���������

����������

Fig. 8. File Operation Process of UniFileOperation Class

functions to do the transformations between wide characters
and single byte characters. However, to internationalize PAM,
we no longer need to transform from a wide character to a
single byte character. To deal with these kinds of COM codes,
and to ensure that PAM is both compatible with ASCII and
Unicode, we check for token “UNICODE”. If token “UNI-
CODE” is not defined, the code follows ASCII standard, and
we keep the original code; if token “UNICODE” is defined,
we run the code which does not transform a wide character to
a single byte character. For example, for the following piece
of code:

1: COMServer::GetPrice(INT2 ID, BSTR NAME,
unsigned char* a_cpResult)

2: {
3: char L_NAME[MAX_NAME_SIZE] = 0;
4: wcstombs(L_NAME, NAME, sizeof(L_NAME));
5: *a_cpResult = ::GetPrice(ID, L_NAME);
6: }

We modify it as:

1: COMServer::GetPrice(INT2 ID, BSTR NAME,
unsigned char* a_cpResult)

2: {
3: #ifndef UNICODE
4: char L_NAME[MAX_NAME_SIZE] = 0;
5: wcstombs(L_NAME, NAME,

sizeof(L_NAME));
6: *a_cpResult = ::GetPrice(ID, L_NAME);
7: #else
8: *a_cpResult = ::GetPrice(ID, NAME);

//B
9: #endif
10: }

4) File Operation: To internationalize PAM, we need to
make all file operation related codes support Unicode (mainly
UTF-8, UTF-16) and ASCII. We develop a new file operation
class UniFileOperation which supports Unicode and ASCII,
locate source codes related to file operations, and replace these
codes with the invocations of appropriate functions in the
UniFileOperation class. The internal process of UniFileOper-
ation is presented in Figure 8.

227

Fig. 9. GUI of Detector Component of I18nLocator

UniFileOperation first checks the file type (whether it is
UTF-8, UTF-16 or ASCII). UTF-16 files could be identified
by the first two bytes in its header: if the first two bytes are
“FEFF”, then it is a Big Endian file; and if the first two bytes
are “FFFE”, then it is a Little Endian file. For a UTF-8 file,
the first three bytes are “EFBBBF” in Windows. We refer
to the first several bytes of a file header as byte order mask
(BOM). When reading and writing UTF-8 and ASCII file, we
need to transform the characters from single byte characters
to wide characters. Functions “MultiByteToWideChar” and
“WideCharToMultiByte” perform such transformations.

5) Third-party Component: In PAM, there are many third-
party components. For these components, we do not have
any source codes. One way to internationalize them is to
update them to the latest versions. However, only a few of
them can be updated, due to economic reasons (they are
expensive) or some software vendors stop developing new
versions. To internationalize third-party components in PAM,
we build an adapter and place it in between PAM and these
third-party components. We first locate all the source codes
interfacing with third-party components. Then we modify the
codes which fetch information from third-party components
and pass arguments to third-party components and involve
the invocations of “MultiByteToWideChar” and “WideChar-
ToMultiByte” functions.

D. I18nLocator

I18nLocator is an automated tool which we use to locate
codes matching suspicious patterns and convert codes match-
ing convertible patterns. It contains two components: replacer
which is used to locate and convert convertible codes, and
detector which is used to locate suspicious codes. Figure 9
presents the GUI of the detector component in I18nLocator.

1) Replacer: Replacer component mainly converts source
codes matching convertible patterns. We use regular expres-
sions to represent convertible patterns. These convertible pat-
terns are not simple patterns. For example, although we need
to replace char with TCHAR for internationalization, there are
three scenarios in which we cannot directly replace char with

TABLE I. THREE SCENARIOS WHERE char CANNOT BE REPLACED BY

TCHAR

Scenarios Description Example
char in #define statements Macro definition, no

modification is required
#define A char;

char in typedef statements Macro definition, no
modification is required

typedef char A;

unsigned char Cannot be replaced unsigned char a=’0’;

TCHAR as shown in Table I. The regular expression for this
convertible pattern is:

1: !(ˆ(unsigned\s+|typedef \s+|#define.*))
\bchar\b

The above regular expression refers to occurrences of
keyword char in source code lines which do not begin with
“unsigned”, “typedef” or “#define”.

2) Detector: Detector component is used to locate suspi-
cious codes matching suspicious patterns. These suspicious
patterns are also represented by regular expressions. Develop-
ers use I18nLocator to locate suspicious source codes in PAM.
Whenever suspicious codes are detected, I18nLocator will add
a comment behind these lines of source codes. The format
of the comment is: //SUSPICIOUS(OPEN): {Corresponding
Regular Expressions}. For example, the following “memset”
function is located based on a suspicious pattern:

1: memset((void*)str, ’\0’, 9);
//SUSPICIOUS(OPEN): { \bmemset\b
(?!(.*,\s*0\s*,))}

When developers complete the modification, they are re-
quired to modify the status of the comments as: //SUS-
PICIOUS(CLOSED): {Corresponding Regular Expressions}
{Developer Name and Modification Time}. The above exam-
ple would then become:

1: #ifdef UNICODE
2: wmemset((void*)str, ’\0’, 9); //

SUSPICIOUS(CLOSED): { \bmemset\b
(?!(.*, \s*0\s*,))} { by Xin Xia
2012/11/2 20:19 }

3: #endif

When I18nLocator is run again, it would ignore source
codes with comments “SUSPICIOUS(CLOSED)”.

V. SOFTWARE LOCALIZATION METHODOLOGY

Software localization requires us to adapt internationalized
software for a specific region or language. In this section,
we propose our steps for PAM localization. We first present
hard-coded string extraction and resource file creation in
Section V-A, then we address the translation of PAM in V-B.

A. Hard-coded String Extraction

Hard-coded strings refer to the strings which can be dis-
played in the GUI, and they are directly written in source
codes. An example is shown below:

1: CString loginFailedMsg = "the password
is wrong";

228

%������.���	����

�$�).����������>A�>B ����������C�D@E

������.���	����

�$�).����������> ��������%�������>������	�����F��'!�A�A &/����� .'@E

�'!�A�A &/����� .'G��� ����������C�

����	�������

����	�������

������	��'�������

Fig. 10. Hard-coded String Extraction and Resource Data Creation Process

For hard-coded string, we need to extract it, use a variable
to replace it, and store the mapping relationship between the
variable and hard-coded string in a resource data file. Different
from codes targeted by our internationalization methodology,
hard-coded strings have a single pattern, i.e., begins with a
“ or a ‘, ends with a ” or a ’, and does not appear in
macro definition statements. We use a regular expression to
represent this pattern. A typical process of hard-code string
extraction, and storage in a resource data file is presented
in Figure 10. Before extraction, the hard-coded string (i.e.,
“Login Failed! ”) exists in the source code. After extrac-
tion, we replace the hard-coded string with a variable (i.e.,
IDUC A LOGINFAILED). Then, we load the variable value
from a resource data file (i.e., ResourceFile). And in the
resource data file, we store the mapping between the variable
and its value (i.e., IDUC A LOGINFAILED: Login Failed!).
Different languages have different resource data files. To local-
ize PAM, we configure the language setting in a configuration
file.

B. Translation

Translation includes GUI text translation and online help
document translation. We outsource these need-to-translate
materials (i.e., hard-coded string and documents) to a third-
party local language translation provider. Four types of objects
need to be translated, i.e., resource data file which is used
to store hard-coded strings, online help document, constant
strings in database and other text files in PAM. Translation
may cause various bugs in PAM, and these bugs are hard to
fix.

1) Translation Causing Functional Bugs: Translation may
cause the lengths of strings to change. The length of a
translated string may be longer than the original one, which
causes the string buffer to overflow. This phenomenon is
common for English abbreviation. For example, a financial
terminology “SEC” which represents “Securities and Exchange
Commission”, when translated into Chinese becomes “

”. In this case, the length of the string increases,
and the string buffer overflows. This is a functional bug.

Another situation that causes functional bugs due to trans-
lation happens when we translate strings which should not be
translated. For example, consider the source code below:

1: #define RED_COLOR "RED"
2: color = RED_COLOR
3: if(color == "RED")
4: {
5: //DO WORK
6: }

String “RED” which appears in “#define” statement is not
a hard-coded string since it will not appear in the GUI. Note
that if we replace ”RED” at Line 1 with a method invocation
(to load the corresponding string from a resource file), it would
cause a compilation error. The string ”RED” at Line 3 is
a hard-coded string though. We may extract the hard-coded
string “RED” at Line 3 and translate it to Chinese “ ”, which
would cause a functional bug since the condition in the “if”
statement will never be met.

2) Translation Causing GUI Bugs: After translation, the
lengths of strings change, and these would potentially cause
GUI bugs:

1) Widget alignment. The width of some widgets would
change according to the length of the displayed texts.
This causes the widgets to be badly aligned when the
text is changed from one language to another.

2) Truncated text display in widgets. Some widgets have
a fixed width. Thus, when the text length increases,
it would cause a truncated text to be displayed

3) Unreasonable translation which causes shortcut keys
to be hidden. For example, a menu item “&New” has
two meanings: (1) it means that this menu can open a
new file; (2) “&N” also means that there is a shortcut
key “CTRL+N” which will open a new file in the
MFC standard. Thus, the right way to translate it to
Chinese should be “ (&N)”. But if we translate it
as “ ”, then the shortcut key “CTRL+N” would
be disabled.

VI. EXPERIMENTS

In this section, we report our assessment on the effective-
ness of our proposed methodologies for PAM. We first present
the effectiveness of I18nLocator in Section VI-A, and then
we present the test results for PAM internationalization and
localization in Section VI-B.

A. Effectiveness of I18nLocator

Since IRanker and unit tests/local checks both discover
convertible and suspicious patterns, we divide the effectiveness
of I18nLocator into 2 parts: IRanker and unit tests/local
checks. Table II presents the results of I18nLocator by IRanker
and unit tests/local checks. With IRanker, we detect most of the
convertible patterns and suspicious patterns, i.e., 30 convertible
patterns and 25 suspicious patterns respectively, which cover
78.95% of all the convertible patterns and 71.43% of all the
suspicious patterns.

Due to the security confidentiality policy of State Street
Corporation, we can only list the lines of source codes in

229

TABLE II. THE NUMBER OF CONVERTIBLE PATTERNS (#CON.PAT), NUMBER OF SUSPICIOUS PATTERNS (#SUS.PAT), NUMBER OF TOTAL PATTERNS

(#TOTAL.PAT), NUMBER OF LINES OF SOURCE CODES CONVERTED BY CONVERTIBLE PATTERNS (#CON.LINES), NUMBER OF LINES OF SOURCE CODES

LOCATED BY SUSPICIOUS PATTERNS (#SUS.LINES), AND NUMBER OF TOTAL SOURCE CODES (#TOTAL.LINES) MODIFIED. ALL NUMBERS OF LINES OF

CODE ARE ROUNDED DOWN TO THE NEAREST THOUSANDS.

Type #Con.Pat #Sus.Pat #Total.Pat #Con.Lines #Sus.Lines #Total.Lines

IRanker 30 25 55 350,000 80,000 430,000

Unit tests/Local checks 8 10 18 52,000 22,000 74,000

Total 38 35 73 402,000 102,000 504,000

TABLE III. THREE TYPES OF INTERNATIONALIZATION AND LOCALIZATION TEST FOR PAM

Type Test Aspects Description

Functional Test

General functionality Test general functionality. Internationalization and localization may cause logic error in source codes.
Resource data files Test whether correct language resource data files are loaded.

File processing Test whether the resultant internationalized and localized system supports different file formats, such
as ASCII, UTF-8 and UTF-16 files.

Non-Unicode program transformation Test whether source codes support Unicode. For example, input Chinese character, and read output
character.

GUI Test

Widgets layout Test whether the widgets are aligned, and the lengths of texts in the widgets are acceptable.
Text display Test the display of text, whether it is displayed in the right way.

Shortcut key usage Test whether the shortcut keys are changed due to localization.
TAB key sequence Test whether the sequence of widgets highlighted when the TAB key is pressed multiple times is

correct.

Translation Test
Online help documents Test whether the online help documents are translated, and whether online help documents can be

switched from one language to another.
GUI translation Check whether all the texts in the GUI are translated, i.e., no other languages appear in a localized

version.
Translation correctness Review the quality of the translation, whether it is correct and acceptable. We mainly focus on the

texts displayed in the GUIs and online help documents.

approximate format, i.e., we need to truncate the number to
the nearest 1,000. Using the patterns identified by analyzing
the source code selected by IRanker, I18nLocator automati-
cally converts around 350,000 lines of source codes matching
convertible patterns, and locates around 80,000 lines of source
codes matching suspicious patterns, which cover 87.06% and
78.43% of the total source codes modification work. IRanker
helps PAM internationalization significantly since it extracts a
relatively small proportion of the code from which general
patterns can be inferred. These patterns cover most of the
changed code. This reduces the testing and analysis work
needed.

With the help of IRanker and unit tests/local checks, we
discover 73 patterns and modify 504,000 lines of source codes.
Among 504,000 lines of source codes, we automatically con-
vert 402,000 lines of source codes which covers 79.76% of the
reengineering work. The remaining lines of code are flagged
by the suspicious patterns. Although they do not automatically
re-engineer the codes, they significantly aid developers locate
these codes. Locating these codes is not an easy job, due to
the complexity of PAM.

B. Internationalization and Localization Test

The test for the quality of PAM internationalization and
localization should consider two aspects: first, we should not
affect the original functionality of PAM; Second, we should
support multi-language input and have local language GUI.
The test work should cover these two aspects, and we divide
test work into 3 types: functional test, GUI test and translation
test. The details of these 3 types of test are presented in
Table III.

Due to software management strategy of State Street, we
have 3 environments, i.e., development environment (DEV),
user acceptance test environment (UAT) and product environ-
ment (PROD). DEV is used by local QAs and developers;
we perform local checks and unit tests in DEV. We designed
3,014 test cases to test PAM. After we pass all these test cases,

TABLE IV. TYPE, TEST, AND NUMBER OF BUGS (# BUGS) FOR PAM

Type Test Aspects # Bugs

Functional Test

General functionality 4
Resource data files 4
File processing 4
Non-Unicode program transformation 8

GUI Test

Widget layout 8
Text display 10
Shortcut key usage 4
TAB key sequence 1

Translation Test
Online help document 10
GUI translation 25
Translation correctness 26

Miscellaneous Other Bugs 6

we deliver PAM to UAT and further to PROD. Only the bugs
discovered in UAT and PROD are recorded in the bug tracking
system. There are 110 bugs reported. Considering that we mod-
ify 504,000 lines of code, the number of bugs per lines of code
modified found during user acceptance test and deployment to
the production environment is 0.000218 bugs/LOC. This shows
that the quality of the resultant internationalized and localized
system is good.

The bug distribution is presented in Table IV. The number
of bugs detected by functional tests, GUI tests and translation
tests are 20, 23 and 61 respectively, which are 18.2%, 20.9%
and 55.5% of the total number of bugs respectively. Consider-
ing all 110 bugs, it is interesting to note that translation bugs
are the majority of all bugs detected when PAM is deployed
in UAT and PROD. Moreover, many functional bugs and GUI
bugs are also related to translation.

From Table IV, we also notice that internationalization
related bugs are relatively few. File processing and non-
Unicode program transformation are related to international-
ization, but there are only 12 bugs in these categories, which
is 10.9% of the total number of bugs. These show that our
proposed software internationalization and localization process
is effective.

230

VII. RELATED WORK

To our best knowledge, there is limited research work on
software internationalization and localization. Wang et al. pro-
pose a method which automatically locates need-to-translate
constant strings for software internationalization [8], [9]. They
first collect APIs related to GUI, and based on a string-taint
analysis, they search for need-to-translate constant strings.
Finally, they evaluate the performance of their approach using
4 open source applications: RText, RISK, ArtOfIllusion, and
Megamek. Wang et al. further extend their work by locating
these need-to-translate constant strings for web application
internationalization [10]. They propose a flag propagation
based approach which distinguishes strings visible at browser
side from non-visible strings, and evaluate the performance of
their approach using 3 PHP based web applications.

Our work is different from the work of Wang et al. in the
following aspects:

1) In our paper, we propose a holistic and end-to-end
process for software internationalization and local-
ization, along with tool supports. Wang et al. solve
ONE problem in the software internationalization
process, which is the locating of constant strings. We
use a more lightweight solution to locate constant
strings. We found our simple solution to be sufficient,
effective, and fast. In the future, we could also use
their proposed approach to locate constant strings.
Our approach considers a complete picture of soft-
ware internationalization and localization including:
extraction of convertible and suspicious patterns for
software internationalization, locating of these pat-
terns in code, automatic conversions of convertible
patterns, and many more.

2) We evaluate our proposed process on a commercial
system called PAM, which contains 5 million lines of
source code. The largest system evaluated by Wang
et al. only contains 110,000 lines of source code.
Also, the system that we analyze and re-engineer is
currently deployed and used in the industry.

There are many industrial studies reported in the literature.
We highlight some of them below. Gegick et al. report an
industrial study on bug report classification in Cisco [11]. They
propose an approach that can automatically label a bug report
as security-related or not. Port et al. describe experiences on
mining a large collection of textual software artifacts in Jet
Propulsion Laboratory (JPL), NASA [12]. Dang et al. describe
experiences on clone mining in Microsoft using their tool
named XIAO [13]. In this paper, we also describe an industrial
experience. However, we focus on a different problem domain
namely software internationalization and localization.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we describe our experience on software
internationalization and localization. We study PAM, a large-
scale commercial system, which contains 5 million lines of
source codes. We propose a holistic and end-to-end process for
software internationalization and localization, and also propose
supporting tools: IRanker and I18nLocator. We build IRanker
to select a representative set of code to extract convertible and
suspicious patterns. Using I18nLocator, we locate source codes

which match suspicious patterns and convert source codes
which match convertible patterns. IRanker and I18nLocator
saves much time and cost. For software localization, we extract
hard-coded strings, translate these strings and related docu-
ments, and store them into resource data files. Our case study
shows that our proposed process and tool support for software
internationalization and localization are effective. Out of the
504 KLOC that are modified using our proposed approach,
we can automatically modify 79.76% of them, saving much
valuable developers’ time. The quality of the resultant system
is also good. The number of bugs per lines of code modified
found during user acceptance test and deployment to the
production environment is 0.000218 bugs/LOC.

In the future, we plan to do more internationalization and
localization work on other large-scale commercial systems, and
learn more from these experiences.

ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program
(No.61103032) and National Key Technology R&D Pro-
gram of the Ministry of Science and Technology of China
(No2013BAH01B03). The author would also thank the other
developers and QA personnels of State Street Corporation
that are involved in the internationalization and localization
of PAM.

REFERENCES

[1] B. Esselink, A practical guide to localization. John Benjamins
Publishing Co, 2000, vol. 4.

[2] E. Uren, R. Howard, and T. Perinotti, Software internationalization and
localization: an introduction. Van Nostrand Reinhold New York, 1993.

[3] C. Petzold, Programming Windows R©. Microsoft Press, 2010.

[4] F. Balmas, “Using dependence graphs as a support to document pro-
grams,” in Source Code Analysis and Manipulation, 2002. Proceedings.
Second IEEE International Workshop on. IEEE, 2002, pp. 145–154.

[5] F. Balmas, “Displaying dependence graphs: a hierarchical approach,”
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 16, no. 3, pp. 151–185, 2004.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: bringing order to the web.” Technical Report. [Online].
Available: http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

[7] A. Langville and C. Meyer, Google’s PageRank and beyond: The
science of search engine rankings. Princeton University Press, 2009.

[8] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-to-
translate constant strings for software internationalization,” in Software
Engineering, 2009. ICSE 2009. IEEE 31st International Conference on.
IEEE, 2009, pp. 353–363.

[9] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Transtrl: An automatic
need-to-translate string locator for software internationalization,” in Pro-
ceedings of the 31st International Conference on Software Engineering.
IEEE Computer Society, 2009, pp. 555–558.

[10] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-to-
translate constant strings in web applications,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 87–96.

[11] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports via
text mining: An industrial case study,” in MSR, 2010, pp. 11–20.

[12] D. Port, A. P. Nikora, J. Hihn, and L. Huang, “Experiences with text
mining large collections of unstructured systems development artifacts
at jpl,” in ICSE, 2011, pp. 701–710.

[13] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “Xiao: tuning
code clones at hands of engineers in practice,” in ACSAC, 2012, pp.
369–378.

231

