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Abstract—Specification mining methods are used to extract
candidate specifications from system execution traces. A major
challenge for specification mining is succinctness. That is, in ad-
dition to the soundness, completeness, and scalable performance
of the specification mining method, one is interested in producing
a succinct result, which conveys a lot of information about the
system under investigation but uses a short, machine and human-
readable representation.

In this paper we address the succinctness challenge in the
context of scenario-based specification mining, whose target
formalism is live sequence charts (LSC), an expressive extension
of classical sequence diagrams. We do this by adapting three
classical notions: a definition of an equivalence relation over
LSCs, a definition of a redundancy and inclusion relation
based on isomorphic embeddings among LSCs, and a delta-
discriminative measure based on an information gain metric on
a sorted set of LSCs. These are applied on top of the commonly
used statistical metrics of support and confidence.

A number of case studies show the utility of our approach
towards succinct mined specifications.

I. INTRODUCTION

Specification mining, the dynamic analysis process of ex-
tracting models from software execution traces in order to
aid in program comprehension, testing, and formal verification
tasks in the absence of complete and up-to-date documented
specifications, has attracted many and diverse research efforts
in recent years (see, e.g., [4], [27], [28]). The underlying
common goal of these works is to extract a set of invariants and
present them to the user. In the literature, extracted invariants
vary from boolean expressions capturing a relationship be-
tween two variables in a particular program point, to frequent
patterns of usage behavior, to various automata and temporal
rules. The extracted candidate invariants are used to support
comprehension, testing, and formal verification tasks (see,
e.g., [4], [7], [8], [31], [33], [32]).

In addition to the soundness, completeness, and scalable
performance of the specification mining method, one is in-
terested in producing a succinct result, which conveys a lot
of information about the system under investigation but uses
a short, machine and human-readable representation. Thus,
an important challenge of specification mining in general
is the definition of what constitutes a likely invariant and,
in particular, the selection and presentation of the extracted
invariants. Obviously, a specification mining framework that

returns ‘too many’ likely invariants is not useful. The need
arises to produce succinct mined specifications.

In this work we address the succinctness challenge by adapt-
ing three classical notions: equivalence relation, statistical
redundancy, and delta-discriminative information gain. We do
this in the context of scenario-based specification mining [22],
[23], [26].

In scenario-based specification mining, data mining methods
are employed to extract statistically significant inter-object
scenario-based specifications in the form of Damm and Harel’s
live sequence charts (LSC) [6], a visual formalism that ex-
tends classical sequence diagrams with modalities. An LSC
is composed of a pre-chart and a main-chart both consisting
an ordered sequence of events. An LSC specifies a tempo-
ral invariant: whenever the pre-chart events happen in the
specified order, eventually the main-chart events must happen
in the specified order. LSC has a formal semantics [6], a
UML2-compliant variant [14], and a translation into temporal
logics [18]. The popularity and intuitive nature of sequence
diagrams as a specification language in general, together with
the additional unique features of LSC, motivated our choice of
target formalism. The choice is supported by previous work on
LSC (e.g., [19], [29]), which can be used to visualize, analyze,
manipulate, test, and verify mined specifications.

The statistical significance of an LSC in a set of traces
is measured using support and confidence – two metrics
commonly used in data mining [11]. The main inputs are a set
of traces and thresholds for minimum support and confidence:
the first tells the number of times an LSC need to be observed
in the traces, the second dictates the likelihood that the
pre-chart of the LSC is indeed followed by the main-chart.
Only LSCs obeying the minimum support and confidence are
deemed significant (see [26]).

Most importantly, to achieve succinctness we introduce
three main features:

1) A single representative of each equivalence class. We
define an equivalence relation between scenarios based
on the notion of symbolic lifelines. The symbolic LSC
corresponding to all concrete LSCs in an equivalence
class is considered a representative of this class. Statis-
tical significance is computed at the level of the symbolic
representative LSC.

2) Statistical redundancy via isomorphic embeddings.
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We define an inclusion relation between LSCs based on a
variant of subgraph isomorphism. When two LSCs have
the same statistical significance but one is embedded in
the other, the smaller one is considered redundant and
is removed from the result.

3) Delta-discriminative summarization via information
gain. We rank the mined scenarios and then filter out
the ones that are not at least delta-discriminative relative
to higher ranked scenarios.

The formal definitions for these features are given in Sec. IV.
It is important to note that setting higher support and

confidence thresholds may have the effect of reducing the
number of significant mined LSCs. However, this would have
removed some informative LSCs while keeping others whose
contribution to the complete mined specification is minor.
Moreover, given a set of mined LSCs, one may suggest to
apply synthesis (see, e.g., [13]), and consider the resulting
automaton as a succinct representation of the specification.
This alternative, however, has several problems: (1) the result-
ing automaton representation obfuscates the story-like intuitive
nature of the original scenarios, and (2) to the best of our
knowledge, synthesis techniques for symbolic LSCs (in the
context of object-orientation) or for weighted LSCs (with
weights based on support and confidence in our case) are not
yet available. Thus, summarization methods such as the ones
we introduce and evaluate are indeed necessary.

The examples throughout the paper are taken from Cross-
FTPServer [5], a commercial open source FTP server built on
top of Apache FTP server, and from Jeti [2], a full featured
open-source instance messaging application. The examples
show the utility of our approach in mining summarized non-
redundant symbolic scenarios from a set of execution traces.
Experimental results appear in Sec. VI.

Finally, the challenge of succinctness in specification mining
is not limited to the scenario-based approach. Some work
present mining of rules and patterns (e.g., [8], [32], [20])
where the number of rules and patterns could be very large and
make it hard for users to investigate the results. In Daikon [9],
the number of reported invariants could be too large for human
comprehension, and in mining finite-state machines (e.g., [4],
[28]), at times the size of the automaton could be too large
to be useful. We further discuss these related works and their
succinctness challenges in Sec. VII.

Paper organization: Sec. III provides background on LSC
and on statistical significance in scenario-based specification
mining. Sec. IV formally defines the three main succinctness
features used in our work. Sec. V describes our mining
framework. Experimental results appear in Sec. VI. Related
work is discussed in Sec. VII and Sec. VIII concludes with a
discussion and future work directions.

II. EXAMPLE

We start off with an example of the application of our
succinctness techniques to a mined set of LSCs. The example
is intentionally very small and is described semi-formally.
Formal definitions appear in Secs. III & IV. The application of

Trace 1 Trace 2 Trace 3
1 (a1,a2,m1()) 1 (a3,a4,m1()) 1 (a5,a6,m1())
2 (a2,b1,m2()) 2 (a4,b2,m2()) 2 (a6,b3,m2())
3 (a2,b1,m3()) 3 (a4,b2,m3()) 3 (a6,b3,m3())
4 (a1,a2,m1()) 4 (a3,a4,m1()) 4 (a7,b4,m2())
5 (a2,b1,m2()) 5 (a4,b2,m2()) 5 (a7,b4,m3())
6 (a2,b1,m3()) 6 (a4,b2,m3()) 6 (a5,a6,m1())

7 (a6,b3,m2())
8 (a6,b3,m3())

TABLE I
EXAMPLE COLLECTION OF 3 TRACES, EACH OF 6-8 EVENTS. ai

AND bi ARE OBJECT INSTANCES OF CLASS A AND B RESP. m1, m2,
AND m3 ARE METHOD SIGNATURES.

LSC Conc1

m1()

m3()

b1:Ba2:Aa1:A

LSC Conc2

m1()

m3()

b2:Ba4:Aa3:A

LSC Conc3

m1()

m3()

b3:Ba6:Aa5:A

sup=2,conf=100% sup=2,conf=100% sup=2,conf=100%
(a) (b) (c)

LSC Conc1

m1()

m3()

b1:Ba2:Aa1:A

LSC Conc2

m1()

m3()

b2:Ba4:Aa3:A

LSC Conc3

m1()

m3()

b3:Ba6:Aa5:A

sup=2,conf=100% sup=2,conf=100% sup=2,conf=100%
(a) (b) (c)

Fig. 1. Some Mined Concrete LSCs

sup=7,conf=100%

LSC Symb1

m1()

m3()

BAA

LSC Symb2

m1()

m2()

BAA

LSC Symb3

m1()

m3()

BAA

m2()

LSC Symb4

m3()

BA

m2()

sup=6,conf=100% sup=6,conf=100% sup=6,conf=100%
(a) (b) (c) (d)

sup=7,conf=100%

LSC Symb1

m1()

m3()

BAA

LSC Symb2

m1()

m2()

BAA

LSC Symb3

m1()

m3()

BAA

m2()

LSC Symb4

m3()

BA

m2()

sup=6,conf=100% sup=6,conf=100% sup=6,conf=100%
(a) (b) (c) (d)

Fig. 2. Some Mined Symbolic LSCs

our work to large, real-world mined sets of LSCs is described
in Sec. VI.

Fig. 1 shows some mined LSCs from the execution trace
shown in Table I. Each mined LSC includes its statistical
significance metrics of support and confidence. For example,
LSC Conc1 specifies that “whenever object a1 calls method
m1() of object a2, a2 will eventually call method m3() of
object b1”; its support is 2, meaning it was observed 2 times
in the trace; its confidence is 100%, meaning there were no
exceptions to this rule: the main-chart always followed the
pre-chart. We now show the application of our succinctness
techniques to this set of LSCs.

First, LSCs Conc1, Conc2, and Conc3, are very similar:
they differ only in the identities of the concrete objects that
participate in them. Moreover, in all three LSCs, the partici-
pating objects belong to the same set of classes. Our notion of
equivalence class, which is based on the use of symbolic LSC
lifelines and a binding preserving abstraction, allows us to
identify that these three LSCs belong to the same equivalence
class and thus to replace them with a single symbolic LSC. We
compute the support and confidence statistics for the symbolic
LSC and use it as a representative of the class in the resulting
succinct specifications. The symbolic LSC representing the
three concrete LSCs is shown in Fig. 2(a).

Second, consider LSCs Symb1, Symb2, and Symb3. LSC
Symb3 has the same support and confidence as Symb1 and
Symb2. LSC Symb3 is more informative than either Symb1
or Symb2. Our notion of statistical redundancy allows us to
remove Symb1 and Symb2 as we could embed each of the
two LSCs in Symb3. We would only keep LSC Symb3.
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LSC DELETE

onDeleteStart()

onDeleteEnd()

setDelete()

FSIFCDELE

Fig. 3. [CrossFTP] Mined LSC: Delete

Third, consider LSC Symb4. Note that Symb4 is not re-
moved based on statistical redundancy. The reason is, Symb4
has a different support than Symb3. However, Symb4 is
very similar to Symb3. Our notion of delta discriminative
summarization allows us to remove Symb4 due to Symb3.

In the process, we could remove a lot of concrete mined
LSCs by the three succinctness strategies. In the previous
paragraph we notice Symb3 eliminates Symb1, Symb2, and
Symb4. Also, Symb1, removes Conc1, Conc2, and Conc3.
In summary, using minimum support, confidence, and delta-
discriminative thresholds at 2, 100%, and 10% respectively,
the application of our succinctness methods will reduce the
number of LSCs in this example from 16 to 1.

III. PRELIMINARIES

We give short background on LSC, outline the basic defini-
tions of significance of LSC in a set of traces, and state related
properties. We refer the reader to [23], [26] for details.

A. Live sequence charts

We use a restricted subset of live sequence charts (LSC) [6],
[14], a formal expressive variant of classical sequence dia-
grams. A chart includes a set of instance lifelines, representing
system’s objects, and is divided into two parts, the pre-chart
(‘cold’ fragment) and the main-chart (‘hot’ fragment), each
specifying an ordered set of method calls between the objects
represented by the instance lifelines. A universal LSC specifies
a universal liveness requirement: for all runs of the system,
and for every point during such a run, whenever the sequence
of events defined by the pre-chart occurs in the specified
order, eventually the sequence of events defined by the main-
chart must occur in the specified order. Events not explicitly
mentioned in the chart are not restricted in any way to
appear or not to appear during the run (including between the
events that are mentioned in the chart). Syntactically, instance
lifelines are drawn using vertical lines, pre-chart (main-chart)
events are colored in blue (red) and drawn using horizontal
dashed (solid) lines. For a thorough description of the language
and its semantics see [6]. A UML2-compliant variant of LSC
using the modal profile is defined in [14].

An important feature of LSC is its semantics of symbolic
instances [30]. Rather than referring to concrete objects, life-
lines may be labeled with a class name and marked symbolic,
formally representing any object of this class. This allows a
designer to take advantage of object-orientation and create
more expressive and succinct specifications.

Fig. 3 shows an example LSC. Roughly, the semantics of
this LSC is: “Whenever an object of type DELE calls the
method onDeleteStart() of an object of type FtpletContainer,
eventually the DELE object must call the method setDelete()
of an object of type FtpStatisticsImpl and call the method
onDeleteEnd() of the FtpletContainer”. Note that this is a
temporal invariant. Also note the symbolic interpretation of
the lifelines.

We denote an LSC by L(pre, f ull), where pre is the pre-
chart and f ull is the complete chart containing pre followed by
the main chart. For concrete LSC, the pre and f ull correspond
to concrete charts, and for symbolic LSC, the pre and f ull
correspond to symbolic charts.

B. Concrete and symbolic events

A concrete event is a triplet (caller,callee,signature) corre-
sponding to caller unique object identifier (obtained in Java
using identityHashCode()), callee object identifier, and the
signature of the method being called, respectively. In this
study, we abstract away method parameters. A trace is a series
of concrete events. The input under consideration is a multi-set
of traces.

A concrete event could be abstracted to form a symbolic
event. A symbolic event is a triplet (caller,callee,signature)
corresponding to caller class, callee class, and method signa-
ture. While a symbolic event may have one or more corre-
sponding concrete events, a concrete event maps to a single
symbolic event. A simple map from a concrete event to its
symbolic event is defined as a projection: given a concrete
event e, pro j(e) returns the symbolic event of e, where the
caller and callee objects identifiers are replaced by the names
of their classes.

C. Witnesses, support, confidence, and statistical significance

Given a concrete or a symbolic LSC M and a trace T , we are
interested in finding statistics denoting the significance of M in
T . To do so, we introduce the concepts of positive and negative
witnesses. A positive witness of a concrete or symbolic LSC
M = L(pre, f ull), is a trace segment satisfying the f ull chart
– by extension the pre chart as well, since pre is a prefix
of f ull. A negative witness of M is a positive witness of pre
which cannot be extended to a positive witness of M (or f ull).

The semantics of LSC (like most formal specification lan-
guages used for reactive systems, e.g., LTL [16]) is originally
defined over infinite paths. The traces we consider, however,
are, of course, finite. To differentiate negative witnesses that
occur due to the truncation of the traces, we introduce weak
negative witness. A weak negative witness of M is a positive
witness of pre which cannot be extended to a positive witness
of M (or f ull) due to the end of a trace being reached.

Given a trace T , the support of an LSC M= L(pre, f ull),
denoted by sup(M), is simply defined as the number of positive
witnesses of M found in T . The confidence of an LSC M,
denoted by conf (M), measures the likelihood of a sub-trace in
T satisfying M’s pre-chart to be extended such that M’s main-
chart is satisfied or the end of the trace is reached. Hence,
confidence is expressed as the ratio between the number of
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positive witnesses plus weak negative witnesses of the LSC
and the number of positive witnesses of the LSC’s pre-chart.
See [26].

Thus, the support of the chart corresponds to the number of
times instances of the pre- and main-chart appear in the trace,
and the confidence of the chart corresponds to the likelihood of
the pre-chart instance to be followed by a main-chart instance
in the trace. The support metric is used to limit the extraction
to commonly observed interactions, while the confidence met-
ric restricts mining to such pre-charts that are followed by a
particular main-chart with high likelihood. We refer to charts
satisfying the minimum support threshold (m sup) as being
frequent. Similarly, we refer to charts satisfying the minimum
confidence threshold (min con f ) as being confident. A chart
that satisfies both thresholds is referred to as being significant.
D. Monotonicity, soundness and completeness

Property 1 (Monotonicity [23]): Given symbolic LSCs M
= (pre, f ull) and M′ = (pre′, f ull′). If f ull is a prefix of f ull′,
every positive witness of M′ is a positive witness of M. Hence,
sup(M′) ≤ sup(M).
The monotonicity property is used to prune the search space in
our mining algorithms: after ascertaining that the support of a
symbolic chart A is less than the minimum support threshold,
one prune the search space of all charts having A as a prefix.

Definition 1 (Stat. Sound. & Completeness): Given input
dataset and thresholds, a mining algorithm is (1) statistically
sound iff every mined result obeys the thresholds, and (2)
statistically complete iff every potential result that obeys the
thresholds is mined.
Following data mining algorithms in general, and frequent
pattern mining algorithms in particular (see, [11]), our goal is
to achieve statistical soundness and completeness, as described
in Defn. 1. Our mining algorithms are sound and complete
modulo the given traces and user-defined thresholds (see [26]).

IV. TOWARDS SUCCINCTNESS

To mine for succinct specifications, we introduce three
concepts: equivalence class of LSCs and symbolic LSCs,
isomorphic embeddings of statistically non-redundant LSCs,
and summarization via the extraction of delta-discriminative
LSCs.

A. Symbolic LSCs as equivalence classes

The first succinctness feature builds on the mapping from
concrete to symbolic LSCs. A symbolic LSC corresponds to
a set of concrete LSCs having the same structure, lifelines
and methods among the lifelines. The only differences among
members of the equivalence class are the actual objects that
are bound to the lifelines.

An illustration of concrete and symbolic full-charts is shown
in Fig. 4. The one on the left is the symbolic LSC and the
others are some examples of corresponding concrete LSCs.
This is the full-chart of the LSC shown in Fig. 3. We formalize
concrete and symbolic charts and the mapping between them
via the definition of binding preserving abstraction (BPA).

A concrete (symbolic) chart is composed of a list of concrete
(symbolic) events ⟨e1,e2, . . . ,en⟩, a set of concrete (symbolic)

CHART DEL-A

setDelete()

onDeleteStart()

onDeleteEnd()

FSIFCDELE

CHART DEL-C1

setDelete()

onDeleteStart()

onDeleteEnd()

fs1:FSIfc1:FCd1:DELE

CHART DEL-C2

setDelete()

onDeleteStart()

onDeleteEnd()

fs2:FSIfc2:FCd2:DELE

Fig. 4. Charts: Symbolic and Concrete

lifelines {l1, l2, . . . , lk} (for simplicity, we draw the lifelines
ordered from left to right although the order of lifelines has no
semantic meaning), and a binding function bdg mapping each
event identified by its position in the chart to a pair of lifelines
(we omit obvious syntactic well-formedness rules, e.g., that
bdg binds an object to a lifeline only if the two are of the
same class, etc.). More formally:

Definition 2 (Concrete (Symbolic) Chart): A concrete
(symbolic) chart C is a triplet ⟨E,L,bdg⟩ where E is a list of
concrete (symbolic) events, L is a set of concrete (symbolic)
lifelines, and bdg is a binding map bdg : I → L× L, where
I = {i∣1≤ i≤ ∣E∣} (i.e., the set of indices of events in E).
Notation-wise, we refer to the pair of lifelines corresponding
to the i-th element of E as bdg[i].

Given a list of concrete events, a single set of concrete
lifelines is determined by the names of concrete objects
involved in the events. Thus, the binding map bdg of a concrete
chart containing a list of concrete events (and a set of concrete
lifelines, each corresponding to a unique concrete object) is
trivial. While a list of concrete events uniquely determines a
set of lifelines (up to lifelines order, which has no meaning),
a trivial binding function, and thus, a concrete chart, this
is not the case for symbolic events. Rather, given a list of
symbolic events, one may possibly define more than one
(non-isomorphic) sets of symbolic lifelines with corresponding
bindings. This is so because a class corresponding to a
symbolic caller or callee does not uniquely identify a symbolic
lifeline in the set, as the chart may include a number of
symbolic lifelines corresponding to (different objects of) the
same class.

As an example, the binding of a concrete event e = (oid1,
oid2,m()) in a concrete chart C, may be represented by a pair
⟨li, l j⟩ corresponding to the ith and jth lifelines of C. bdg(e,C)
is the mapping returning the binding of a concrete event e
from a concrete chart C. For example, in Fig. 5, bdg((12 : A,
15 : A,m1())) = ⟨1,2⟩.

Therefore, to relate concrete and symbolic charts, we pro-
pose the notion of binding preserving abstraction (BPA),
essentially an isomorphic mapping between the two.

Definition 3 (Binding Preserving Abstraction (BPA)):
Consider a concrete chart CC = ⟨⟨e1, . . . ,en⟩,{l1, . . . , lk}, bdg⟩
and a symbolic chart AC = ⟨⟨E1, . . . ,En⟩, {L1, . . . ,Lk}, BDG⟩.
AC is a binding preserving abstraction of CC iff there exists
a one-to-one mapping abs from the lifelines of CC to the
lifelines of AC s.t. ∀1≤i, j≤k and ∀1≤v≤n, bdg(v) = ⟨li, l j⟩ iff
pro j(ev)=Ev and BDG(v) = ⟨abs(li),abs(l j)⟩.

We denote the binding preserving abstraction of CC by
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A A A

m1

Chart A3

m2

m3

A A

m1

Chart A1

m2

m3

12:A 15:A 28:A

m1

Chart C 

m2

m3

A A A

m1

Chart A2

m2

m3

A A A

m1

Chart A3

m2

m3

A A

m1

Chart A1

m2

m3

12:A 15:A 28:A

m1

Chart C 

m2

m3

A A A

m1

Chart A2

m2

m3

Fig. 5. A Concrete Chart C and its binding preserving abstraction
(BPA) A3. Other charts (A1 & A2) are not BPA of C.

abs(CC). abs(CC) represents the symbolic chart that is ‘iso-
morphic’ to CC.

To illustrate the concept of binding preserving abstraction
consider Fig. 5. In the figure there are a concrete chart
(extreme left, each lifeline corresponds to a separate object
instance of class A identifiable via the object hash code) and
several symbolic charts. Two of the symbolic charts are not
isomorphic to the concrete chart, and thus do not consist of a
binding preserving abstraction.

The above concept is important as there can be more than
one symbolic lifeline corresponding to a particular class C in a
symbolic LSC L. When this is the case, more than one object
instance of the class C participates in L.

We use the binding preserving abstraction abs to define an
equivalence relation over concrete LSCs:

Definition 4 (Equivalence Relation): Consider two con-
crete LSCs l1 = L(pre1, f ull1) and l2= L(pre2, f ull2). l1 ≡abs l2
iff abs(pre1)=abs(pre2), and abs( f ull1)=abs( f ull2).

It is easy to see that ≡abs is indeed reflexive, symmetric,
and transitive, and thus partitions any set of concrete LSCs into
equivalence classes. We use the symbolic LSC corresponding
to all concrete LSCs in a class as a representative of the class.
To extract a succinct set of LSCs from an input trace database,
we look for representative symbolic LSCs.
B. Isomorphic embeddings and redundancy

Following the concept of BPA, two charts are said to be
isomorphic if the series of events are the same, and there is a
one-to-one mapping between their lifelines that preserves the
bindings. The formal definition is in Defn. 5. It is easy to see
that a concrete chart having a chart C as a BPA will also have
any isomorphic chart of C as a BPA.

Definition 5 (Isomorphic Charts): Two charts f1 =
⟨E1,L1, bdg1⟩ and f2 = ⟨E2,L2, bdg2⟩ are isomorphic
if ∃ a one-to-one mapping map from L1 to L2 such that
∀i,bdg1[i] = (kx,ky) iff E1[i] = E2[i] ∧ bdg2[i] = (map(kx),
map(ky)).

To illustrate isomorphic embeddings, consider the example
chart in Fig. 6(left). This chart is an isomorphic embedding
(i.e., it could be embedded isomorphically) of the chart shown
in Fig. 4(left). On the other hand, the chart in Fig. 6(right) has
no isomorphic embedding in the chart shown in Fig. 4(left).
We formally define isomorphic embeddings below.

Definition 6 (Isomorphic Embeddings): Consider
charts CA=⟨⟨a1, . . . ,an⟩,{la1 , . . . , lal},bdga⟩ and CB =
⟨⟨b1, . . . ,bm⟩,{lb1 , . . . , lbk},bdgb⟩. CA has an isomorphic

CHART SUB-A

onDeleteStart()

onDeleteEnd()

FCDELE

CHART SUB-A

onDeleteStart()

onDeleteEnd()

FCDELE

CHART SUB-B

onDeleteStart()

onDeleteEnd()

FCDELE

CHART SUB-B

onDeleteStart()

onDeleteEnd()

FCDELE

Fig. 6. Isomorphic & Non-Isomorphic Charts

embeddings within CB iff there exists a mapping iso
from the lifelines of CA to the lifelines of CB s.t.
∀1≤v≤n, bdga(av) = ⟨li, l j⟩ iff ∃1≤w≤m. av = bw ∧
bdgb(bw) = ⟨iso(li), iso(l j)⟩. We refer to CB as a super-
chart of CA, denoted CB ⊒ CA.

The above definition of isomorphic embeddings is used to
define statistically redundant charts:

Definition 7 (Statistically Redundant): Consider two
LSCs l1 = L(pre1, f ull1) and l2 = L(pre2, f ull2). The first LSC
l1 is rendered redundant by the second LSC l2 iff sup(l1)=
sup(l2), conf(l1)=conf(l2) and f ull2 ⊒ f ull1.

In our mining, we would like to eliminate statistically
redundant charts. A chart is considered redundant if a super-
chart of it, with the same statistics, appears in the mined
set of charts. Note that a significant LSC is likely to have
many significant sub-LSCs having the same support and
confidence. By eliminating statistically redundant charts, many
uninteresting charts are removed.1

C. Delta-discriminative summarization

Finally, the third summarization feature concerns the infor-
mation gained by adding each LSC to a selected list of mined
LSCs, with regard to other LSCs that were already selected to
the list.

We start by sorting the mined LSCs in an ascending
order based on number of lifelines, followed by total length
(i.e., number of events in the LSC), followed by the inverse
length of the pre-chart, followed by their confidence and
their support. The sorted list of LSCs is then summarized
by removing those LSCs which do not contribute enough
additional information – in terms of new event signatures –
relative to the ones ranked above them. As a result, similar
LSCs with minor variations are removed from the final set
of mined LSCs. The resulting succinct set is presented to the
user.

Definition 8 (InfoGain(l1,l2)): Consider two LSCs l1 =
L(pre1, f ull1) and l2 = L(pre2, f ull2). Let MSet1 and MSet2 be
the set of signatures contained in f ull1 and f ull2 respectively.
The information gain of l1 with respect to l2 is defined as the
ratio between ∣MSet1 ∖MSet2∣ and ∣MSet1∣.

We use the above to define delta-discriminative LSC.
Definition 9 (Delta-Discriminative): Consider an ordered

set of LSCs ORD = ⟨l1, . . . , ln⟩. Given a minimum delta-
discrimination threshold δ, an LSC l j ∈ ORD is delta discrim-
inative iff ∕∃ i < j. InfoGain(li, l j) < δ. An ordered set of LSCs
is delta-discriminative if all its LSCs are delta-discriminative.

1Note though, that statistical redundancy does not imply logical redundancy.
In LSC semantics, a sub-chart and a super-chart are incomparable; one does
not logically imply the other.
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Fig. 7. Non-Discriminative & Discriminative Charts

Thus, to produce a succinct set of LSCs that covers many
different method signatures, only a set of delta-discriminative
LSCs are selected.

As an example, consider the LSCs shown in Fig. 7 ordered
from left to right. With delta-discriminative threshold set at
10%, the second LSC would not be selected while the third
LSC would. For every selected representative LSC, other
similar LSCs with minor variations are removed.
D. Additional considerations: no repetitions and connected-
ness

In addition to the above three features, we provide filters
that could optionally be applied to restrict the format of
mined LSCs to ones commonly used in the literature. We
find that often methods are not repeated in an LSC, hence we
introduce a filter to remove LSCs with repeated methods. An
example of such LSC is shown in Fig. 7(middle) where method
setDelete() is repeated twice. In addition, we remove LSCs that
are not monotonically connected. An LSC L is monotonically
connected if for every prefix of L, each lifeline in the prefix
is connected, either directly or indirectly, to another lifeline.
We denote that an LSC L is monotonically connected by

MCONN(L). By default, these additional filters are employed.

Problem Statement. Given support, confidence, and delta
discriminativeness thresholds, mine all symbolic LSCs that are
non-redundant and delta discriminative. We refer to the this
set of LSCs as the set of succinct LSCs.

V. MINING FRAMEWORK

This section describes our technique to mine a succinct set
of LSCs from a set of traces, starting with the framework
overview and continuing with the algorithm in detail.

A. Mining Framework

The mining framework starts with a program and ends with
a succinct set of mined LSCs. The program under investigation
is instrumented with ‘print’ statements at the entries of selected
method calls; different instrumentation techniques could be
used ranging from binary instrumentation, to byte code in-
jection to aspect oriented programming. When executed, the
instrumented program produces a set of traces. If a set of test
cases is present, these test cases could be run to produce a
set of traces. Otherwise, typical user interaction with the user
interface component of the system could be performed and a
corresponding set of traces could be collected.

The set of traces is fed to the miner (Part 2,3 and 4). The
miner finds every LSC L(pre, f ull) that satisfies the following
criteria: (1) The full chart f ull is observed at least min sup
number of times in the set of traces; (2) when the pre-chart
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pre occurs, the main-chart would eventually occur with at
least min conf likelihood in the input traces; (3) the set is
non redundant; and (4) all LSCs are delta-discriminative with
regard to higher ranked mined LSCs.

The mined LSCs could be visualized to help program
understanding, fed to runtime monitoring tools [26], [29], used
for software verification, etc.

B. Mining Algorithm

We start by describing a basic operation used during the
mining process. It then follows with the algorithm to mine
frequent symbolic charts. These charts are later composed
to form significant LSCs. Redundant LSCs are removed on-
the-fly during the composition process. As a final process,
the mined significant non-redundant charts are further ranked
and summarized. The complexity analysis of the various
procedures in the algorithm is available in [1].

Basic Operation. We introduce a basic operation termed as
possible bindings that computes the possible extensions of a
symbolic chart given an additional symbolic event to append
to the chart. We define it formally in Definition 10.

Definition 10 (Possible Bindings): Given a symbolic chart
AC and a symbolic event AE, concatenating AE to AC results
in a set of (non-isomorphic) possible symbolic charts. Each
of the charts in the set corresponds to a different valid pair
of symbolic lifelines assigned as the bindings of AE. We
denote the set of possible resultant charts from AC and AE
by PBDG(AC,AE).

To illustrate the set PBDG(⋅,⋅), consider the left-most chart
Abs in Fig. 9. Computing PBDG(Abs, (B,A,m2())) returns
four possible charts: AbsExt-1,2,3 and 4 in Fig. 9.
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Fig. 9. PBDG Examples

Procedure MineFreqCharts
Inputs:

T DB : Input Trace Database
min sup: Min. Sup. Thresh.

Output:
A set of frequent charts

Method:
1: Let E = Single-event charts satisfying min sup
2: For each f E in E
3: Call MineWthPrefix(min sup,E, f E)

Procedure MineWthPrefix
Inputs:

min sup: Min. Sup. Thresh.
E: Frequent single events
CurC: Current chart considered

Method:
4: Output CurC
5: For each f E in E
6: Let nxCSet = PBDG(C, f E)
7: For each nxC in nxCSet
8: If (∣T DBnxC∣ ≥ min sup ∧ MCONN(nxC))
9: Call MineWthPrefix(min sup,E,nxC)

Fig. 10. Mine Frequent Charts Procedure

Mining Frequent Symbolic Charts. Our mining algo-
rithm works in a depth first manner. First, chart of length 1
is considered. Consecutively, we incrementally increase the
length of the chart by appending events to the previously
considered charts. Following Property 1, when a chart under
consideration is infrequent, all its extensions (i.e., all charts
having this chart as a prefix) would be infrequent too. Hence,
we safely stop growing the chart further when we find that a
chart is infrequent. With this we prune a large search space
containing infrequent charts. Furthermore, all additional filters,
e.g., monotonic connectedness, etc., are applied at this phase
when LSCs are composed from frequent charts. The algorithm
to mine all symbolic charts is shown in Fig. 10.

Extraction of Non-Redundant Significant LSCs. Given
a set of symbolic charts, significant LSCs are formed by
composing symbolic charts. Two charts pre and f ull, where
pre is an isomorphic prefix of full, could be composed to
form LSC L(pre, f ull) with support sup( f ull) and confidence
sup( f ull)/sup(pre). We are interested only in LSCs whose
confidence is above the minimum confidence threshold. Dur-
ing composition we detect redundant LSCs on the fly. As
defined in Defn. 7, an LSC L is redundant if there exists

Procedure ComposeNRLSCs
Inputs:

CHT : All frequent charts
min con f : Min. Conf. Thresh.

Output:
A set of non-redundant significant LSCs

Method:
1: Initialize BKT S as a hash table
2: For each f ull in CHT
3: For each isomorphic prefix pre of f ull
4: Create LSC L(pre, f ull)
5: If (con f (L) ≥ min con f )
6: Put L to BKT S based on its support and conf.
7: Let CandNR = bucket’s candidate non-red. LSCs
8: Update CandNR accordingly – see text
9: For each bucket in BKTS
10: Output all non-redundant LSCs in the bucket

Fig. 11. Compose Non-Redundant Significant LSCs Procedure

another LSC L′ where there is an isomorphic embedding of
L in L′ and both LSCs have the same statistics (i.e., equal
support and confidence).

A straightforward approach to extract non-redundant LSCs
would be to compare each LSC with all other LSCs. However,
this would be expensive – O(n2). Since n could be large, we
would like to have a more efficient approach. First, since we
would like to check only the LSCs having the same support
and confidence, we hash the LSCs based on their support and
confidence values. Only LSCs in the same bucket would need
to be compared with one another.

To further speed up the process, we check for redundant
LSCs on-the-fly when new LSCs are formed and added to the
bucket. A temporary data structure is used to hold candidate
non-redundant LSCs. Whenever an LSC in the bucket is
considered, this LSC is checked only against all candidate
LSCs found so far. If there exists a candidate LSC that is a
super-chart of the new LSC, this LSC would not be added
as a candidate. Otherwise, it is added. During the process,
candidate LSCs that are found to be embedded in newly
formed LSCs are removed from the list of candidates. At the
end, the candidate LSCs in each bucket would be the set of
non-redundant LSCs with that particular statistics (i.e., support
and confidence values).

Checking for redundant LSCs builds upon the checking
of isomorphic embeddings. We move the description of the
checking of isomorphic embeddings to [1].

Ranking and Summarization. To perform the summariza-
tion, we first sort the LSCs in an ascending order based on
number of lifelines, total length (i.e., number of messages),
the inverse length of the premise, their confidence and their
support. The sorted list is then summarized by removing those
LSCs which do not give enough extra information (in terms
of added messages) relative to the ones ranked above them.
The delta-discrimination threshold is defined by the user; only
those LSCs that have at least δ percent difference from LSCs
ranked above them would be left in the summary. More details
are available in [1].

Complexity. We divide the complexity analysis into three
parts: the computation of frequent symbolic charts, the compu-
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tation of non-redundant symbolic LSCs, and the computation
of succinct LSCs. The complexity of computing frequent
symbolic charts is linear in the number of frequent symbolic
charts found. The complexity of computing non-redundant
symbolic LSCs is linear to number of frequent symbolic charts
and the largest bucket size used. The complexity of computing
succinct LSCs is O(nLog(n)) where n is the number of
symbolic non-redundant LSCs.

Output Guarantee. The above algorithm guarantees that all
specifications mined are succinct (i.e., sound), and all succinct
specifications are mined (i.e., complete). The definition and
discussion on statistical soundness and completeness is given
in Section III-D.

Theorem 1: Our algorithm produces a statistically sound
and complete set of succinct LSCs (i.e., it is significant,
symbolic, non-redundant, delta-discriminative and obeys the
set of filters specified by users).
Proof sketch Soundness is guaranteed as we check each LSC
output to see if it is succinct.

Completeness is guaranteed due to the following. Our
framework considers the search space of all possible LSCs
in a depth first search manner. To make mining feasible, a
pruning strategy based on Property 1 is used to cut the search
space of non-frequent charts. Additional search space might
be pruned based on the filters described in Section IV-D. Since
only search spaces consisting of non-succinct LSCs (i.e., those
not satisfying minimum support or are deemed not interesting
based on the filteres) are pruned, and we exhaustively traversed
all search space that are not pruned, our algorithm produces a
complete set of succinct LSCs. □

Given a specification format, a set of traces and some
criteria (i.e., support, confidence, delta discrimination, etc),
we would mine all specifications from the traces obeying the
format and criteria. These properties are commonly obeyed
by data mining tools [11] and invariant generation tools like
Daikon [9]. Admittedly, just like other dynamic analysis tools,
the quality of the mined specifications would vary depending
on the traces. This is common to dynamic analysis tasks and
to data mining tools: results can only be as good as the quality
of the input data.

VI. EXPERIMENTAL RESULTS

We have implemented the ideas presented in this paper and
evaluated them on two case study applications. All experi-
ments were performed on a Intel Core 2 Duo 2.40GHz Tablet
PC with 3.24 GB of RAM running Windows XP Professional.
Algorithms were written using Visual C#.Net running under
.Net Framework 2.0 with generics compiled using Visual
Studio.Net 2005.

We first analyzed crossFTP server [5], a commercial open
source FTP server built on top of Apache FTP server. The
server consists of 15 packages containing 1148 methods in 165
classes spanning 18841 LOC. We used AspectJ to generate
traces suitable for our needs, running the server with usage
scenarios involving file transfers, deletions, renames, closing/

App. MSup Time(s) ∣Syb.∣ ∣NR∣ ∣Suc.∣
Jeti 10 527 323,269 50 16
Jeti 15 232 127,903 24 9
Jeti 20 1 20 7 6
CrossFTP 20 1,640 118,012 12 11
CrossFTP 30 1,635 115,234 5 4
CrossFTP 40 1,636 115,234 5 4

TABLE II
EXPERIMENT RESULT BY VARYING TRACE SETS AND MINIMUM

SUPPORT THRESHOLDS WITH MIN CONF=100%, AND
MIN DISC=10%. THE COLUMNS CORRESPOND TO THE

APPLICATION WHERE THE TRACES COME FROM (APP.), THE
MINIMUM SUPPORT THRESHOLD (MSUP), THE NUMBER OF

SYMBOLIC LSCS (∣SYB.∣), THE NUMBER OF NON-REDUNDANT
SYMBOLIC LSCS (∣NR∣), AND THE NUMBER OF SUCCINCT LSCS

(I.E., SYMBOLIC, NON-REDUNDANT, AND DELTA-DISCRIMINATIVE
LSCS) MINED (∣SUC.∣), RESPECTIVELY.

opening connections, starting/ closing the server etc. We
collected 54 traces with a total length of 1876 events.

We also analyzed Jeti [2], a popular full featured open
source instant messaging application. Jeti has an open plug-in
architecture. It supports many features including file transfer,
group chat, buddy lists, presence indicators, etc. Its core
contains 49K LOC consisting of about 3400 methods, 511
classes in 62 packages. We collected 5 traces with a total
length of 1797 events.
Succinctness Experiments. We vary the support values for
the two sets of traces and run the mining. Table II contains
information on the time needed to mine the scenarios for
the various support thresholds, and the number of symbolic
LSCs, non-redundant symbolic LSCs, and succinct LSCs
(i.e., symbolic, non-redundant, and delta-discriminative LSCs)
mined.

From Table II, running on traces from Jeti at the minimum
support, confidence and delta-discrimination threshold set at
10, 100% and 10% respectively, the algorithm completed
within 10 minutes and a total of 16 succinct scenarios were
mined. Note that mining symbolic LSCs without the redun-
dancy filter and summarization produces 323,269 LSCs. That
is, the algorithm reduced the number of LSCs mined by a
factor greater than 10,000; many concrete LSCs could be
merged into one symbolic LSC; many redundant and non-delta
discriminative LSCs were removed.

In addition, for traces of CrossFTP at the minimum support,
confidence and delta-discrimination threshold set at 20, 100%
and 10% respectively, the algorithm completed within 35
minutes and a total of 11 succinct scenarios were mined. Note
that mining symbolic LSCs without the redundancy filter and
summarization produced 118,012 LSCs. That is, the algorithm
reduced the number of LSCs mined by a factor greater than
10,000; again many concrete LSCs could be merged into one
symbolic LSC; many redundant and non-delta discriminative
LSCs were removed.

For Jeti traces, at higher support threshold (i.e., 20) the
number of the mined LSCs is smaller. This affects also the
number of redundancies found. Still the eventual number
of succinct LSCs mined is smaller (6 instead of 9 or 16),
showing that indeed some information was lost due to the use
of the initial higher support threshold. For CrossFTP, even
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Fig. 14. [CrossFTP] Mined LSC: Make Directory

with higher support thresholds the number of redundant LSCs
remains high as there are large mined LSCs with high support.
Some Mined Scenarios. We show some mined scenarios from
Jeti and CrossFTP. Figs. 12 & 13 show two scenarios related to
the drawing and internal information discovery functionalities
of Jeti. Fig 12 shows that whenever PictureChangeListener
(PCL) (i.e., an object of type PCL) calls the showWindow()
method of PictureChat (PC) and PC calls addShapeDrawn-
ByMe() of PictureHistory (PH), it is the case that PH calls
calls the send(Packet) method of Backend (B) which is then
relayed by calling send(Packet) methods of Connect (C) and
Output (C). Fig 13 shows that whenever Discovery (D) calls
send(Packet) method of Backend (B), the packet is relayed via
the send(Packet) methods of Connect (C) and Output (O).

Fig. 14 shows an LSC mined from CrossFTP. It describes
the scenario of creating a new directory on the server, in-
volving an MKDIR command, an FC, and a FSI objects.
It is interesting to note that two other mined scenarios, for
moving and renaming files (not shown here), were also mined.
The three scenarios share a very similar structure, differing
only in the identity of the first lifeline and the names of the
methods involved. As future work, it may be interesting to
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execute()

onUploadStart()

getDataInputStream()

NFO FSI SPFCFRISTORRH

createOutputStream()

transfer()

setUpload()

notifyUpload()

onUploadEnd()
notifyUpload()

Fig. 15. [CrossFTP] Mined LSCs: Upload
develop additional abstraction operators that will allow us to
automatically recognize such similar structures and thus report
them in a more succinct way.

Figs. 15 tells the ‘story’ of uploading a file to the server:
whenever a RequestHandler (RH) object calls the execute()
method of a STOR command object, the latter eventually calls
the getFileOffset() method of a FtpRequestImpl (FRI) object,
the onUploadStart() method of a FtpletContainer (FC) object,
the getDataInputStream() method of the FRI object, and the
createOutputStream() of a NativeFileObject (NFO) object.
Later the STOR command object calls the transfer() method of
the RequestHandler (RH) object and the setUpload() method
of a an FtpStatisticsImpl (FSI) object. Finally, the FSI object
makes two calls to the notifyUpload() method of a Statistic-
sPanel (SP) object (each with a different signature, abstracted
away in the diagram), and the scenario ends with the STOR
command object calling the onUploadEnd() of the FC object.
Note how this mined LSC gives a comprehensive inter-object
picture of the way upload requests are handled by the server.
Also note the use of symbolic lifelines (notice the indefinite
‘a’ and definite ‘the’ in the description). Finally, recall that this
scenario was extracted from a number of traces, where many
events related to other features interleaved with the events
in the scenario, including the simultaneous uploading of a
number of files. Thus, abstraction from concrete to symbolic
LSC had to be correctly employed.

Additional details of the case studies are available in [1].

VII. RELATED WORK

Many studies propose variants of dynamic analysis based
specification mining (e.g., [9] mine boolean expressions
describing likely invariants on values of program vari-
ables, [4], [15], [31], [33] mine temporal orderings of method
calls/network packets as finite state machines, [8], [32] mine
frequent patterns of behavior, [7] mine implied message se-
quence charts). Different from the above mentioned studies,
we mine a set of LSCs from traces of program executions. We
believe sequence diagrams in general and LSCs in particular,
are suitable for the specification of inter-object behavior, as
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they make the different role of each participating object and the
communications between the different objects explicit. LSCs
also express modalities in the relationship between the pre-
and the main- chart. Our work is not aimed at discovering the
complete behavior or APIs of certain components, but, rather,
to capture the way components cooperate to implement certain
system features. Indeed, inter-object scenarios are popular
means to specify requirements (see, e.g., [12]).

The challenge of succinctness in specification mining is not
limited to the scenario-based approach. Some work present
mining of rules and patterns (see, e.g., [8], [32], [20], [27]).
At times, the number of rules and patterns could be very
large. This makes it hard for users to investigate mined
specifications as there are many reported rules and patterns
which are very similar to one another. In Daikon [9], the
number of reported invariants could also be too large. In order
to address this issue, according to Daikon’s documentation,
Daikon may be configured to remove logically redundant
invariants by using a theorem prover. In mining finite-state
machines (e.g., [4], [28]), at times the size of the automaton
could be too large to be useful, with too many connections
between nodes. This could happen especially if various un-
related sub-specifications are interleaved together.

To address the large number of patterns/rules mined, studies
in [8], [17], [20], [21], [27] remove redundant patterns/rules in
the process. In this work, to eliminate redundancy we consider
not only the sequences of method calls but also lifelines and
isomorphic relationships among charts which make the task
more challenging. In a workshop paper, our preliminary work
introduces the concept of mining symbolic LSCs [23], however
it is not implemented and there is no experimental study.
In this work, we extend the concept further by introducing
redundancy among symbolic LSCs and delta-discriminative
summarization. We also provide an implementation which we
use to experiment on two case studies.

Hamou-Lhadj and Lethbridge propose an approach to sum-
marize traces by removing uninteresting events [10]. Different
from their work, we perform summarization on the mined
LSCs rather than on the traces. The two approaches are
orthogonal; we could use the approach in [10] to help in
selecting the important events that we should trace.

In this work, we only consider statistical redundancy. In the
future, it is interesting to combine our approach with work
on logical redundancy, e.g., [3]. One could also construct
a subsumption relation based on software hierarchies, e.g.,
object composition hierarchy, package hierarchy, etc, and mine
for representative LSCs that subsume others. In effect, this
could be viewed as an integration of this work with our
previous work in [24], which proposes an approach to zoom-
in and -out mined specifications. In [25], we introduce min-
ing scenario-based specifications with value-based invariants
involving method parameters. In this work, we focus on
LSCs without value-based invariants. In the future, we plan
to integrate these two approaches together.

VIII. CONCLUSION AND FUTURE WORK

In this paper we addressed the succinctness challenge of
specification mining in the context of the scenario-based
approach, mining a succinct set of significant LSCs from a
set of program execution traces. We formulated and evaluated
a definition of an equivalence relation over LSCs, a definition
of a redundancy and inclusion relation based on isomorphic
embeddings among LSCs, and a delta-discriminative measure
based on an information gain metric on a sorted set of LSCs,
all used on top of the statistical metrics of support and
confidence. Our case studies showed the utility of our work
in reducing the number of mined LSCs. Future work includes
potential generalization and application of the methods we pre-
sented in this paper to other specification mining approaches.
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