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Abstract— There is a huge wealth of sequence data available,
for example, customer purchase histories, program execution
traces, DNA, and protein sequences. Analyzing this wealth of
data to mine important knowledge is certainly a worthwhile goal.

In this paper, as a step forward to analyzing patterns in
sequences, we introduce the problem of mining closed repetitive
gapped subsequences and propose efficient solutions. Given a
database of sequences where each sequence is an ordered list
of events, the pattern we would like to mine is called repetitive
gapped subsequence, which is a subsequence (possibly with gaps
between two successive events within it) of some sequences in
the database. We introduce the concept of repetitive support
to measure how frequently a pattern repeats in the database.
Different from the sequential pattern mining problem, repetitive
support captures not only repetitions of a pattern in different
sequences but also the repetitions within a sequence. Given a user-
specified support threshold min sup, we study finding the set of all
patterns with repetitive support no less than min sup. To obtain
a compact yet complete result set and improve the efficiency, we
also study finding closed patterns. Efficient mining algorithms to
find the complete set of desired patterns are proposed based on
the idea of instance growth. Our performance study on various
datasets shows the efficiency of our approach. A case study is
also performed to show the utility of our approach.

I. INTRODUCTION

A huge wealth of sequence data is available from wide-
range of applications, where sequences of events or transac-
tions correspond to important sources of information including
customer purchasing lists, credit card usage histories, program
execution traces, sequences of words in a text, DNA, and pro-
tein sequences. The task of discovering frequent subsequences
as patterns in a sequence database has become an important
topic in data mining. A rich literature contributes to it, such
as [1], [2], [3], [4], [5], [6], and [7]. As a step forward in this
research direction, we propose the problem of mining closed
repetitive gapped subsequences from a sequence database.

By gapped subsequence, we mean a subsequence, which
appears in a sequence in the database, possibly with gaps
between two successive events. For brevity, in this paper, we
use the term pattern or subsequence for gapped subsequence.

In this paper, we study finding frequent repetitive patterns,
by capturing not only pattern instances (occurrences) repeat-
ing in different sequences but also those repeating within each
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Fig. 1. Pattern AB and CD in a Database of Two Sequences

sequence. As in other frequent pattern mining problems, we
measure how frequently a pattern repeats by “support”. Fol-
lowing is a motivating example about our support definition.

Example 1.1: Figure 1 shows two sequences, which might
be generated when a trading company are handling the re-
quests of customers. Let the symbols represent: ‘A’ - request
placed, ‘B’ - request in-process, ‘C’ - request cancelled, and
‘D’ - product delivered. Suppose S1 = AABCDABB and
S2 = ABCD are two sequences from different customers.

Consider pattern AB (“process a request” after “the cus-
tomer places one”). We mark its instances in S1 and S2

with different shapes. We have totally 4 instances of AB,
and among them, squares, circles, and triangles, are the ones
repeating within S1. Consider CD (“deliver the product” after
“the customer cancels a request”). It has 2 instances, each
repeating only once in each sequence. In our definition, the
support of AB, sup(AB) = 4, and sup(CD) = 2. It can be
seen that although both AB and CD appear in two sequences,
AB repeats more “frequently” than CD does in S1. This
information is useful to differentiate the two customers.

Before defining the support of a pattern formally, there are
two issues to be clarified:

1) We only capture the non-overlapping instances of a
pattern. For example in Figure 1, once the pair of
squares is counted in the support of pattern AB, ‘A’
in square with ‘B’ in circle should not be counted. This
non-overlapping requirement prevents over-counting the
support of long patterns, and makes the set of instances
counted in the support informative to users.

2) We use the maximum number of non-overlapping in-
stances to measure how frequently a pattern appears in
a database (capturing as many non-overlapping instances
as possible). We emphasize this issue, also because when
1) is obeyed, there are still different ways to capture the
non-overlapping instances. In Figure 1, if alternatively,
in S1, we pair ‘A’ in square with ‘B’ in circle, and ‘A’
in circle with ‘B’ in triangle, as two instances of AB,
there is no more non-overlapping instance in S1, and we
get only 3 instances of AB in total, rather than 4.



TABLE I

DIFFERENT TYPES OF RELATED WORK

Input Apriori Property Output Patterns Repetitions of Patterns Constraint of Instances (Occurrences)
in Each Sequence Counted in the Support

Agrawal and Srikant [1] Multiple sequences Yes All/Closed/Maximal Ignore Subsequences
Manilla et al. [2] One sequence Yes All Capture Fixed-width windows or minimal windows
Zhang et al. [6] One sequence No All Capture Subsequences satisfying “gap requirement”
El-Ramly et al. [4] Multiple sequences No All/Maximal Capture Substrings with first / last event matched
Lo et al. [7] Multiple sequences Yes (Weak) All/Closed Capture Subsequences following MSC/LSC semantics
This paper Multiple sequences Yes All/Closed Capture Non-overlapping subsequences

Our support definition, repetitive support, and its semantic
property will be elaborated in Section II-A based on 1) and 2)
above. It will be shown that our support definition preserves
the Apriori property, “any super-pattern of a nonfrequent pat-
tern cannot be frequent [8],” which is essential for designing
efficient mining algorithms and defining closed patterns.

Problem Statement. The problem of mining (closed) repeti-
tive gapped subsequences: Given a sequence database SeqDB
and a support threshold min sup, find the complete set of
(closed) patterns with repetitive support no less than min sup.

Our repetitive pattern mining problem defined above is
crucial in the scenarios where the repetition of a pattern within
each sequence is important. Following are some examples.

Repetitive subsequences may correspond to frequent cus-
tomer behaviors over a set of long historical purchase records.
In Example 1.1, given historical purchase records S1 and
S2, some patterns (behaviors), like CD, might appear in
every sequence, but only once in each sequence; some others,
like AB, might not only appear in every sequence, but also
repeat frequently within some sequences. Sequential pattern
mining [1] cannot differentiate these two kinds of patterns.
The difference between them can be found by our repetitive
pattern mining, and used to guide a marketing strategy.

Repetitive subsequences can represent frequent software
behavioral patterns. There are recent interests in analyzing
program execution traces for behavioral models [9], [10], [11],
[7], [12], and [13]. Since a program is composed of different
paths depending on the input, a set of program traces each
corresponding to potentially different sequences should be
analyzed. Also, because of the existence of loops, patterns of
interests can repeat multiple times within each sequence, and
the corresponding instances may contain arbitrarily large gaps.
Frequent usage patterns may either appear in many different
traces or repeat frequently in only a few traces. In Example 1.1,
AB is considered more frequent than CD, because AB
appears 3 times in S1. Given program execution traces, these
patterns can aid users to understand existing programs [7],
verify a system [14], [15], re-engineer a system [4], prioritize
tests for regression tests [16], and is potentially useful for
finding bugs and anomalies in a program [17].

Related Work. Our work is a variant of sequential pattern
mining, first introduced by Agrawal and Srikant [1], and
further studied by many, with different methods proposed, such
as PrefixSpan by Pei et al. [3] and SPAM by Ayres et al. [18].
Recently, there are studies on mining only representative pat-
terns, such as closed sequential patterns by Yan et al. [5] and
Wang and Han [19]. However, different from ours, sequential

pattern mining ignores the (possibly frequent) repetitions of a
patterns in a particular sequence. The support of a pattern is the
number of sequences containing this pattern. In Example 1.1,
both patterns AB and CD have support 2.

Consider a larger example: In a database of 100 sequences,
S1 = . . . = S50 = CABABABABABD and S51 = . . . =
S100 = ABCD. In sequential pattern mining, both AB and
CD have support 100. It is undesirable to consider AB and
CD equally frequent for two reasons: 1) AB appears more
frequently than CD does in the whole database, because it
repeats more frequently in S1, ..., S50; 2) mining AB can help
users notice and understand the difference between S1, ..., S50

and S51, ..., S100, which is useful in the applications mentioned
above. In our repetitive support definition, we differentiate AB
from CD: sup(AB) = 5 ·50+50 = 300 and sup(CD) = 100.

There are also studies ([2], [4], [6], [7]) on mining the
repetition of patterns within sequences.

In episode mining by Manilla et al. [2], a single sequence is
input, and a pattern is called a (parallel, serial, or composite)
episode. There are two definitions of the support of an episode
ep: (i) the number of width-w windows (substrings) which
contain ep as subsequences; and (ii) the number of minimal
windows which contain ep as subsequences. In both cases, the
occurrences of a pattern, as a series of events occurring close
together, are captured as substrings, and they may overlap. In
Example 1.1, in definition (i), for w = 4, serial episode AB
has support 4 in S1 (because 4 width-4 windows [1, 4], [2, 5],
[4, 7], and [5, 8] contain AB), but some occurrence of AB, like
‘A’ in circle with ‘B’ in circle, are not captured because of
the width constraint; in definition (ii), the support of AB is 2,
and only two occurrences (‘A’ in circle with ‘B’ in square and
‘A’ in triangle with ‘B’ in circle) are captured. Casas-Garriga
replaces the fixed-width constraint with a gap constraint [20].

In DNA sequence mining, Zhang et al. [6] introduce gap
requirement in mining periodic patterns from sequences. In
particular, all the occurrences (both overlapping ones and non-
overlapping ones) of a pattern in a sequence satisfying the
gap requirement are captured, and the support is the total
number of such occurrences. The support divided by Nl

is a normalized value, support ratio, within interval [0, 1],
where Nl is the maximum possible support given the gap
requirement. In Example 1.1, given requirement “gap ≥ 0 and
≤ 3”, pattern AB has support 4 in S1 (‘A’ and ‘B’ can have
0-3 symbols between them), and its support ratio is 4/22.

El-Ramly et al. [4] study mining user-usage scenarios of
GUI-based program composed of screens. These scenarios
are termed as interaction patterns. The support of such a



pattern is defined as the number of substrings, where (i) the
pattern is contained as subsequences, and (ii) the first/last
event of each substring matches the first/last event of the
pattern, respectively. In Example 1.1, AB has support 9, with 8
substrings in S1, (1, 3), (1, 7), . . ., (6, 7), and (6, 8), captured.

Lo et al. [7] propose iterative pattern mining, which captures
occurrences in the semantics of Message Sequence Chart/Live
Sequence Chart, a standard in software modeling. Specifically,
an occurrence of a pattern e1e2 . . . en is captured in a substring
obeying QRE (e1 G∗ e2 G∗ . . . G∗ en), where G is the set
of all events except {e1, . . . , en}, and ∗ is Kleene star. The
support of a pattern is the number of all such occurrences. In
Example 1.1, pattern AB has support 3: ‘A’ in circle with ‘B’
in square and ‘A’ in triangle with ‘B’ in circle are captured
in S1; ‘A’ in hexagon with ‘B’ in hexagon is captured in S2.

In Table I, some important features of our work are com-
pared with the ones of different types of related work.

Contributions. We propose and study the problem of min-
ing repetitive gapped subsequences. Our work complements
existing work on sequential pattern mining. Our definition
of instance/support takes both the occurrences of a pattern
repeating in different sequences and those repeating within
each sequence into consideration, which captures interesting
repetitive patterns in various domains with long sequences,
such as customer purchase histories and software traces.
For low support threshold in large datasets, the amount of
frequent patterns could be too large for users to browse and
to understand. So we also study finding closed patterns. A
performance study on various datasets shows the efficiency of
our mining algorithms. A case study has also been conducted
to show the utility of our approach in extracting behaviors from
software traces of an industrial system; and the result shows
that our repetitive patterns can provide additional information
that complements the result found by a past study on mining
iterative patterns from software traces [7].

Different from the projected database operation used by
PrefixSpan [3], CloSpan [5], and BIDE [19], we propose a dif-
ferent operation to grow patterns, which we refer to as instance
growth. Instance growth is designed to handle repetitions of a
pattern within each sequence, and to facilitate computing the
maximum number of non-overlapping instances.

For mining all frequent patterns, instance growth is em-
bedded into the depth-first pattern growth framework. For
mining closed patterns, we propose closure checking to rule
out non-closed ones on-the-fly without referring to previously
generated patterns, and propose landmark border checking
to prune the search space. Experiments show the number of
closed frequent patterns is much less than the number of all
frequent ones, and our closed-pattern mining algorithm is sped
up significantly with these two checking strategies.

Organization. Section II gives the problem definition formally
and preliminary analysis. Section III describes the instance
growth operation, followed by the design and analysis of our
two algorithms: GSgrow for mining all frequent patterns and
CloGSgrow for mining closed ones. Section IV presents the

results of our experimental study performed on both synthetic
and real datasets, as well as a case study to show the power
of our approach. Finally, Section V concludes this paper.

II. REPETITIVE GAPPED SUBSEQUENCES

In this section, we formally define the problem of mining
repetitive gapped subsequences.

Let E be a set of distinct events. A sequence S is an ordered
list of events, denoted by S = 〈e1, e2, . . . , elength〉, where ei ∈
E is an event. For brevity, a sequence is also written as S =
e1e2 . . . elength. We refer to the ith event ei in the sequence
S as S[i]. An input sequence database is a set of sequences,
denoted by SeqDB = {S1, S2, . . . , SN}.

Definition 2.1 (Subsequence and Landmark): Sequence
S = e1e2 . . . em is a subsequence of another sequence
S′ = e′1e′2 . . . e′n (m ≤ n), denoted by S � S′ (or S′ is a
supersequence of S), if there exists a sequence of integers
(positions) 1 ≤ l1 < l2 < . . . < lm ≤ n s.t. S[i] = S′[li] (i.e.,
ei = e′li) for i = 1, 2, . . . , m. Such a sequence of integers
〈l1, . . . , lm〉 is called a landmark of S in S′. Note: there may
be more than one landmark of S in S′.

A pattern P = e1e2 . . . em is also a sequence. For two
patterns P and P ′, if P is a subsequence of P ′, then P is
said to be a sub-pattern of P ′, and P ′ a super-pattern of P .

A. Semantics of Repetitive Gapped Subsequences

Definition 2.2 (Instances of Pattern): For a pattern P in a
sequence database SeqDB = {S1, S2, . . . , SN}, if 〈l1, . . . , lm〉
is a landmark of pattern P = e1e2 . . . em in Si ∈ SeqDB, pair
(i, 〈l1, . . . , lm〉) is said to be an instance of P in SeqDB, and
in particular, an instance of P in sequence Si.

We use Si(P ) to denote the set of instances of P in Si,
and use SeqDB(P ) to denote the set of instances of P in
SeqDB. Moreover, for an instance set I ⊆ SeqDB(P ), let
Ii = I ∩ Si(P ) = {(i, 〈l(k)

1 , . . . , l
(k)
m 〉), 1 ≤ k ≤ ni} be the

subset of I containing the instances in Si.
By defining “support”, we aim to capture both the occur-

rences of a pattern repeating in different sequences and those
repeating within each sequence. A naive approach is to define
the support of P , supall(P ), to be the total number of instances
of P in SeqDB; i.e. supall(P ) = |SeqDB(P )|. However,
there are two problems with supall(P ): (i) We over-count the
support of a long pattern because a lot of its instances overlap
with each other at a large portion of positions. For example,
in SeqDB = {AABBCC . . . ZZ}, pattern ABC . . . Z has
support 226, but pattern AB only has support 22 = 4. (ii)
The violation of the Apriori property (supall(P ) < supall(P ′)
for some P and its super-pattern P ′) makes it hard to define
closed patterns, and to design efficient mining algorithm.

In our definition of repetitive support, we aim to avoid
counting overlapping instances multiple times in the support
value. So we first formally define overlapping instances.

Definition 2.3 (Overlapping Instances): Two instances of a
pattern P = e1e2 . . . em in SeqDB = {S1, S2, . . . , SN},
(i, 〈l1, . . . , lm〉) and (i′, 〈l′1, . . . , l′m〉), are overlapping if (i)



TABLE II

SIMPLE SEQUENCE DATABASE

Sequence e1 e2 e3 e4 e5 e6 e7

S1 A B C A B C A
S2 A A B B C C C

i = i′, AND (ii) ∃1 ≤ j ≤ m : lj = l′j . Equivalently,
(i, 〈l1, . . . , lm〉) and (i′, 〈l′1, . . . , l′m〉) are non-overlapping if
(i’) i �= i′, OR (ii’) ∀1 ≤ j ≤ m : lj �= l′j .

Definition 2.4 (Non-redundant Instance Set): A set of in-
stances, I ⊆ SeqDB(P ), of pattern P in SeqDB is non-
redundant if any two instances in I are non-overlapping.

It is important to note that from (ii’) in Definition 2.3,
for two NON-overlapping instances (i, 〈l1, . . . , lm〉) and
(i′, 〈l′1, . . . , l′m〉) of the pattern P = e1e2 . . . em in SeqDB
with i = i′, we must have lj �= l′j for every 1 ≤ j ≤ m, but it
is possible that lj = l′j′ for some j �= j′. We will clarify this
point in the following example with pattern ABA.

Example 2.1: Table II shows a sequence database SeqDB =
{S1, S2}. Pattern AB has 3 landmarks in S1 and 4 landmarks
in S2. Accordingly, there are 3 instances of AB in S1:
S1(AB) = {(1, 〈1, 2〉), (1, 〈1, 5〉), (1, 〈4, 5〉)}, and 4 instances
of AB in S2: S2(AB) = {(2, 〈1, 3〉), (2, 〈2, 3〉), (2, 〈1, 4〉),
(2, 〈2, 4〉)}. The set of instances in SeqDB: SeqDB(AB) =
S1(AB) ∪ S2(AB). Instances (i, 〈l1, l2〉) = (1, 〈1, 2〉) and
(i′, 〈l′1, l′2〉) = (1, 〈1, 5〉) are overlapping, because i = i′ and
l1 = l′1, i.e., they overlap at the first event, ‘A’ (S1[1] = A). In-
stances (i, 〈l1, l2〉) = (1, 〈1, 2〉) and (i′, 〈l′1, l′2〉) = (1, 〈4, 5〉)
are non-overlapping, because l1 �= l′1 and l2 �= l′2. Instance sets
IAB = {(1, 〈1, 2〉), (1, 〈4, 5〉), (2, 〈1, 3〉), (2, 〈2, 4〉)} and I ′AB

= {(1, 〈1, 5〉), (2, 〈2, 3〉), (2, 〈1, 4〉)} are both non-redundant.
Now consider pattern ABA in SeqDB. It has 3 instances

in S1: S1(ABA) = {(1, 〈1, 2, 4〉), (1, 〈1, 2, 7〉), (1, 〈4, 5, 7〉)},
and no instance in S2. Instances (i, 〈l1, l2, l3〉) = (1, 〈1, 2, 7〉)
and (i′, 〈l′1, l′2, l′3〉) = (1, 〈4, 5, 7〉) are overlapping, because
i = i′ and l3 = l′3. Instances (i, 〈l1, l2, l3〉) = (1, 〈1, 2, 4〉) and
(i′, 〈l′1, l′2, l′3〉) = (1, 〈4, 5, 7〉) are non-overlapping (although
l3 = l′1 = 4), because l1 �= l′1, l2 �= l′2, and l3 �= l′3. So instance
set IABA = {(1, 〈1, 2, 4〉), (1, 〈4, 5, 7〉)} is non-redundant.

A non-redundant instance set I ⊆ SeqDB(P ) is maximal
if there is no non-redundant instance set I ′ of pattern P s.t.
I ′ ⊇ I . To avoid counting overlapping instances multiple times
and to capture as many non-overlapping instances as possible,
the support of pattern P could be naturally defined as the
size of a maximal non-redundant instance set I ⊆ SeqDB(P ).
However, maximal non-redundant instance sets might be of
different sizes. For example, in Example 2.1, for pattern AB,
both non-redundant instance sets IAB and I ′AB are maximal,
but |IAB| = 4 while |I ′AB| = 3. Therefore, our repetitive
support is defined to be the maximum size of all possible non-
redundant instance sets of a pattern, as the measure of how
frequently the pattern occurs in a sequence database.

Definition 2.5 (Repetitive Support and Support Set): The
repetitive support of a pattern P in SeqDB is defined to be

sup(P ) = max{|I| | I ⊆ SeqDB(P ) is non-redundant}. (1)

The non-redundant instance set I with |I| = sup(P ) is called
a support set of P in SeqDB.

Example 2.2: Recall Example 2.1, IAB and I ′AB are two
non-redundant instance sets of pattern AB in SeqDB. It can
be verified that |IAB| = 4 is the maximum size of all possible
non-redundant instance sets. Therefore, sup(AB) = 4, and
IAB is a support set. We may have more than one support set
of a pattern. Another possible support set of AB is I ′′AB =
{(1, 〈1, 2〉), (1, 〈4, 5〉), (2, 〈2, 3〉), (2, 〈1, 4〉)}.

Similarly, sup(ABA) = 2 and IABA is a support set.
To design efficient mining algorithms, it is necessary that

repetitive support sup(P ) defined in (1) is polynomial-time
computable. We will show how to use our instance grow
operation to compute sup(P ) in polynomial time (w.r.t. the
total length of sequences in SeqDB) in Section III-A. Note:
two instances in a support set must be non-overlapping; if we
replace Definition 2.3 (about “overlapping”) with a stronger
version, computing sup(P ) will become NP-complete. 1

Mining (Closed) Repetitive Gapped Subsequences. Based
on Definition 2.5, a (closed) pattern P is said to be frequent
if sup(P ) ≥ min sup, where min sup is a specified by users.
Our goal of mining repetitive gapped subsequences is to find
all the frequent (closed) patterns given SeqDB and min sup.

Considering our definition of repetitive support, our mining
problem is needed in applications where the repetition of a
pattern within each sequence is important.

B. Apriori Property and Closed Pattern

Repetitive support satisfies the following Apriori property.
Lemma 1 (Monotonicity of Support): Given two patterns P

and P ′ in a sequence database SeqDB, if P ′ is a super-pattern
of P (P � P ′), then sup(P ) ≥ sup(P ′).

Proof: We claim: if P � P ′, for a support set I∗ of P ′

(i.e., I∗ ⊆ SeqDB(P ′) is non-redundant and |I∗| = sup(P ′)),
we can construct a non-redundant instance set Î ⊆ SeqDB(P )
s.t. |Î| = |I∗|. Then it suffices to show

sup(P ) = max{|I| | I ⊆ SeqDB(P ) is non-redundant}
≥ |Î| = |I∗| = sup(P ′).

1A stronger version of Definition 2.3: changing (ii) into “∃1 ≤ j ≤ m and
1 ≤ j′ ≤ m : lj = l′

j′” and (ii’) into “∀1 ≤ j ≤ m and 1 ≤ j′ ≤ m : lj �=
l′
j′ .” Based on this stronger version, re-examine pattern ABA in Example 2.1

and 2.2: its instances (i, 〈l1, l2, l3〉) = (1, 〈1, 2, 4〉) and (i′, 〈l′1, l′2, l′3〉) =
(1, 〈4, 5, 7〉) will be overlapping (because l3 = l′1), and thus sup(ABA) = 1
rather than 2 (because IABA is no longer a feasible support set).

With this stronger version of Definition 2.3, computing sup(P ) becomes
NP-complete, which can be proved by the reduction of the iterated shuffle
problem. The iterated shuffle problem is proved to be NP-complete in [21].

Given an alphabet E and two strings v, w ∈ E∗, the shuffle of v and
w is defined as v 
 w = {v1w1v2w2 . . . vkwk | vi, wi ∈ E∗ for 1 ≤
i ≤ k, v = v1 . . . vk , and w = w1 . . . wk}. The iterated shuffle of v is
{λ} ∪ {v} ∪ (v 
 v) ∪ (v 
 v 
 v) ∪ (v 
 v 
 v 
 v) ∪ . . ., where λ is
an empty string. For example, w = AABBAB is in the iterated shuffle of
v = AB, because w ∈ (v 
 v 
 v); but w = ABBA is not in the iterated
shuffle of v. Given two strings w and v, the iterated shuffle problem is to
determine whether w is in the iterated shuffle of v.

The idea of the reduction from the iterated shuffle problem to the problem
of computing sup(P ) (under the stronger version of Definition 2.3) is: given
strings w and v (with string length |w| = k|v|), let pattern P = v and
database SeqDB = {w}; w is in the iterated shuffle of v ⇔ sup(P ) = k.



To prove the above claim, w.l.o.g., let P ′ = e1 . . . ej−1ejej+1

. . . em and P = e1 . . . ej−1ej+1 . . . em, i.e., P ′ is obtained
by inserting ej into P . Given a support set I∗ of P ′,
for each instance ins = (i, 〈l1, . . . , lj−1, lj , lj+1, . . . , lm〉) ∈
I∗, we delete lj from the landmark to construct ins−j =
(i, 〈l1, . . . , lj−1, lj+1, . . . , lm〉), and add ins−j into Î .

Obviously, ins−j constructed above is an instance of P .
For any two instances ins and ins′ in I∗ s.t. ins �= ins′, we
have ins−j �= ins′−j and they are non-overlapping. Therefore,
the instance set Î constructed above is non-redundant, and
|Î| = |I∗|, which completes our proof.

Theorem 1 is an immediate corollary of Lemma 1.

Theorem 1 (Apriori Property): If P is not frequent, any of
its super-patterns is not frequent either. Or equivalently, if P
is frequent, all of its sub-patterns are frequent.

Definition 2.6 (Closed Pattern): A pattern P is closed in a
sequence database SeqDB if there exists NO super-pattern P ′

(P � P ′) s.t. sup(P ) = sup(P ′). P is non-closed if there
exists a super-pattern P ′ s.t. sup(P ) = sup(P ′).

Lemma 2 (Closed Pattern and Support Set): In a sequence
database SeqDB, consider a pattern P and its super-pattern
P ′: sup(P ′) = sup(P ) if and only if for any support set I ′ of
P ′, there exists a support set I of P , s.t.

(i) for each instance (i′, 〈l′1, . . . , l′|P ′|〉) ∈ I ′, there exists a
unique instance (i, 〈l1, . . . , l|P |〉) ∈ I , where i′ = i and
landmark 〈l1, . . . , l|P |〉 is a subsequence of landmark
〈l′1, . . . , l′|P ′|〉; and

(ii) for each instance (i, 〈l1, . . . , l|P |〉) ∈ I , there exists a
unique instance (i′, 〈l′1, . . . , l′|P ′|〉) ∈ I ′, where i′ =
i and landmark 〈l′1, . . . , l′|P ′|〉 is a supersequence of
landmark 〈l1, . . . , l|P |〉.

Proof: Direction “⇐” is trivial. To prove direction “⇒”,
let I∗ = I ′: such an I can be constructed in the same way as
the construction of Î in the proof of Lemma 1, and the proof
can be completed because sup(P ′) = sup(P ).

For a pattern P and its super-pattern P ′ with sup(P ) =
sup(P ′), conditions (i)-(ii) in Lemma 2 imply a one-to-one
correspondence between instances of pattern P in a support
set I and those of P ′ in a support set I ′. In particular, instances
of P ′ in I ′ can be obtained by extending instances of P in
I (since landmark 〈l1, . . . , l|P |〉 is a subsequence of landmark
〈l′1, . . . , l′|P ′|〉). So it is redundant to store both patterns P ′ and
P , and we define the closed patterns. Moreover, because of the
equivalence between “sup(P ) = sup(P ′)” and conditions (i)-
(ii) in Lemma 2, we can define closed patterns merely based
on the repetitive support values (as in Definition 2.6).

Example 2.3: Consider SeqDB in Table II. It is shown in
Example 2.2 that sup(AB) = 4. We also have sup(ABC) =
4, and a support set of ABC is IABC = {(1, 〈1, 2, 3〉),
(1, 〈4, 5, 6〉), (2, 〈1, 3, 5〉), (2, 〈2, 4, 6〉)}. Since sup(AB) =
sup(ABC), AB is not a closed pattern, and direction “⇒”
of Lemma 2 can be verified here: for support set IABC of
ABC, there exists a support set of AB, IAB = {(1, 〈1, 2〉),
(1, 〈4, 5〉), (2, 〈1, 3〉), (2, 〈2, 4〉)}, s.t. landmarks 〈1, 2〉, 〈4, 5〉,

〈1, 3〉, and 〈2, 4〉 are subsequences of landmarks 〈1, 2, 3〉,
〈4, 5, 6〉, 〈1, 3, 5〉, and 〈2, 4, 6〉, respectively.

III. EFFICIENT MINING ALGORITHMS

In this section, given a sequence database SeqDB and
a support threshold min sup, we introduce algorithms GS-
grow for mining frequent repetitive gapped subsequences and
CloGSgrow for mining closed frequent gapped subsequences.
We start with introducing an operation, instance growth, used
to compute the repetitive support sup(P ) of a pattern P in
Section III-A. We then show how to embed this operation into
depth-first pattern growth procedure with the Apriori property
for mining all frequent patterns in Section III-B. The algorithm
with effective pruning strategy for mining closed frequent
patterns is presented in Section III-C. Finally, we analyze the
complexity of our algorithms in Section III-D.

Different from the projected database operation used in
sequential pattern mining (like [3], [5], and [19]), our instance
growth operation is designed to avoid overlaps of the repeti-
tions of a pattern within each sequence in the pattern growth
procedure. It keeps track of a set of non-overlapping instances
of a pattern to facilitate computing its repetitive support (i.e.,
the maximum number of non-overlapping instances).

A. Computing Repetitive Support using Instance Growth

The maximization operator in Equation (1) makes it non-
trivial to compute the repetitive support sup(P ) of a given
pattern P . We introduce a greedy algorithm to find sup(P ) in
this subsection. This algorithm, based on instance growth, can
be naturally extended for depth-first pattern growth, to mine
frequent patterns utilizing the Apriori property.

We define the right-shift order of instances, which is used
in our instance growth operation INSgrow (Algorithm 2).

Definition 3.1 (Right-Shift Order of Instances): Given two
instances (i, 〈l1, . . . , lm〉) and (i′, 〈l′1, . . . , l′m〉) of a pattern
P in a sequence database SeqDB, (i, 〈l1, . . . , lm〉) is said
to come before (i′, 〈l′1, . . . , l′m〉) in the right-shift order if
(i < i′) ∨ (i = i′ ∧ lm < l′m).

The following example is used to illustrate the intuition of
instance growth operation INSgrow for computing sup(P ).

Example 3.1: Table III shows a more involved sequence
database SeqDB. We compute sup(ACB) in the way illus-
trated in Table IV. We explain the three steps as follows:

1) Find a support set IA of A (the 1st column). Since there
is only one event, IA is simply the set of all instances.

2) Find a support set IAC of AC (the 2nd column).
Extend each instance in IA in the right-shift order (recall
Definition 3.1), adding the next available event ‘C’ on
the right to its landmark. There is no event ‘C’ left for
extending (2, 〈7〉), so we stop at (2, 〈5〉).

3) Find a support set IACB of ACB (the 3rd column).
Similar to step 2, for there is no ‘B’ left for (2, 〈5, 6〉),
we stop at (2, 〈1, 2〉). Note (1, 〈4, 5〉) cannot be extended
as (1, 〈4, 5, 6〉) (instances (1, 〈1, 3, 6〉) and (1, 〈4, 5, 6〉)
are overlapping). We get sup(ACB) = 3.



TABLE III

SEQUENCE DATABASE IN RUNNING EXAMPLE

Sequence e1 e2 e3 e4 e5 e6 e7 e8 e9

S1 A B C A C B D D B
S2 A C D B A C A D D

TABLE IV

INSTANCE GROWTH FROM A TO ACB

Support set IA Support set IAC Support set IACB

� �� �

(1, 〈1〉) →
� �� �

(1, 〈1, 3〉) →
� �� �

(1, 〈1, 3, 6〉)
(1, 〈4〉) → (1, 〈4, 5〉) → (1, 〈4, 5, 9〉)
(2, 〈1〉) → (2, 〈1, 2〉) → (2, 〈1, 2, 4〉)

� �� �(2, 〈5〉) → (2, 〈5, 6〉)
� �� �

→
(2, 〈7〉)
� �� �

→

sup(A) = 5 sup(AC) = 4 sup(ACB) = 3

3’) To compute sup(ACA), we start from step 2 and change
step 3. To get a support set IACA of ACA, simi-
larly, extend instances in IAC in the right-shift order:
(1, 〈1, 3〉) → (1, 〈1, 3, 4〉), (2, 〈1, 2〉) → (2, 〈1, 2, 5〉),
and (2, 〈5, 6〉) → (2, 〈5, 6, 7〉). There is no ‘A’ left for
(1, 〈4, 5〉). We get IACA = {(1, 〈1, 3, 4〉), (2, 〈1, 2, 5〉),
(2, 〈5, 6, 7〉)} and sup(ACA) = 3. Note: (2, 〈1, 2, 5〉)
and (2, 〈5, 6, 7〉)} are non-overlapping (e5 = A in S2

appears twice but as different ‘A’s in pattern ACA;
recall Definition 2.3 and pattern ABA in Example 2.1).

We formalize the method we used to compute sup(P )
in Example 3.1 as Algorithm 1, called supComp. Given a
sequence database SeqDB and a pattern P , it outputs a support
set I of P in SeqDB. The main idea is to couple pattern
growth with instance growth. Initially, let I be a support set
of size-1 pattern e1; in each of the following iterations, we
extend I from a support set of e1 . . . ej−1 to a support set of
e1 . . . ej−1ej by calling INSgrow(SeqDB, e1 . . . ej−1, I, ej). It
is important to maintain I to be leftmost (Definition 3.2), so
as to ensure the output of INSgrow(SeqDB, e1 . . . ej−1, I, ej)
in line 3 is a support set of e1 . . . ej−1ej as a loop invariant.
So, finally, a support set of P is returned.

To prove the correctness of supComp, we formally define
leftmost support sets and analyze subroutine INSgrow.

Definition 3.2 (Leftmost Support Set): A support set I of
pattern P in SeqDB is said to be leftmost, if: let I =
{(i(k), 〈l(k)

1 , . . . , l
(k)
m 〉), 1 ≤ k ≤ sup(P )} (sorted in the right-

shift order for k = 1, 2, . . . , sup(P )); for any other support
set I ′ of P , I ′ = {(i′(k)

, 〈l′(k)
1 , . . . , l

′(k)
m 〉), 1 ≤ k ≤ sup(P )}

(also sorted in the right-shift order, and thus i(k) = i′(k)), we
have l

(k)
j ≤ l

′(k)
j for all 1 ≤ k ≤ sup(P ) and 1 ≤ j ≤ m.

Example 3.2: Consider SeqDB in Table III. I =
{(1, 〈1, 2〉), (1, 〈4, 9〉), (2, 〈1, 4〉)} is a support set of AB, but
I is NOT leftmost, because there is another support set I ′ =
{(1, 〈1, 2〉), (1, 〈4, 6〉), (2, 〈1, 4〉)} s.t. l

(2)
2 = 9 > l

′(2)
2 = 6.

Definition 3.3 (Pattern Growth ‘◦’): For a pattern P =
e1e2 . . . em, pattern e1e2 . . . eme is said to be a growth of
P with event e, denoted by P ◦ e. Given another pattern

Algorithm 1 supComp(SeqDB, P ): Compute Support (Set)

Input: sequence database SeqDB = {S1, S2, . . . , SN}; pat-
tern P = e1e2 . . . em.
Output: a leftmost support set I of pattern P in SeqDB.

1: I ← {(i, 〈l1〉) | for some i, Si[l1] = e1};
2: for j = 2 to m do
3: I ← INSgrow(SeqDB, e1 . . . ej−1, I, ej);
4: return I (|I| = sup(P ));

Algorithm 2 INSgrow(SeqDB, P, I, e): Instance Growth

Input: sequence database SeqDB = {S1, S2, . . . , SN}; pat-
tern P = e1e2 . . . ej−1; leftmost support set I of P ; event e.
Output: a leftmost support set I+ of pattern P ◦ e in SeqDB.

1: for each Si ∈ SeqDB s.t. Ii = I ∩ Si(P ) �= ∅ (P has
instances in Si) in the ascending order of i do

2: last position← 0, I+
i ← ∅;

3: for each (i, 〈l1, . . . , lj−1〉) ∈ Ii = I ∩ Si(P )
in the right-shift order (ascending order of lj−1) do

4: lj ← next(Si, e, max{last position, lj−1});
5: if lj =∞ then break;
6: last position← lj ;
7: I+

i ← I+
i ∪ {(i, 〈l1, . . . , lj−1, lj〉)};

8: return I+ = ∪1≤i≤NI+
i ;

Subroutine next(S, e, lowest)
Input: sequence S; item e; integer lowest.
Output: minimum l s.t. l > lowest and S[l] = e.

9: return min{l | S[l] = e and l > lowest};

Q = e′1e
′
2 . . . e′n, pattern e1 . . . eme′1 . . . e′n is said to be a

growth of P with Q, denoted by P ◦Q.

Instance Growth (Algorithm 2): Instance growth operation
INSgrow(SeqDB, P, I, e), is an important routine for comput-
ing repetitive support, as well as mining (closed) frequent
patterns. Given a leftmost support set I of pattern P in SeqDB
and an event e, it extends I to a leftmost support set I+ of
P ◦ e. To achieve this, for each instance (i, 〈l1, . . . , lj−1〉) ∈
Ii = I ∩ Si(P ) (lines 3-7), we find the minimum lj , s.t.
lj > max{last position, lj−1} and Si[lj ] = e, by calling
next(Si, e, max{last position, lj−1}) (line 4). When such
lj cannot be found (lj = ∞), stop scanning Ii. Because
Si[lj ] = e and lj > lj−1, we have (i, 〈l1, . . . , lj−1, lj〉) is an
instance of P ◦ e, and it should be added into I+

i (line 7).
What’s more, since lj > last position and last position is
equal to lj found in the last iteration (line 6), it follows that
I+
i is non-redundant (no two instances in I+

i are overlapping),
and instances are added into I+

i in the right-shift order.

Lemma 3 (Non-Redundant/Right-Shift in Instance Growth):
In INSgrow(SeqDB, P, I, e) (Algorithm 2), I+ = ∪1≤i≤N I+

i

is finally a non-redundant instance set of pattern P ◦ e, and
these instances are inserted into I+ in the right-shift order.

Proof: Directly from the analysis above.

We then show I+ is actually a leftmost support set of P ◦e.



Lemma 4 (Correctness of Instance Growth): Given a left-
most support set I of pattern P = e1 . . . ej−1 in SeqDB and
an event e, INSgrow(SeqDB, P, I, e) (Algorithm 2) correctly
computes a leftmost support set I+ of pattern P ◦ e.

Proof: For each Si ∈ SeqDB and instances in Ii = I ∩
Si(P ) = {(i, 〈l(k)

1 , . . . , l
(k)
j−1〉, 1 ≤ k ≤ ni} sorted in the right-

shift order, INSgrow gets I+
i = {(i, 〈l(k)

1 , . . . , l
(k)
j−1, l

(k)
j 〉), 1 ≤

k ≤ n+
i } also in the right-shift order (ascending order of l

(k)
j ).

(i) We prove I+ = ∪1≤i≤N I+
i is a support set of P ◦ e.

From Lemma 3, I+ is a non-redundant instance set
of pattern P ◦ e, so we only need to prove |I+| =
sup(P ◦ e). For the purpose of contradiction, if |I+| <
sup(P◦e), then for some Si, there exists a non-redundant
instance set I∗i of P ◦ e in Si s.t. |I∗i | > |I+

i |. Let
I∗i = {(i, 〈l′(k)

1 , . . . , l
′(k)
j−1, l

′(k)
j 〉), 1 ≤ k ≤ n∗

i }, where
n+

i < |I∗i | = n∗
i ≤ ni. Suppose I∗i is sorted in the

ascending order of l
′(k)
j−1, without loss of generality, we

can assume l
′(k)
j ’s are also in the ascending order for

k = 1, 2, . . . , n∗
i . Otherwise, if for some k, l

′(k−1)
j >

l
′(k)
j , then we can safely swap l

′(k−1)
j and l

′(k)
j . I∗i is

still a non-redundant instance set after swapping.
For I is a leftmost support set, we have l

(k)
j−1 ≤ l

′(k)
j−1 <

l
′(k)
j for 1 ≤ k ≤ n∗

i . From l
(1)
j−1 < l

′(1)
j and the choice

of l
(1)
j (in line 4), we have l

(1)
j ≤ l

′(1)
j . From l

(2)
j−1 < l

′(2)
j

and last position = l
(1)
j ≤ l

′(1)
j , we have l

(2)
j ≤ l

′(2)
j .

By induction, we have l
(n+

i )
j ≤ l

′(n+
i )

j . Consider l
′(k0)
j for

k0 = n+
i + 1 ≤ n∗

i , we have l
(n+

i )
j ≤ l

′(n+
i )

j < l
′(k0)
j and

l
(k0)
j−1 ≤ l

′(k0)
j−1 < l

′(k0)
j . Therefore, (i, 〈l(k0)

1 , . . . , l
(k0)
j−1 〉)

can be extended as (i, 〈l(k0)
1 , . . . , l

(k0)
j−1 , l

′(k0)
j 〉) to be an

instance of P ◦ e, and this contradicts with the fact that
|I+

i | = n+
i < k0 (INSgrow gets l

(k0)
j =∞ in lines 4-5).

So we have I+ = ∪1≤i≤N I+
i is a support set of P ◦ e.

(ii) We prove the support set I+ is leftmost. For any support
set I∗ of P ◦ e, consider each I+

i and I∗i = I∗ ∩Si(P ◦
e) = {(i, 〈l′(k)

1 , . . . , l
′(k)
j−1, l

′(k)
j 〉), 1 ≤ k ≤ n+

i }. With the
inductive argument used in (i), similarly, we can show

that l
(1)
j ≤ l

′(1)
j , l

(2)
j ≤ l

′(2)
j , . . . , l

(n+
i )

j ≤ l
′(n+

i )
j . Since

Ii is leftmost, I+
i (gotten by adding l

(k)
j into Ii) is also

leftmost. Therefore, the support set I+ is leftmost.
With (i) and (ii), we complete our proof.

Although it is not obvious, the existence of leftmost support
sets (Definition 3.2) is implied by (ii) in the above proof.
Specifically, the leftmost support set of a size-1 pattern is
simply the set of all the instances. The leftmost support set of
a size-j pattern can be constructed from the one of its prefix
pattern, a size-(j−1) pattern (as in INSgrow). From Lemma 4,
the support sets found by our mining algorithms (GSgrow and
CloGSgrow introduced later) are leftmost.

Theorem 2 (Correctness of supComp): Algorithm 1 can
compute the leftmost support set I of pattern P in SeqDB.

Proof: Initially, in line 1, I is the leftmost support set

of size-1 pattern e1. By repeatedly applying Lemma 4 for the
iterations of line 2-3, we complete our proof.

In Section III-D, we will show INSgrow (Algorithm 2)
runs in polynomial time (Lemma 5). Since INSgrow is called
m times in supComp (given P = e1e2 . . . em), computing
sup(P ) = |I| with supComp only requires polynomial time
(nearly linear w.r.t. the total length of sequences in SeqDB).
For the space limit, we omit the detailed analysis here.

Example 3.3: Recall how we compute sup(ACB) in three
steps in Example 3.1. In algorithm supComp, I is initialized
as IA in line 1 (step 1). In each of the following two iterations
of lines 2-3, INSgrow(SeqDB, A, I, C) and INSgrow(SeqDB,
AC, I, B) return IAC , i.e., Step 2), and IACB , i.e., Step 3),
respectively. Finally, IACB is returned in line 4.

Subroutine next(S, e, lowest) returns the next position l
after position lowest in S s.t. S[l] = e. For example, in
Step 3) of Example 3.1 (i.e., INSgrow(SeqDB, AC, I, B)),
when Si = S1 and (i, 〈l1, . . . , lj−1〉) = (1, 〈4, 5〉), we have
last position = 6 (for we had (1, 〈1, 3〉) → (1, 〈1, 3, 6〉) in
the previous iteration). Therefore, in line 4, we get lj =
next(S1, B, max{6, 5}) = 9, and add (1, 〈4, 5, 9〉) into I+

1

((1, 〈4, 5〉) → (1, 〈4, 5, 9〉)).
B. GSgrow: Mining All Frequent Patterns

In this subsection, we discuss how to extend supComp
(Algorithm 1) with the Apriori property (Theorem 1) and
the depth-first pattern growth procedure to find all frequent
patterns, which is formalized as GSgrow (Algorithm 3).

GSgrow shares similarity with other pattern-growth based
algorithms, like PrefixSpan [3], in the sense that both of them
traverse the pattern space in a depth-first way. However, rather
than using the projected database, we embed the instance
growth operation INSgrow (Algorithm 2) into the depth-first
pattern growth procedure. Initially, all size-1 patterns with their
support sets are found (line 3), and for each one (P = e),
mineFre(SeqDB, P, I) is called (line 4) to find all frequent
patterns (kept in Fre) with P as their prefixes.

Subroutine mineFre(SeqDB, P, I) is a DFS of the pattern
space starting from P , to find all frequent patterns with P as
prefixes and put them into set Fre (line 7). In each iteration
of lines 8-10, a support set I+ of pattern P ◦ e is found based
on the support set I of P , by calling INSgrow(SeqDB, P, I, e)
(line 9), and mineFre(SeqDB, P ◦ e, I+) is called recursively
(line 10). The Apriori property (Theorem 1) can be applied
to prune the pattern space for the given threshold min sup
(line 6). Finally, all frequent patterns are in the set Fre.

Theorem 3 (Correctness of GSgrow): Given a sequence
database SeqDB and a threshold min sup, Algorithm 3 can
find all patterns with repetitive support no less than min sup.

Proof: GSgrow is an (DFS) extension from supComp
(Algorithm 1). Its correctness is due to Theorems 1 and 2.

Example 3.4: Given SeqDB shown in Table III and
min sup = 3, we start with each single event e (A, B, C, or D)
as a size-1 pattern. For size-1 pattern A, its leftmost support
set is I = IA (as in Table IV), and mineFre(SeqDB, A, I) is



Algorithm 3 GSgrow: Mining All Frequent Patterns

Input: sequence database SeqDB = {S1, S2, . . . , SN};
threshold min sup.
Output: {P | sup(P ) ≥ min sup}.

1: E ← all events appearing in SeqDB; Fre← ∅;
2: for each e ∈ E do
3: P ← e; I ← {(i, 〈l〉) | for some i, Si[l] = e};
4: mineFre(SeqDB, P, I);
5: return Fre;

Subroutine mineFre(SeqDB, P, I)
Input: sequence database SeqDB = {S1, S2, . . . , SN}; pattern

P = e1e2 . . . ej−1; support set I of pattern P in SeqDB.
Objective: add all frequent patterns with prefix P into Fre.

6: if |I| ≥ min sup then
7: Fre← Fre ∪ {P};
8: for each e ∈ E do
9: I+ ← INSgrow(SeqDB, P, I, e);

10: mineFre(SeqDB, P ◦ e, I+);

Algorithm 4 CloGSgrow: Mining Closed Frequent Patterns

... ...
6: if |I| ≥ min sup and ¬(LBCheck(P ) = prune) then
7: if CCheck(P ) = closed then Fre← Fre ∪ {P};
... ...

called. Then in each iteration of lines 8-10, support set I+ =
IAA, . . . , IAD of pattern AA, . . . , AD is found (line 9), and
mineFre(SeqDB, A ◦ e, I+) is called recursively (line 10), for
e = A, . . . , D. Similarly, when mineFre(SeqDB, P, I) is called
for some size-2 pattern P , like P = AA, then support set I+ =
IAAA, . . . , IAAD is found, and mineFre(SeqDB, P ◦ e, I+)
is called, for e = A, . . . , D. Note: if sup(P ) < min sup (i.e.,
|I| < min sup), like |IAAA| = 1 < 3, we stop growing pattern
AAA because of the Apriori property (line 6).

C. CloGSgrow: Mining Closed Frequent Patterns

From Definition 2.6 and Lemma 2, a non-closed pattern
P is “redundant” in the sense that there exits a super-pattern
P ′ of pattern P with the same repetitive support, and P ′’s
support sets can be extended from P ’s support sets. In this
subsection, we focus on generating the set of closed frequent
patterns. Besides proposing the closure checking strategy to
rule out non-closed patterns on-the-fly, we propose the land-
mark border checking strategy to prune the search space.

Definition 3.4 (Pattern Extension): For a pattern P =
e1e2 . . . em and one of its super-patterns P ′ with size m +
1, there are three cases: for some event e′, (1) P ′ =
e1e2 . . . eme′; (2) ∃1 ≤ j < m : P ′ = e1 . . . eje

′ej+1 . . . em;
and (3) P ′ = e′e1e2 . . . em. In any of the three cases, P ′ is
said to be an extension to P w.r.t. e′.

Theorem 4 (Closure Checking): In SeqDB, pattern P is
NOT closed iff for some event e′, the extension to P w.r.t.

e′, denoted by P ′, has support sup(P ′) = sup(P ).

Proof: Directly from the definition of closed patterns
(Definition 2.6) and the Apriori property (Theorem 1).

The above theorem shows that, to check whether a pattern
P is closed, we only need to check whether there exists an
extension P ′ to P w.r.t. some event e′, s.t. sup(P ) = sup(P ′).
This strategy can be simply embedded into GSgrow to rule
out non-closed patterns from the output. But, unfortunately,
we cannot prune the search space using this closure checking
strategy. That means, even if we find that pattern P is NOT
closed, we cannot stop growing P in line 8-10 of GSgrow
(Algorithm 3). Therefore, using this strategy only, when min-
ing closed frequent patterns, we cannot expect any efficiency
improvement to GSgrow. Following is such an example.

Example 3.5: Consider SeqDB shown in Table III. Given
min sup = 3, AB is a frequent pattern because sup(AB) = 3,
with a leftmost support set {(1, 〈1, 2〉), (1, 〈4, 6〉), (2, 〈1, 4〉)}.
AB is non-closed because pattern ACB, an extension to
AB, has the same support, sup(ACB) = sup(AB) = 3
(Theorem 4). A leftmost support set of ACB is {(1, 〈1, 3, 6〉),
(1, 〈4, 5, 9〉), (2, 〈1, 2, 4〉)}. Although AB is non-closed, we
still need to grow AB to ABA, . . . , ABD, because there
may be some closed frequent pattern with AB as its prefix,
like pattern ABD (sup(ABD) = 3).

The following theorem is used to prune the search space.

Theorem 5 (Landmark Border Checking): For pattern P =
e1e2 . . . em in SeqDB and an extension to P w.r.t. some event
e′, denoted by P ′, let I = {(i(k), 〈l(k)

1 , . . . , l
(k)
m 〉), 1 ≤ k ≤

sup(P )} (sorted in the right-shift order) be a leftmost support
set of P , and I ′ = {(i′(k), 〈l′(k)

1 , . . . , l
′(k)
m , l

′(k)
m+1〉), 1 ≤ k ≤

sup(P ′)} (sorted in the right-shift order) be a leftmost support
set of P ′. If there exists P ′ s.t. (i) sup(P ) = sup(P ′) and (ii)
l
′(k)
m+1 ≤ l

(k)
m for all k = 1, 2, . . . , sup(P ) = sup(P ′), then

there is no closed pattern with P as its prefix.

Proof: Because of (i), we have i(k) = i′(k). The main
idea of our proof is: for any pattern P ◦Q with such P as its
prefix, we replace P with P ′, and get pattern P ′◦Q; if sup(P ◦
Q) = sup(P ′ ◦Q), P ◦Q is non-closed. In the following, we
prove sup(P ◦Q) = sup(P ′ ◦Q) to complete our proof.

Let P ◦Q be a size-n pattern, and I ′′ its leftmost support set.
For each instance (i(k), 〈l(k)

1 , . . . , l
(k)
m , l

(k)
m+1, . . . , l

(k)
n 〉) ∈ I ′′,

we have (i(k), 〈l(k)
1 , . . . , l

(k)
m 〉) ∈ I is an instance of P . Re-

placing the prefix 〈l(k)
1 , . . . , l

(k)
m 〉 with 〈l′(k)

1 , . . . , l
′(k)
m , l

′(k)
m+1〉

(a landmark of P ′), since l
′(k)
m+1 ≤ l

(k)
m < l

(k)
m+1, we get an

instance (i(k), 〈l′(k)
1 , . . . , l

′(k)
m , l

′(k)
m+1, l

(k)
m+1, . . . , l

(k)
n 〉) of P ′◦Q.

It can be shown that the instances of P ′◦Q constructed in this
way are not overlapping. Therefore, sup(P ◦Q) ≤ sup(P ′◦Q).
Because P ◦Q is a sub-pattern of P ′◦Q, we have sup(P ◦Q) =
sup(P ′ ◦Q). This completes our proof.

The above theorem means, if for pattern P , there exists an
extension P ′ s.t. conditions (i) and (ii) are satisfied, then we
can stop growing P in the DFS. Because there is no closed
pattern with P as its prefix, growing P will not generate any



closed pattern. Although it introduces some additional cost for
checking “landmark borders” l

(k)
m ’s and l

′(k)
m+1’s, this strategy

is effective for pruning the search space, and can improve the
efficiency of our closed-pattern mining algorithm significantly.
The improvement will be demonstrated by the experiments
conducted on various datasets in Section IV.

Formally, our closed-pattern mining algorithm, CloGSgrow
(Algorithm 4), is similar to GSgrow (Algorithm 3), but
replaces line 6 and line 7 in GSgrow with line 6 and line 7
in CloGSgrow, respectively. Notation-wise, CCheck(P ) =
closed iff the closure checking (Theorem 4) implies P is
closed. LBCheck(P ) = prune iff P satisfies conditions (i)
and (ii) in the landmark border checking (Theorem 5), which
implies P is not only non-closed but also prunable.

The correctness of CloGSgrow is directly from the correct-
ness of GSgrow (Theorem 3), and Theorems 4 and 5 above.

Example 3.6: Consider SeqDB shown in Table III, we
verify Theorem 4 and 5 here. Let P = AA and e′ = C. Given
min sup = 3, AA is a frequent pattern because sup(AA) = 3.
The leftmost support set of AA is I = {(1, 〈1, 4〉), (2, 〈1, 5〉),
(2, 〈5, 7〉)}. By Theorem 4, AA is not closed because pattern
P ′ = ACA, an extension to P = AA w.r.t. e′ = C, has
the same support, sup(ACA) = 3. The leftmost support set
of ACA is I ′ = {(1, 〈1, 3, 4〉), (2, 〈1, 2, 5〉), (2, 〈5, 6, 7〉)}.
By Theorem 5, AA can be pruned from further growing,
because any pattern with AA as its prefix is not closed
(its prefix P = AA can be replaced with P ′ = ACA,
and the support is unchanged). We examine such a pattern,
AAD. We have sup(AAD) = 3 and the leftmost support
set I ′′ = {(1, 〈1, 4, 7〉), (2, 〈1, 5, 8〉), (2, 〈5, 7, 9〉)}. As in the
proof of Theorem 5, in I ′′, we can replace 〈1, 4〉, the prefix
of a landmark in I ′′, with 〈1, 3, 4〉, a landmark in I ′; replace
〈1, 5〉 with 〈1, 2, 5〉; replace 〈5, 7〉 with 〈5, 6, 7〉. Then we get
a support set {(1, 〈1, 3, 4, 7〉), (2, 〈1, 2, 5, 8〉), (2, 〈5, 6, 7, 9〉)}
of ACAD. So sup(ACAD) = 3, and AAD is not closed.

Recall AB and its extension ACB in Example 3.5, although
sup(AB) = sup(ACB), AB cannot be safely pruned because
the leftmost support set of ACB has “shifted right” from the
leftmost support set of AB, which violates (ii) in Theorem 5
(6 > 2 in the first instance, and 9 > 6 in the second one).
There are closed patterns with the prefix AB, like ABD.

D. Complexity Analysis

In this subsection, we analyze the time/space complexity of
our mining algorithms GSgrow and CloGSgrow. Before that,
we need to introduce how the subroutine next in INSgrow
(Algorithm 2) is implemented, and how instances are stored.

Inverted Event Index. Inspired by the inverted index used
in search engine indexing algorithms, inverted event index is
used in subroutine next. Simply put, for each event e ∈ E and
Si ∈ SeqDB, create an ordered list Le,Si = {j|Si[j] = e}.
When subroutine next(S, e, lowest) is called, we can simply
place a query, “what is the smallest element that is larger than
lowest in Le,S?” If the main memory is large enough for the
index structure Le,Si ’s, we can use arrays to implement them,

and apply a binary search to handle this query. Otherwise,
B-trees can be employed to index Le,Si’s. We have the time
complexity of subroutine next(S, e, lowest) is O(log L), where
L = max{|Le,Si |} = O(max{|S1|, . . . , |SN |}).
Compressed Storage of Instances. For an instance of a size-
n pattern P , (i, 〈l1, l2, . . . , ln〉), we only need to store triple
(i, l1, ln), and keep all instances sorted in the right-shift order
(ascending order of ln). In this way, all operations related
to instances in our algorithms can be done with (i, l1, ln). If
required, the leftmost support set of P can be constructed from
these triples. Details are omitted here. So in our algorithms,
we only need constant space O(1) to store an instance.

Time Complexity. We first analyze the time complexity of
the instance growth operation INSgrow, and then analyze the
complexity of mining all frequent patterns with GSgrow.

Lemma 5 (Time Complexity of Instance Growth INSgrow):
Algorithm 2’s time complexity is O(sup(P ) · log L).

Proof: Given event e, pattern P , and its leftmost support
set I in SeqDB, INSgrow computes the leftmost support set
I+ of P ◦ e. Subroutine next is called only once for each
instance in I , and Si is skipped if Si(P )∩ I = ∅ (line 1). So
the total cost is O(|I| · log L) = O(sup(P ) · log L).

Recall Fre is the set of all frequent patterns, found by our
mining algorithm GSgrow, given support threshold min sup.
Let E = |E| be the number of distinct events. We have the
following complexity result for GSgrow (Algorithm 3).

Theorem 6 (Time Complexity of Mining All Patterns):
Algorithm 3’s time complexity is O(

∑
P∈Fre sup(P )·E log L).

Proof: For each P ∈ Fre and e ∈ E , instance growth op-
eration INSgrow to grow P to P◦e and compute its support set
I+ (line 9) is the dominating factor in the time complexity of
Algorithm 3. From Lemma 5, this step uses O(sup(P ) · log L)
time. From the Apriori property (Theorem 1) and line 6 of Al-
gorithm 3, we know INSgrow is executed only for patterns in
Fre. So the total time is O

(∑
P∈Fre

∑
e∈E sup(P ) · log L

)
=

O
(∑

P∈Fre sup(P ) · E log L
)
.

The time complexity of GSgrow is nearly optimal in the
sense that even if we are given the set Fre, it will take
Ω(

∑
P∈Fre sup(P )) time to compute the supports of patterns

in Fre and output their support sets. For each pattern P ∈ Fre,
the additional factor, E, in the complexity of GSgrow is the
time needed to enumerate possible events e’s to check whether
P ◦ e is a frequent pattern. In practice, this factor is usually
not as large as E = |E| because we can maintain a list of
possible events which are much fewer than those in E .

It is difficult to analyze the time complexity of mining
closed patterns, i.e., CloGSgrow (Algorithm 4), quantitatively,
since its running time is largely determined by not only the
number of closed patterns but also the structure of them. Its
scalability will be evaluated experimentally in Section IV.

Space Complexity. Let supmax be the maximum support of
(size-1) patterns in SeqDB, and lenmax the maximum length of
a frequent pattern. The following theorem shows the running-



time space (not including the space consumed by the inverted
event index) used in our two mining algorithm is small.

Theorem 7 (Space Complexity of Two Mining Algorithms):
Besides the inverted event index Le,Si’s, the space consumed
by Algorithms 3 (i.e., GSgrow) and 4 (ı.e., CloGSgrow) is
O(supmax · lenmax).

Proof: The depth of the DFS pattern growth procedure
mineFre of both Algorithm 3 and 4 is bounded by lenmax.
Using the compressed storage of instances, in mineFre, for
each depth, we need only O(|I|) = O(sup(P )) space. So the
total space required is O(supmax · lenmax).

IV. PERFORMANCE AND CASE STUDY

We evaluate the scalability of our approach and conduct a
case study to show its utility. All experiments were performed
on an IBM X41 Intel Pentium M 1.6GHz Tablet PC with
1.5GB of RAM running Windows XP. Algorithms were writ-
ten in C++. Datasets and binary codes used in our experiments
are available in the first author’s homepage.

A. Performance Study

In Figure 2-6, we test our two algorithms, GSgrow (min-
ing all frequent patterns, labeled as ‘All’) and CloGSgrow
(mining closed patterns, labeled as ‘Closed’), to demonstrate
the scalability of our approaches and the effectiveness of our
search space pruning strategy (Theorem 5) when the support
threshold min sup and the size of database are varied.

Datasets. To evaluate scalability, we use three datasets: one
synthetic and two real datasets. The first data set, a synthetic
data generator provided by IBM (the one used in [1]), is
used with modification to generate sequences of events. The
data generator accepts a set of parameters, D, C, N, and S,
corresponding to the number of sequences |SeqDB| (in 1000s),
the average number of events per sequence, the number of
different events (in 1000s), and the average number of events
in the maximal sequences, respectively. The second one is
a click stream dataset (Gazelle dataset) in KDD Cup 2000,
which has been a benchmark dataset used by past studies on
mining sequences, like [5], [19], and [7]. The Gazelle dataset
contains 29369 sequences and 1423 distinct events. Although
the average sequence length is only 3, there are a number of
long sequences (the maximum length is 651), where a pattern
may repeat many times. The third one is a set of software
traces collected from Traffic alert and Collision Avoidance
System (TCAS dataset) described in [7]. The TCAS dataset
contains 1578 sequences and 75 distinct events. The average
sequence length is 36 and the maximum length is 70.

Experiment-1 (Support Threshold). We vary support thresh-
old min sup on three datasets D5C20N10S20 (gotten from
the data generator by setting D=5, C=20, N=10, and S=20),
Gazelle, and TCAS. The results are shown in Figures 2-4. We
report (a) the running time (in seconds) and (b) the number
of patterns found by GSgrow and CloGSgrow.

Similar to other works on closed sequential pattern min-
ing [5], [19], low support thresholds are used to test the scala-
bility of CloGSgrow (mining closed patterns). In Figures 2, 3,
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and 4, the points directly after “. . .” in the X-axis correspond
to the “cut-off” points, where GSgrow (mining all patterns)
takes too long to complete the computation. Only thresholds
larger than these cut-off points are used in GSgrow.

For all datasets, even at very low support, CloGSgrow
is able to complete within 34 minutes. TCAS dataset es-
pecially highlights performance benefit of our pruning strat-
egy: CloGSgrow completes with the lowest possible support
threshold, 1, within less than 34 minutes; the set of all frequent
patterns cannot be found by GSgrow within excessive time
(> 6 hours) even at a relatively high support threshold, 886.

The plotted result shows that the number of closed pat-
terns is much less than the number of all frequent ones.
Moreover, the search space pruning strategy (Theorem 5) for
mining closed patterns significantly reduces the running time,
especially when the support threshold is low. So our mining
algorithms can efficiently work on various benchmark datasets
with different support thresholds. Comparison between perfor-



mance of GSgrow and CloGSgrow highlights the benefit and
effectiveness of our closed pattern mining algorithm.

Comparing with sequential pattern miners, our approach is
slightly slower than BIDE [19] but faster than CloSpan [5] and
PrefixSpan [3] on D5C20N10S20 dataset. It is slower than all
the three on Gazelle dataset. It is faster than PrefixSpan on
TCAS dataset. But is should be noted that our miner solves
a harder problem for the consideration of repetitions both in
multiple sequences and within each sequence.

Experiment-2 (Number of Sequences). In this experiment,
we use the synthetic data generator to get five datasets with
different total numbers of sequences (|SeqDB|). Specifically,
we fix N=10 (10K different events), C=S=50 (50 events in a
sequence on average), and vary D (number of sequences) from
5(K) to 25(K). Support threshold min sup is fixed to be 20.
We report (a) the running time and (b) the number of patterns
found by GSgrow and CloGSgrow in Figure 5.

GSgrow cannot terminate in a reasonable amount of time
when there are around 15K sequences in SeqDB. We stop it
after it runs for >8 hours (we still plot a point here). On the
other hand, CloGSgrow can find the closed patterns using
only around 10 minutes even when there are 25K sequences.

From Figure 5(b), it should also be noted that why GSgrow
cannot terminate for the 15K dataset is not simply because
this algorithm is “inefficient”. The main reason is: there are
too many frequent patterns in this dataset for GSgrow to find
them (note there are already > 106 frequent patterns in the
10K dataset). On the other hand, the number closed patterns
is much less. So it is easier both for the algorithm to compute
closed patterns and for the users to utilize them.

Experiment-3 (Average Sequence Length). Also, we vary the
average length of sequences in SeqDB by changing parameter
C and S in the synthetic data generator. Five datasets are
generated by fixing D=10 (10K sequences in SeqDB), N=10
(10K different events), and varying both C and S from 20
to 100 (average length 20-100). Support threshold min sup is
fixed to be 20. We test our two mining algorithms, and report
(a) the running time and (b) the number of patterns in Figure 6.

Both GSgrow and CloGSgrow consume more time, when
the average length of sequences in SeqDB is larger, because
more patterns can be found with the same support threshold
min sup. For the similar reason as in Experiment-1 and 2
(the number of all frequent patterns is huge), GSgrow cannot
terminate in a reasonable amount of time when the average
length is no less than 80. We terminate GSgrow manually
after it runs for >8 hours when the average length is 80.
CloGSgrow always outperforms GSgrow on efficiency and
outputs much less patterns. Even when the average length is
100, CloGSgrow can terminate in around 2 hours.

B. Case Study

Repetitive gapped subsequence mining is able to capture
repetitive patterns from a variety of datasets. In this case
study, we investigate its power on mining frequent program
behavioral patterns from program execution traces. We use the
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dataset previously used in [7] (generated from the transaction
component of JBoss Application Server). We show the benefit
of our more generic pattern/instance/support definition by
comparing our result to the result gotten in iterative pattern
mining [7]: we are able to discover additional information
from these traces using CloGSgrow.

The dataset was described in [7]. It contains 28 traces,
and each consists of 91 events on average. There are 64
unique events. The longest trace is of 125 events. Using
min sup = 18, CloGSgrow completes in 5 minutes. GSgrow
does not terminate even after running for >8 hours. A total of
6070 patterns are reported. This number is more than the 880
patterns mined in [7], because our pattern definition is more
generic and carries less constraint. For both iterative pattern
and repetitive gapped subsequences, the reported patterns are
too many. So we perform the following post-processing steps
adapted from the ones proposed in [7]:

1) Density: Only report patterns in which the number of
unique events is >40% of its length.

2) Maximality: Only report maximal patterns.
3) Ranking: Order them according to length.

Then, 94 patterns remain. The longest pattern (Figure 7) is
of length 66 and corresponds to the following behavior: Con-
nection Set Up Evs→ TxManager Set Up Evs→ Transaction
Set Up Evs → Resource Enlistment & Transaction Execution
→ Transaction Commit Evs → Transaction Disposal Evs (66
events can be divided into 6 blocks by their semantics).

Interestingly, our longest pattern contains the longest pattern
(of length 32) found in iterative pattern mining [7] as a sub-
pattern, but merges the two behaviors related to “resource
enlistment” and “transaction commit”. Specifically, before a



 

1. TransManLoc.getInstance 
2. TransManLoc.locate 
3. TransManLoc.tryJNDI 
4. TransManLoc.usePrivateAPI 

5. TxManager.getInstance 
6. TxManager.begin 
7. XidFactory.newXid 
8. XidFactory.getNextId 
9. XidImpl.getTrulyGlobalId 

10. TransImpl.assocCurThd 
11. TransImpl.lock 
12. TransImpl.unlock 
13. TransImpl.getLocId 
14. XidImpl.getLocId 
15. LocId.hashCode 

19. TxManager.getTrans 
20. TransImpl.isDone 
21. TransImpl.enlistResource 
22. TransImpl.lock 
23. TransImpl.createXidBranch 
24. XidFactory.newBranch 
25. TransImpl.unlock 
26. XidImpl.hashCode 
27. XidImpl.hashCode 
28. TransImpl.lock 
29. TransImpl.unlock 
30. XidImpl.hashCode 
31. TxManager.getTrans 
32. TransImpl.isDone 
33. TransImpl.equals 
34. TransImpl.getLocIdVal 
35. XidImpl.getLocIdVal 
36. TransImpl.getLocIdVal 
37. XidImpl.getLocIdVal 

38. TxManager.commit 
39. TransImpl.commit 
40. TransImpl.lock 
41. TransImpl.beforePrepare 
42. TransImpl.checkIntegrity 
43. TransImpl.checkBeforeStatus 
44. TransImpl.endResources 
45. TransImpl.unlock 
38. TxManager.commit 
39. TransImpl.commit 

59. TxManager.getInstance 
60. TxManager.releaseTransImpl 
61. TransImpl.getLocalId 
62. XidImpl.getLocalId 
63. LocalId.hashCode 
64. LocalId.equals 
65. TransImpl.unlock 
66. XidImpl.hashCode 
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45. TransImpl.unlock 
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48. TransImpl.unlock 
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50. TransImpl.lock 
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Fig. 7. Longest Repetitive Gapped Subsequence (of length 66) Mined from
JBoss Transaction Component (read from top-to-bottom, left-to-right)

transaction commit, more than one resource enlistment opera-
tion can be made. In iterative pattern’s definition, our longest
pattern found here should be separated into two patterns. But
when mining repetitive gapped subsequences, this information
can be preserved, resulting in a more complete specification.
Hence, our pattern contains more complete information based
on our definition of instance and repetitive support.

Similar to the iterative patterns [7], our repetitive patterns
can also capture more fine-grained repetitions; e.g. the most
frequent pattern (a 2-event behavior): Lock → Unlock.

Some other sequences, like customer purchase histories, can
be also used in our case study to find interesting behaviors.

V. CONCLUSION AND FUTURE WORK

Much data is in sequential format, ranging from purchase
histories to program traces, DNA, and protein sequences. In
many of these sequential data sources, patterns or behaviors of
interests often repeat frequently within each sequence. To cap-
ture this kind of interesting patterns, in this paper, we propose
the problem of mining repetitive gapped subsequences.

Our work extends state-of-art research on sequential pattern
mining, as well as episode mining. We introduce nice proper-
ties of our mining model, and efficient algorithms to mine both
all and closed frequent gapped subsequences. In particular,
we employ novel techniques, instance growth and landmark
border checking to provide promising mining efficiency.

A performance study on several benchmark datasets shows
that our closed-pattern mining algorithm is efficient even
with low support thresholds. Furthermore, a case study on
JBoss application server shows the utility of our algorithm
in extracting behaviors from sequences generated in an indus-
trial system. The result shows repetitive gapped subsequence
mining provides additional information that complements the
result found by a past study on mining iterative patterns [7].

As a promising future work, frequent repetitive gapped sub-
sequences can be used as features for classifying sequences,

like (buggy/un-buggy) program execution traces and purchase
histories of different types of customers. The patterns which
repeat frequently in some sequences while infrequently in
others could be discriminative features for classification. Our
algorithms find all frequent repetitive patterns and report their
supports in each sequence as feature values; a future work is
to select discriminative ones for classification.

Another possible future work is to extend our algorithms for
mining approximate repetitive patterns with gap constraints,
which is useful for mining subsequences from long sequences
of DNA, protein, and text data.
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