
Non-redundant sequential rules—Theory and algorithm

David Lo a,�, Siau-Cheng Khoo b, Limsoon Wong b

a School of Information Systems, Singapore Management University, Singapore
b Department of Computer Science, National University of Singapore, Singapore

a r t i c l e i n f o

Article history:

Received 8 January 2009

Accepted 21 January 2009

Recommended by: D. Shasha

Keywords:

Theoretical data mining

Frequent pattern mining

Sequential pattern mining

Sequential rules

Non-redundant rules

a b s t r a c t

A sequential rule expresses a relationship between two series of events happening one

after another. Sequential rules are potentially useful for analyzing data in sequential

format, ranging from purchase histories, network logs and program execution traces.

In this work, we investigate and propose a syntactic characterization of a non-

redundant set of sequential rules built upon past work on compact set of representative

patterns. A rule is redundant if it can be inferred from another rule having the same

support and confidence. When using the set of mined rules as a composite filter,

replacing a full set of rules with a non-redundant subset of the rules does not impact the

accuracy of the filter.

We consider several rule sets based on composition of various types of pattern

sets—generators, projected-database generators, closed patterns and projected-

database closed patterns. We investigate the completeness and tightness of these rule

sets. We characterize a tight and complete set of non-redundant rules by defining it

based on the composition of two pattern sets. Furthermore, we propose a compressed

set of non-redundant rules in a spirit similar to how closed patterns serve as a

compressed representation of a full set of patterns. Lastly, we propose an algorithm to

mine this compressed set of non-redundant rules. A performance study shows that the

proposed algorithm significantly improves both the runtime and compactness of mined

rules over mining a full set of sequential rules.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Sequential pattern mining first proposed by Agrawal and
Srikant [1] has been the subject of active research [2–7].
Given a database containing sequences, sequential pattern
mining identifies sequential patterns appearing with enough
support. It has potential application in many areas such as
analysis of market data, purchase histories, web logs, etc.

Sequential rules express temporal relationships among
patterns [8]. It can be considered as a natural extension to

sequential patterns, as association rules are to frequent
itemsets [9]. A sequential rule expressed as pre! post,
specifies that there is sufficiently high confidence that the
pattern post will occur in sequences following an
occurrence of pre. Compared to sequential patterns, rules
allow better understanding of temporal behaviors exhib-
ited in a sequence database. Consider a classic example of
purchasing behavior in a video shop [1]: a customer who
buys Star Wars episode IV will likely buy episodes V and
VI in the future. The purchase pattern hIV ;V ;VIi is the
pattern showing the purchase behavior. However, imagine
a standard video shop with hundreds of buyers with
various preferences. The pattern hIV ;V ;VIi will tend to
occur with a low support. Mining with low support will
return the pattern, however, typically along with many
irrelevant or spurious patterns. Rules can throw away

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

ARTICLE IN PRESS

0306-4379/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2009.01.002

� Corresponding author. Tel.: +65 98421014.

E-mail addresses: davidlo@smu.edu.sg (D. Lo),

khoosc@comp.nus.edu.sg (S.-C. Khoo), wongls@comp.nus.edu.sg

(L. Wong).

Information Systems 34 (2009) 438–453

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.01.002
mailto:davidlo@smu.edu.sg
mailto:khoosc@comp.nus.edu.sg
mailto:wongls@comp.nus.edu.sg
mailto:wongls@comp.nus.edu.sg

many spurious patterns by introducing the notion of
confidence to the set of patterns. Only rules satisfying
both support and confidence thresholds are mined.

Sequential rules extend the usability of patterns
beyond the understanding of sequential data. A mined
rule represents the constraint that its premise is followed
by its consequent in sequences. Hence, rules are poten-
tially useful for detecting and filtering anomalies which
violate the corresponding constraints. They have applica-
tions in detecting errors, intrusions, bugs, etc. Mining
rule-like sequencing constraints from sequential data has
been shown useful in medicine (e.g., [10]) and software
engineering (e.g., [11–13]) domains. Some examples of
useful rules include:

1. (Market data) If a customer buys a car, he/she will
eventually buy car insurance. This is potentially useful
in designing personalized marketing strategy.

2. (Medical data) If a patient has a fever, which is
followed by a drop in thrombosite level and followed
by appearance of red spots in the skin, then it is likely
that the patient will need a treatment for dengue fever.
This is potentially useful in predicting a suitable type of
treatment needed for a patient.

3. (Software data) If a Windows device driver calls
KeAcquireSpinLock, then it eventually needs to call
KeReleaseSpinLock [14].

Spiliopoulou [8] proposes generating a full set of
sequential rules (i.e., all frequent and confident rules) from
a full set of sequential patterns (i.e., all frequent patterns).
Generating a full set of sequential rules can be very
expensive. The number of frequent patterns is exponential
to the maximum pattern length: if a sequential pattern of
length l is frequent, all its Oð2l

Þ subsequences are frequent
as well. Each frequent pattern of length l can possibly
generate l� 1 rules (depending on the minimum con-
fidence threshold). Hence, there is an exponential growth in
the number of rules with respect to the maximum pattern
length.

To tame the explosive growth of rules, we propose
mining a non-redundant set of sequential rules. Central to
our method is the notion of rule inference. This notion is
used to define and remove redundancy among rules.
When using the set of mined rules as a composite filter,
replacing a full set of rules with the non-redundant subset
of rules does not impact the accuracy of the filter.

There have been many studies on mining frequent
sequential patterns [1–5,15–17]. These studies include
those mining a compact representation of patterns,
referred to as closed patterns [6,7] and generators
[18,19]. These compact representative patterns can be
mined with much more efficiency than the full set of
frequent patterns. However, there has not been any study
relating these compact representative patterns with a
non-redundant set of sequential rules. In particular the
following questions need to be addressed: Can a
non-redundant set of rules be obtained from compact
representative patterns? What types of compact
representative patterns need to be mined to form

non-redundant rules? What do we mean by a non-
redundant set of rules? Can we characterize the non-
redundant set of rules? How to use representative
patterns to form non-redundant rules? How much effort
is needed to obtain a non-redundant set of rules from
compact representative patterns? Can we design an
efficient algorithm to obtain a non-redundant set of rules
from patterns?

In this paper, we address the above research questions.
We focus on performing an investigation and a character-
ization of a set of non-redundant sequential rules built
upon existing studies on compact sets of representative
sequential patterns. In addition, we propose an algorithm,
develop a tool, and perform a performance study on
mining a non-redundant set of sequential rules.

We investigate four different sets of patterns, namely
generators, projected-database generators, closed patterns
and projected-database closed patterns. For the projected-
database generators and closed patterns, aside from the
format and support values of patterns, we also consider
their projected database (cf., [3,6]).

A rule set can be formed by composing patterns. We
investigate various configurations of compositions of the
above four sets of patterns. These sets are then evaluated
based on the two criteria of completeness and tightness. A
rule set is complete, if each frequent and confident rule
can be inferred by one of the rules in the rule set. A rule
set is tight, if the set contains no redundant rules. We
characterize a tight and complete set of non-redundant
rules based on these configurations.

Additionally, to further reduce the number of mined
rules, we propose a rule compression strategy to compress
the set of non-redundant rules. This strategy is in the
same spirit as how closed patterns are used as a
compressed representation of a full set of frequent
patterns.

We propose an algorithm to mine this compressed set
of non-redundant rules. Our performance study shows
much benefit in mining non-redundant rules over a full
set of rules. The study shows that the runtime and number
of rules mined can be reduced by up to 5598 times and
8583 times, respectively!

The contributions of our work are as follows:

1. We propose a concept of non-redundant rules based on
logical inference.

2. We investigate different sets of patterns and their
various compositions to form different sets of rules. We
study the quality of these rule sets with respect to
completeness and tightness.

3. We characterize a tight and complete set of non-
redundant rules based on compositions of patterns.

4. We propose and characterize compression of the non-
redundant set of rules.

5. We develop an algorithm to mine the compressed set
of non-redundant rules and show that it performs
much faster than mining a full set of sequential rules.

The outline of this paper is as follows. Section 2 presents
terminologies and definitions used. Among other things

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453 439

this section defines the meaning of closed pattern,
generator, projected database, equivalence class, rule
satisfiability and support and confidence values of rules.
Section 3 describes some important properties of pattern-
sets and also of rule inference. These properties are
needed in later sections to show that a set of rules is a
complete and tight set of non-redundant rules. Section 4
describes various configuration of rules by composing
various pattern sets and characterizes them with respect
to completeness and tightness. This section also char-
acterizes a tight and non-redundant set of rules by
composition of two different pattern-sets. Section 5
describes the concept of compressed set of rules. Section
6 describes our algorithm to mine a compressed set of
non-redundant rules. Section 7 describes our performance
study. Section 8 compares and contrasts our method and
contribution with related works. Section 9 discusses
issues on uniqueness of a tight and complete set of non-
redundant rules and a more complex rule inference
strategy. Section 10 concludes this paper.

2. Definitions

Let I be a set of distinct items. Let a sequence S be an
ordered list of events. We denote S by he1;e2; . . . ;eendi
where each ei is an item from I. A pattern P1 ¼

he1;e2; . . . ;eni is considered a subsequence of another
pattern P2 (hf1;f2; . . . ;fmi), denoted by P1LP2, if there
exist integers 1pi1oi2oi3oi4o � � �oinpm such
that e1 ¼ fi1

;e2 ¼ fi2
; . . . ;en ¼ fin

. We also say that

P2 is a super-sequence of P1.The sequence database under
consideration is denoted by SeqDB. The length of P is
denoted by jPj. A pattern P1 ++P2 denotes the concatena-
tion of pattern P1 and pattern P2.

The absolute support of a pattern w.r.t. to a sequence
database SeqDB is the number of sequences in SeqDB that
are super-sequences of the pattern. The relative support of
a pattern w.r.t. to SeqDB is the ratio of its absolute support
to the total number of sequences in SeqDB. The support
(either absolute or relative) of a pattern P is denoted by
supðP; SeqDBÞ. We ignore the mentioning of the database
when it is clear from the context.

Definition 2.1 (Projected database). A sequence database
SeqDB projected on a pattern P is defined as: SeqDBP ¼

fsxjS 2 SeqDB; S ¼ px++sx; px is the minimum prefix of S

containing Pg (cf., [3]).

To illustrate the concept of projected database, consider
the example database ExDB shown in Table 1. As examples,
projected databases w.r.t. ExDB on patterns hA;Bi and
hA;B;Ci are shown in Tables 2 and 3, respectively.

Projected database provides the series of events
occurring after pattern instances. It provides the context

where a pattern can be extended or grown further. Two
patterns p and q having the same projected database, have
the same context, ensuring that any event happening after
an instance p will also appear after the corresponding
instance of q in the database.

Definition 2.2 (Frequent, CS-, LS-Closed). A pattern P is
considered frequent in SeqDB when its support,
supðP; SeqDBÞ, exceeds a minimum threshold min_sup. A
frequent pattern P is considered to be closed if there exists
no proper super-sequence of P having the same support as P

[6,7]. A frequent pattern P is considered to be projected-

database closed if there exists no proper super-sequence
of P having the same support and projected database as P

[6]. To avoid ambiguity we call the set of closed patterns
CS-Closed and the set of projected-database-closed pat-
terns LS-Closed. Note that CS-Closed � LS-Closed.

Definition 2.3 (CS-, LS-Key). A frequent pattern P is
considered to be a generator in SeqDB if there exists no
proper sub-sequence of P having the same support as P in
SeqDB [18,19]. A frequent pattern P is considered to be a
projected-database generator if there exists no proper sub-
sequence of P having the same support and projected
database as P. To avoid ambiguity we call the set of
generators CS-Key and the set of projected-database
generators LS-Key. Note that CS-Key � LS-Key.

Projected-database-closed pattern (LS-Closed) was first
introduced in [6]. Both LS-Closed and LS-Key are interest-
ing concepts, as subsumed patterns (i.e., non-LS-Closed or
non-LS-Key patterns) and the corresponding representa-
tive pattern (i.e., corresponding LS-Closed or LS-Key
pattern) have the same context, ensuring that the series
of events appearing after corresponding pattern instances
to be the same.

Let us also define two different concepts of equivalence
classes of sequential patterns as follows:

Definition 2.4 (EQClass (P,CS,SeqDB)). Two patterns PX

and PY are in the same equivalence class w.r.t. SeqDB iff, for
all s in SeqDB, we have PXLs iff PYLs.

We denote the equivalence class of PX in SeqDB by

EQClassðPX ;CS; SeqDBÞ and EQClassðPX ;CSÞ when there is no

ambiguity.

ARTICLE IN PRESS

Table 1
Example database—ExDB.

ID Sequence

S1 hA;B;C;B;D;A;B;C;Di

S2 hA;B; E;C; F;Di

S3 hA;B; F;C;D; Ei

Table 2
ExDBhA;Bi .

hC;B;D;A;B;C;Di

hE;C; F;Di

hF;C;D; Ei

Table 3
ExDBhA;B;Ci .

hB;D;A;B;C;Di

hF;Di

hD; Ei

D. Lo et al. / Information Systems 34 (2009) 438–453440

Definition 2.5 (EQClass (P,LS,SeqDB)). Two patterns PX

and PY are in the same projected-database equivalence

class w.r.t. SeqDB iff

1. for all s in SeqDB, we have PXLs iff PYLs; and
2. PX and PY have the same projected database in

SeqDB.

We denote the projected-database equivalence class of

PX in SeqDB by EQClass ðPX ; LS; SeqDBÞ and EQClass ðPX ; LSÞ

when there is no ambiguity.

Example. To illustrate the concepts of equivalence class,
generator (CS-Key), projected-database generator (LS-
Key), closed pattern (CS-Closed) and projected-database
closed pattern (LS-Closed) consider the database shown in
the following table.

Seq ID. Sequence Seq ID. Sequence

S1 hA;D;Ai S2 hB;A;D;Ai

S3 hA;B;C;Bi S4 hA;B;B;Ci

S5 hB;B;A;Bi S6 hD;X;Yi

Considering min_sup set at 2, the frequent pattern space
corresponds to the following lattice in Fig. 1. There are 16
frequent patterns including the empty pattern h i which is
trivially frequent; we ignore this trivial pattern in
subsequent discussion.

Among the 16 frequent patterns, there are eight
equivalence classes (i.e., EQClass(�,CS,�)) marked by the
dashed lines and referred to as EQ1–EQ8 in Fig. 1. For
projected-database equivalence classes, since we need to
check for equivalence of projected database as well, we
need to split EQ5 and EQ8, each into two projected-
database equivalence classes (i.e., EQClass(�,LS,�)). The
newly introduced projected-database equivalence classes
EQ522 and EQ 822 are shown by solid red circle. Let us refer
to the other corresponding projected-databases as EQ521

and EQ 821, respectively. Other equivalence classes EQ1,
EQ2, EQ3, EQ4, EQ6 and EQ7 are also projected-database
equivalence classes.

In each equivalence class, generally those patterns at
the bottom are the closed patterns while those at the top
are the generators. For example, consider the equivalence
class EQ5 which is supported by S1 and S2 in the database.
The closed pattern of EQ5 is hA;D;Ai, while the set of
generators is fhA;Ai; hA;Di; hD;Aig. Also consider EQ8 which
is supported by S3 and S4 in the database. The set of
closed patterns of EQ8 is fhA;B;Bi; hA;B;Cig. The set of
generators of EQ8 is the set fhA;B;Bi; hCig.

The case is similar with projected-database equiva-
lence class. For example, consider the equivalence class
EQ521. The closed pattern of EQ521 is hA;D;Ai, while the
set of generators is fhA;Ai; hD;Aig. Also consider EQ821.
The closed patterns of EQ821 is hA;B;Ci. The generator of
EQ8 is hCi.

Note that an equivalence class can have more than one
closed pattern and more than one generator. Similarly, it
can be easily seen that a projected-database equivalence
class can have more than one projected-database closed
pattern and more than one projected-database generator.

Similar to Wang and Han [7], we consider only single-

item sequences. This simplifies our presentation. Further-
more, single-item sequences also represent many impor-
tant types of sequences such as web click streams,
purchase histories, program API traces, etc.

From the definitions of ‘‘support’’ and ‘‘frequent
pattern’’, sequential patterns possess ‘‘apriori’’ property
[20]: if a sequential pattern is frequent then all its
subsequences are also frequent. In other words, support
of a pattern is greater or equal to support of its super-
sequences.

Definition 2.6 (Pattern matching). A sequence S is said to
match a pattern P iff P L S. This is denoted by PhhSii. The
inverse, that S does not match P, is denoted by :PhhSii.

As an example, consider a pattern P ¼ hA;Bi and two
sequences S1 ¼ hA;C;Bi and S2 ¼ hC;Di. The first sequence
S1 matches P since PLS1. The second sequence S2 does not

match P since PL/ S2.
Rules are different from patterns. Rules are composed

of two parts: pre and post-conditions. A rule asserts that if

a series of events occurs, then another series of events
must occur later in the sequence. Formally,

ARTICLE IN PRESS

<B,A>:2

<>:6

<A>:5 :4 <C>:2

<A,A>:2 <A,D>:2 <D,A>:2 <A,B>:3 <B,B>:3 <A,C>:2 <B,C>:2

<A,D,A>:2 <A,B,B>:2 <A,B,C>:2

<D>:3

EQ5

EQ2 EQ3 EQ4

EQ8

EQ6 EQ7

EQ1

Fig. 1. Frequent pattern space and equivalence classes.

D. Lo et al. / Information Systems 34 (2009) 438–453 441

Definition 2.7 (Rule satisfiability). A sequence S is said to
satisfy a sequential rule r of the form pre! post if either
one of the following two cases holds:

1. It matches the pre-condition and subsequently the
post-condition of the rule, i.e., 9S1; S2. S ¼ S1++S2

^prehhS1ii ^ posthhS2ii.
2. It does not match the pre-condition of the rule, i.e.,

)S1; S2. S ¼ S1++S2 ^ prehhS1ii.

A sequence S satisfying a rule r is denoted by rhhSii;
otherwise, it is denoted by :rhhSii.

Following from the pattern example above, consider a
rule r ¼ A! B and two sequences S1 ¼ hA;C;Bi and
S2 ¼ hC;Di. S1 satisfies r since B occurs after the
occurrence of A in S1. In contrast to the pattern example,
S2 satisfies r since we cannot find any A in S2.

Forming sequential rules from frequent sequential
patterns under the support-confidence framework is
analogous to forming association rules from frequent
itemsets. A sequential rule is denoted by r ¼ X ! Yðs; cÞ,
where X and Y are sequential patterns and s and c are the
support and confidence values [8,20]. We omit the
support and confidence values if it is clear or irrelevant
to the context. A rule r ¼ X! Y is constructed from two
sequential patterns: X and X++Y . The confidence of r,
denoted by conf ðrÞ, is defined as the ratio of supðX++YÞ to
supðXÞ. On the other hand, the support of r, denoted by
supðrÞ, is defined to be equal to supðX++YÞ. Formally, we
define support and confidence in Definition 2.8.

Definition 2.8 (Support and confidence). A rule rX has
support equal to the number of sequences in SeqDB that
matches the pre-condition, and subsequently the post-
condition of the rule. Also, its confidence is equal to the
likelihood of sequences matching the pre-condition of rX

to also subsequently match the post-condition of rX .

Note that from the above definition, for a rule rX , it can
be seen that only two sets of sequences in the input
sequence database SeqDB affect the significance values of
rX . The first set is sequences in SeqDB that satisfies rX by
matching the pre-condition and subsequently the post-
condition of rX . The second set is sequences in SeqDB that
violates rX by matching the pre-condition but not
subsequently the post-condition.

A sequential rule consists of four components: an
identifier, a description, a support value and a confidence
value. This is denoted by ‘‘identifier ¼ description
(support, confidence)’’, e.g., R ¼ a! bð0:2;0:8Þ. Some of
these components may be omitted if they are irrelevant or
clear from the context. Given a rule r ¼ X ! Yðs; cÞ,
we denote the pre-/post-condition of r (i.e., X/Y) by
r:Pre/r:Post.

Formally, we also define significant rules, i.e., frequent
and confident rules in Definition 2.9.

Definition 2.9 (Rule significance). A rule with support
higher than a threshold min_sup is considered frequent. A
rule with confidence higher than a threshold min_conf is
considered confident.

3. Inference, redundancy and pattern properties

Our approach to mining a non-redundant set of rules
lies in a construction based on rule inference. In this
section we define rule inference and mention properties
relating to pattern-sets and rule inference.

3.1. Definitions of inference and redundancy

Definition 3.1 (Rule inference). Given a sequence data-
base SeqDB and two rules r1, r2. r1 is said to infer r2 if and
only if:

1. r2hhSii whenever r1hhSii, for every sequence S regard-
less of S’s presence in SeqDB.

2. supðr1; SeqDBÞ ¼ supðr2; SeqDBÞ and conf ðr1; SeqDBÞ ¼

conf ðr2; SeqDBÞ.

Definition 3.2 (Redundant rules). A rule is said to be
redundant in a set of rules R iff it can be inferred by
another rule in R.

Consider the following two rules: r1 ¼ hAi ! hB;C;Di

and r2 ¼ hAi ! hBi having the same support and con-
fidence. r2 is redundant since it can be inferred by r1.

3.2. Properties of pattern sets and inference

We now identify some properties associated with
patterns. We then leverage on these properties to high-
light the properties of rule inference and rule coverage.

Property 1. Let PX be a pattern of a sequence database

SeqDB. If PX is frequent, then: supðPXÞ ¼

MaxCP2CS-Closed^PXLCP . (supðCPÞ).

Property 2. Consider two patterns PX and PY appearing in a

sequence database SeqDB. If PXLPY and supðPXÞ ¼ supðPY Þ,
then PX and PY are supported by the same set of sequences.

Property 3 (Transitivity). If rX infers rY and rY infers rZ then

rX infers rZ .

Before stating the necessary and sufficient condition of
rule inference, we state two lemmas.

Lemma 1. Suppose for every sequence s, we have s w b

when s w a, then it must be the case that a w b.

Lemma 2. Suppose for every sequence s, we have s3/ b when

s3/ a, then it must be the case that aLb.

The sufficient and necessary condition of rule inference
is as follows.

Property 4 (Sufficient and necessary inference). Given rX ¼

preX ! postX and rY ¼ preY ! postY generated from SeqDB.
rY infers rX if and only if the following four conditions hold,
(1) preYLpreX (2) preY ++postY w preX++postX (3) supðrY Þ ¼

supðrXÞ and (4) conf ðrY Þ ¼ conf ðrXÞ.

Proof. The right-to-left direction: Suppose the four condi-
tions holds. Condition (1) ensures that whenever preY

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453442

does not hold, preX will also not hold. This implies that
whenever rY holds (vacuously), rX also holds (vacuously).
Condition (2) ensures that whenever preY ++postY holds,
preX++postX also holds. This implies whenever rY holds
(not vacuously), rX also holds. Conditions (3) and (4)
ensure that rY has the same support and confidence as rX .
Hence, the above are sufficient condition for inference
(cf., Definition 3.1).

The left-to-right direction: Suppose rY infers rX . Then rY

and rX have equal support and confidence. Hence,

conditions (3) and (4) hold. We only need to prove that

conditions (1) and (2) hold. For any sequence s, we have

:rY hhsii iff preYLs and preY ++postYL/ s, and :rXhhsii iff

preXLs and preX++postXL/ s. Taking the contrapositive of rY

infers rX , we have :rY hhsiiwhenever :rXhhsii. Thus preYLs

whenever preXLs, and preY ++postYL/ s whenever preX++

postXL/ s. As s is arbitrary, by Lemma 1, we conclude preYL

preX , proving condition 1. Also, by Lemma 2, we conclude

preX++postXLpreY ++postY , proving condition (2). &

As an example, let SeqDB be a database of two
sequences: hA;Bi and hA;B;Di. Let r1 be hAi ! hBi, r2 be
hAi ! hB;Di and r3 be hA;Bi ! hDi. Then r2 and r3 satisfy
the sufficient inference property. Hence, r2 infers r3.
However, r1 does not infer r2 and r2 does not infer r1, as
r1 and r2 have different support and confidence.

4. Theory of non-redundant rules

Generating sequential rules from a full set of sequential
patterns can be exorbitant. Yan et al. [6] have shown that
the size of a full set of sequential patterns is exponential
to the maximum length of patterns in the closed pattern
set.

We therefore advocate using generator and closed

pattern sets (either regular or projected-database) to
generate sequential rules. Furthermore, instead of gen-
erating all frequent and confident sequential rules, we
strive to generate a non-redundant set of sequential rules

from which all other rules can be derived. There are three
technical challenges pertaining to this research direction:
(1) the assurance that all interesting rules can be logically
inferred from this non-redundant set (i.e., the non-
redundant set is complete), (2) the assurance that the
set of non-redundant rules is tight, and (3) the need
to compute the support and confidence of all rules
efficiently.

The following sub-sections analyze various configura-
tions of rule sets in terms of completeness and tightness
by composing different pattern sets. A configuration that
results in a tight and complete set of non-redundant rules
is then identified.

4.1. Characterization of non-redundant rules

Based on the four pattern sets defined in Section 2—

LS-Key, LS-Closed, CS-Key and CS-Closed—we can form
different sets of rules by composing these patterns to infer

all other frequent and confident rules. The purpose of this
section is to characterize these rules with respect to two
properties namely:

1. Completeness: All frequent and confident rules can be
inferred from the generated set of rules.

2. Tightness: There exists no two different rules r and r0 in
the final set of rules where r infers r0.

Definition 4.1 (Configuration ðX;YÞ). Based on the above
four pattern sets, we define Configuration (X;Y), where
both X and Y can be any of the four pattern sets above, as
the following set of rules: fpre! postjpre 2 X, there is
sh++post 2 Y , supðsh++postÞ ¼ supðpre++post), preLsh and
sh is as short as possibleg.

Each of the above configurations forms a set of rules.
There are in total 16 different configurations. Abstracting
away LS- and CS-, we have four meta configurations:
(Key, Key), (Key, Closed), (Closed, Key) and (Closed,
Closed). Each meta configuration corresponds to four
configurations. We investigate only (Key, Closed) and
(Closed, Closed) as they shed light on the non-redundant
set of rules and the compressed set of non-redundant
rules. In particular we investigate the following config-
urations:

1. Configuration (LS-Key, LS-Closed)
2. Configuration (LS-Key, CS-Closed)
3. Configuration (CS-Key, LS-Closed)
4. Configuration (CS-Key, CS-Closed)
5. Configuration (LS-Closed, LS-Closed)
6. Configuration (LS-Closed, CS-Closed)
7. Configuration (CS-Closed, LS-Closed)
8. Configuration (CS-Closed, CS-Closed)

Lemma 3. Configuration (CS-Key, CS-Closed) is not tight.

Proof. Consider the following database.

ID Sequence

S1 hX;A;M;Y ;A;M;Di

S2 hY ;A;M;D;X;A;Mi

Let min_sup ¼ 1 and min_conf ¼ 0:5. Then the CS-Key set
contains the following patterns: hAi:2, etc. The CS-Closed
set contains the following patterns: hX;A;Mi:2,
hY ;A;M;Di:2, etc. The set of rules in Configuration (CS-
Key, CS-Closed) includes the following: hAi ! hMi (2,1.0),
hAi ! hM;Di(2,1.0), etc. Using Property 4, the second rule
listed above infers the first rule, hence the configuration is
not tight. &

Lemma 4. Configuration (LS-Key, LS-Closed) is not complete.

Proof. Consider the following database.

ID Sequence

S1 hA;B;Ci

S2 hAi

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453 443

Let min_sup ¼ 1 and min_conf ¼ 0:5. Then the LS-Key

set contains the following patterns: hAi:2, hBi:1 and hCi:1.

The LS-Closed set contains the following patterns: hAi:2,

hA;Bi:1, hA;B;Ci:1. The set of rules in the configuration are:

hAi ! hBi (1,0.5), hAi ! hB;Ci (1,0.5) and hBi ! hCi (1,1).

Using Property 4, we do not have any rule in the mined

set that infers the rule hA;Bi ! hCi (1,1) which is

frequent and confident. Hence, the configuration is not

complete. &

Proposition 5. Configuration (CS-Key, CS-Closed), Config-

uration (CS-Key, LS-Closed), Configuration (LS-Key, CS-

Closed) and Configuration (LS-Key, LS-Closed) are neither

complete nor tight.

Proof. Note that LS-Key � CS-Key. Also, LS-Closed � CS-
Closed. Hence, from the definition of configuration, we
have Configuration (LS-Key, LS-Closed) � Configuration
(LS-Key, CS-Closed) � Configuration (CS-Key, CS-Closed).
Also, Configuration (LS-Key, LS-Closed) � Configuration
(CS-Key, LS-Closed) � Configuration (CS-Key, CS-Closed).

According to Lemma 3, Configuration (CS-Key, CS-

Closed) is not tight. Hence, so are the other three

configurations which are super-sets of Configuration

(CS-Key, CS-Closed). Also, according to Lemma 4, Config-

uration (LS-Key, LS-Closed) is not complete. Hence, so are

the other three configurations which are subsets of

Configuration (LS-key, LS-Closed). &

Lemma 6. Configuration (CS-Closed, CS-Closed) is not tight.

Proof. Consider the following database.

ID Sequence

S1 hA;C;B;C;A; Z;B;C;Di

S2 hA; Z;B;C;D;A;C;B;Ci

S3 hA;Bi

Let min_sup ¼ 2 and min_conf ¼ 0:5. Then the CS-Closed
set contains the following patterns: hA;Bi:3, hA;C;B;Ci:2,
hA; Z;B;C;Di:2, etc. The set of rules in Configuration (CS-
Closed, CS-Closed) includes: hA;Bi ! hCi (2,0.67), hA;Bi !
hC;Di (2,0.67), etc. Using Property 4, the second rule listed
above infers the first rule, hence the configuration is not
tight. &

Lemma 7. Configuration (LS-Closed, LS-Closed) is not

complete.

Proof. Consider the following database.

ID Sequence

S1 hA;B;Ci

S2 hA;Bi

Let min_sup ¼ 1 and min_conf ¼ 0:5. Then the LS-Closed
set contains the following patterns: hAi:2, hA;Bi:2, and
hA;B;Ci:1. The set of rules in Configuration (LS-Closed, LS-
Closed) are the following: hAi ! hBi (2,1.0), hAi ! hB;Ci
(1,0.5), and hA;Bi ! hCi (1,0.5). Using Property 4, we do
not have any rule in the mined set that infers the rule

hBi ! hCi(1,0.5) which is frequent and confident. Hence,
the configuration is not complete. &

Proposition 8. Configuration (CS-Closed, CS-Closed), Con-

figuration (CS-Closed, LS-Closed), Configuration (LS-Closed,
CS-Closed) and Configuration (LS-Closed, LS-Closed) are

neither complete nor tight.

Proof. Note that LS-Closed � CS-Closed. Hence, from the
definition of configuration, we have: Configuration (LS-
Closed, LS-Closed) � Configuration (LS-Closed, CS-Closed)
� Configuration (CS-Closed, CS-Closed). Also, Configura-
tion (LS-Closed, LS-Closed) � Configuration (CS-Closed,
LS-Closed) � Configuration (CS-Closed, CS-Closed).

According to Lemma 7, Configuration (CS-Closed, CS-

Closed) is not tight. Hence, so are the other three

configurations which are super-sets of Configuration

(CS-Closed, CS-Closed). Also, according to Lemma 6,

Configuration (LS-Closed, LS-Closed) is not complete.

Hence, so are the other three configurations which are

subsets of Configuration (LS-Closed, LS-Closed). &

4.2. Tight and complete set of non-redundant rules

Intuitively, the metarule (Key, Closed) matches closely
the sufficient and necessary condition of rule inference
described by Property 4. We want the mined rules to have
shortest pre-conditions and longest post-conditions.
However, no configuration in the (Key, Closed) family is
complete and tight. We need to relax some constraints so
that the set of rules become complete. We then need to
tighten some other constraints so that the set of rules
becomes tight.

We first relax the first input to the configuration to be a
new pattern set defined below.

Definition 4.2 (Prefix-Key). A frequent pattern p is in
Prefix-Key, iff there is no pattern p0 where p0 is a prefix of p

and has the same support as p.

From Definitions 2.3 and 4.2, it can be noted that CS-Key
is a subset of Prefix-Key. However, LS-Key and Prefix-Key
are incomparable. We can then prove the following
proposition.

Proposition 9. Configuration (Prefix-Key, CS-Closed) is

complete but not tight.

Proof. We first prove that the configuration is complete.
For every rule r that is frequent and confident, we would
like to show that there exists r0 2 Configuration (Prefix-
Key, CS-Closed), where r0 infers r.

First, consider an arbitrary rule r of the form pre! post,

composed from two frequent patterns pre and pre++post.

It can be inferred by another rule r1 composed from pre1 2

Prefix-Key and pre++post. This is the case since there must

be a prefix pre1 of pre that belongs to Prefix-Key with the

same support as pre. Composing pre1 with pre++post, will

form a rule r1 ¼ pre1 ! post1 where pre1++post1 ¼ pre++

post. From Property 4, r1 infers r.

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453444

Second, r1 ¼ pre1 ! post1 can be inferred by another

rule r2, composed from pre1 and prepost2 2 CS-Closed.

This is the case since there must be a super-sequence of

pre1++post1 which is in CS-Closed with the same support

as pre1++post1. Let prepost2 2 CS-Closed ¼ pre2++post2

such that pre1Lpre2, post1Lpost2, pre2 is as short as

possible, and post2 is as long as possible. Composing pre1

with prepost2 forms a rule r2 ¼ pre1 ! post2. From

Property 4, r2 infers r1. Note that pre1 is in Prefix-Key

and prepost2 is in CS-Closed.

Completeness now follows by transitivity of rule

inference.

We next show that the configuration is not tight by

means of a counter example. Consider the following

database.

ID Sequence

S1 hA; Z;B;C;A;B;C;D;E; Fi

S2 hA;C;B; Z;A;B;C;D;E; Fi

S3 hA;Bi

S4 hA; Zi

Let min_sup ¼ 1 and min_conf ¼ 0:5. Then the Prefix-

Key set contains the following patterns: hA;B;Ci:2, hA;Ci:2,

hA; Z;Ci:2, etc. The CS-Closed set contains the following

patterns: hA;C;A;B;C;D; E; Fi:2, hA; Z;B;C;D; E; Fi:2, etc.

The set of rules in the configuration w.r.t. the above

database includes: hA;B;Ci ! hD; E; Fi (2,1.0), hA;Ci !

hA;B;C;D; E; Fi (2,1.0), hA;Ci ! hD;E; Fi (2,1.0), etc. Using

Property 4, the second rule listed above infers the first

rule, hence the configuration is not tight. &

The set of redundant rules in Configuration (Prefix-
Key,CS-Closed) is characterized by Lemma 10.

Lemma 10. Let Configuration (Prefix-Key, CS-Closed) be

denoted as CFG. The set of redundant rules in CFG denoted as

REDUNDANT is the union of the following two sets:

fr ¼ pre! post 2 CFG j there is r0 ¼ pre0 ! post0 2 CFG

having the same support and confidence, pre ¼ pre0 and

post02postg

and,

fr ¼ pre! post 2 CFG j there is r0 ¼ pre0 ! post0 in CFG

having the same support and confidence, pre0 is a sub-

sequence but not a prefix of pre and pre0++post0 w

pre++postg.

Proof. Suppose a rule r ¼ pre! post in CFG is redundant
and is inferred by another rule r0 ¼ pre0 ! post0 also in
CFG. From Property 4, we have: (1) pre0Lpre; (2)
pre0++post0 w pre++post; (3) supðrÞ ¼ supðr0Þ; and (4)
confðrÞ ¼ confðr0Þ. From 3 and 4, we have supðpreÞ ¼

supðpre0Þ.

Since pre0Lpre, supðpre0Þ ¼ supðpreÞ, and both pre and

pre0 are in Prefix-Key, there are two possible cases: (1)

pre0 ¼ pre and (2) pre0 is a subsequence but not a prefix of

pre. If pre0 ¼ pre, since r and r0 are different, post0 must be a

proper super-sequence of post. If the second case holds,

condition (2) of Property 4 restated in the previous

paragraph still holds, pre0++post0 must be a super-

sequence of pre++post. &

From the example described in the proof of Proposition 9,
the rule hA;Ci ! hD; E; Fi, which is inferred by hA;Ci !
hA;B;C;D; E; Fi, belongs to the first redundant rule set
described in Lemma 10. Also, the rule hA;B;Ci ! hD;E; Fi
(2,1.0), which is inferred by hA;Ci ! hA;B;C;D; E; Fi (2,1.0),
belongs to the second redundant rule set described in
Lemma 10. From Proposition 9 and Lemma 10, we have
the following theorem.

Theorem 11. Configuration (Prefix-Key, CS-Closed) � RE-

DUNDANT is complete and tight.

5. Compressed set of rules

Configuration(Prefix-Key,CS-Closed) � REDUNDANT is
the tight and complete set of non-redundant rules. Note
that a pattern Xk 2 Prefix-Key is a frequent pattern. For
every Xk in Prefix-Key, there is a closed pattern cp in LS-
Closed where Xk 2 EQClass(cp; LS).

An equivalence class can be represented by either
closed patterns or generators. The former set usually
contains fewer members than the latter set. So we
propose a mechanism to ‘‘compress’’ a non-redundant
rule set by replacing the set of Prefix-Key generator
premises with their corresponding set of LS-Closed closed
patterns through a definition of a compression operation
as follows.

Definition 5.1 (Compressed rules). We allow rules of the
form keyðXÞ ! Y where X 2 LS-Closed. We call these the
compressed rules. The meaning of a compressed rule
denoted as ½keyðXÞ ! Y � is fXk ! Y jXk 2 EQClass
(X; LS; SeqDB) ^ Xk 2 Prefix-Key}. Thus a sequence s

satisfies ½keyðXÞ ! Y � if for each Xk ! Y 2 ½keyðXÞ ! Y �,
we have Xk ! Yhhsii. Note that s need not be 2 SeqDB.

Then we can define the notion of a compressed rule set
being sound and complete.

Definition 5.2 (Sound and complete). Consider a rule set R

mined from SeqDB w.r.t. min_sup and min_conf thresh-
olds. A compressed rule set Rc is sound and complete for R

iff the following hold: R ¼
S
ðkeyðXkÞ!YcÞ2Rc

½keyðXkÞ ! Yc�

and 8r 2 ½keyðXkÞ ! Yc�. r has the same support and
confidence as keyðXkÞ ! Yc.

The compressed set of Configuration(Prefix-Key,CS-
Closed) can be defined as:

Configuration-Key ðLS-Closed;CS-ClosedÞ ¼ fkeyðpreÞ !

postjpre 2 LS-Closed, prepost0 2 CS-Closed, prepost0 ¼

sh++post where sh is the shortest prefix of prepost0 which
is a super-sequence of preg.

The configuration is a sound and complete compres-
sion as stated in the following theorem.

Theorem 12. Configuration-Key (LS-Closed, CS-Closed)
is a sound and complete compression of Configuration

(Prefix-Key, CS-Closed).

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453 445

Proof. Let us refer to Configuration (Prefix-Key,CS-Closed)
and Configuration-Key (LS-Closed, CS-Closed) as CNF and
CNFKey.

We first show that for an arbitrary rule r ¼ pre! post in

CNF, there exists a compressed rule r0 ¼ keyðcpÞ ! post

having the same support and confidence in CNFKey, where

cp is an LS-Closed pattern having the same projected

database as pre. The above is the case since cp and pre has

the same projected database, if we can extend pre to a

pattern Y ¼ pre++evs (where evs is an arbitrary series of

events), we can also extend cp to a pattern Z ¼ cp++evs,

where supðYÞ ¼ supðZÞ. For both configurations CNF and

CNFKey, the maximal extension is mined. Hence there

should be a rule r0 ¼ keyðcpÞ ! post in CNFKey having the

same support and confidence as r.

We next show that for all rules r in an arbitrary rule-set

½keyðcpÞ ! post� in CNFKey, r is in CNF. keyðcpÞ gives a set

of generators G in Prefix-Key with the same projected

database as cp. Since cp has the same projected database

as each member in G, if we can extend cp to a pattern

Y ¼ cp++evs (where evs is an arbitrary series of events),

we can also extend g 2 G to a pattern Z ¼ g++evs, where

supðYÞ ¼ supðZÞ. Note that ½keyðcpÞ ! post� can be empty.

For both configurations CNF and CNFKey, the maximal

extension is mined. Hence r should be in CNF and has the

same support and confidence as cp! post. &

Configuration-Key (LS-Closed,CS-Closed) can serve as a
compression of the complete and tight set of non-
redundant rules. To get back the complete and tight set
of non-redundant rules from the compressed set one can
compute the key() operation and subtract the set
REDUNDANT from the resultant set. The compression
hence is lossless. In this sense, we refer Configuration-Key
(LS-Closed,CS-Closed) as the compressed non-redundant
(CNR) rule set.

We would also like to mention the upper bound on the
size of the compressed rule set. This is described in
Corollary 13.

Corollary 13. Given a non-redundant rule set R w.r.t. SeqDB,
min_sup, and min_conf. The size of the compressed rule set

Rc that is sound and complete for R is at most

O(jLS� Closedj � jCS� Closedj).

Proof. Given a rule Xk ! Yc in R. Let Xc be an LS-closed
pattern of EqClassðXk; LSÞ. Then Xk ! Yc 2 ½keyðXcÞ ! Yc�.
Thus the number of distinct Xc is limited by the number of
LS-Closed patterns. Also, by construction of R, the number
of distinct Yc is limited by the number of CS-Closed
patterns. Consequently, Rc is at most equal to
jLS-Closedj � jCS-Closedj. &

6. Mining algorithm

To generate the CNR set of rules, i.e., Configuration-Key
(LS-Closed, CS-Closed), one must first mine the patterns.
There are existing algorithms to mine CS-Closed set, e.g.,

BIDE [7]. However, there is no algorithm in existing
literature to mine LS-Closed.

Fortunately, BIDE, in effect employs a search space
pruning strategy that prune all search sub-spaces that
contain patterns not in LS-Closed set. A pattern that is not
pruned is subjected to an online tests (i.e., while closed
patterns are being generated) to check whether it is in CS-
Closed. With modification, rather than discarding patterns
that are in LS-Closed but not in CS-Closed, we also print
these patterns out while flagging them as belonging to LS-
Closed exclusively. Hence, we have an implementation of
an algorithm that can concurrently mine both LS- and CS-
Closed patterns. The details and proofs that this modifica-
tion does indeed produce LS- and CS-Closed patterns are
available in Appendix A.

Our proposed algorithm (CNR rule mining algorithm) is
shown in Fig. 2. The algorithm is based on the definition of
Configuration-Key (LS-Closed,CS-Closed). The algorithm
starts (lines 1–3) by mining the LS- and CS-Closed sets
concurrently. For each pattern p in LS-Closed, it then tries
to find related patterns p0 in CS-Closed which are its
super-sequences (lines 4–5). Next, for each related pattern
p0, we try to form a rule rn ¼ p! post where p0 ¼ sh++post

and sh is the shortest prefix of p0 containing p (lines 7–9).
Following Property 1, the support of p++post is equal to
the maximum support of a closed pattern that is a super-
sequence of it. Hence, to get the support of p! post, we
perform such checks and update our temporary rule set
Rules0 in lines 10–15. When the support of a generated rule
is not correct, we eventually either update the support or
throw the rule away. If a rule with the same format (i.e.,
p! post) and correct support is found, we update the
support value of the previously generated rule having
incorrect support (line 11). Otherwise, we discard the
previously generated rule, since according to Definition
4.1, a rule in a configuration must have the correct support
and syntactic characterization (line 13). At the end of each
iteration (before line 16), the temporary rule set Rules0

contains the set of compressed rules having p as premise
with correct support and confidence. At line 16, we add
the rules in Rules0 to the output rule set Rules. After
iterating for all possible patterns in LS-Closed, Rules will
correspond to the set Configuration-Key (LS-Closed,CS-
Closed) which is then output.

We would like to measure the performance benefit of
mining a set of non-redundant rules over mining a full-set
of significant rules. For comparison purpose, Fig. 3
describes an algorithm mining a full-set of significant
rules based on the description in [8]. The algorithm first
computes the set of all frequent patterns. We use
PrefixSpan [3]1 to mine for all frequent patterns.2 For
each frequent pattern f of length l, we can form l� 1 rules.
Each rule is of the form pre! post, where pre is a prefix of
f and pre++post ¼ f .

ARTICLE IN PRESS

1 PrefixSpan has a similar depth-first mining architecture as BIDE [7]

used by our non-redundant rule mining algorithm.
2 In case too much memory is needed to load all frequent patterns at

line 1, we load the patterns in batches and process them accordingly.

D. Lo et al. / Information Systems 34 (2009) 438–453446

7. Performance study

We perform a performance study using the synthetic
data generator provided by IBM which was also used in
[1,6]. We modify the data generator to ensure generation
of sequences of events (i.e., all transactions are of size 1).
We also consider a real sequence dataset from commonly
used benchmark in software engineering field.

Experiments were performed on a Fujitsu E4010 laptop
with Intel Mobile 1.6 GHz and 512 MB main memory,
running Windows XP Professional. Algorithms were
written using Visual C#.Net running under .Net Frame-
work 1.1 compiled with release mode using Visual
Studio.Net 2003.

The experiment results for dataset D5C20N10S20 are
shown in Figs. 4 and 5. The parameters D, C, N and S
correspond to the number of sequences (in 1000’s), the
average number of events per sequence, the number of

different events (in 1000’s) and the average number of
events in the maximal sequences. ‘‘Full’’ corresponds to
mining a full set of frequent and confident sequential
rules, while ‘‘CNR’’ corresponds to mining a compressed
set of non-redundant rules. Similar to other study in
mining from sequences [6,7] we use a low support
threshold to test for scalability. Also, mining for rules
with significant confidence at low support thresholds is
particularly valuable for diverse dataset like the video
shop example given in Section 1. The experiment results
with the real dataset shows that performance speed up
can be obtained in both high and low support thresholds
and is necessary to analyze real data.

The study shows large improvements in both
runtime and compactness of mined rules over mining a
full set of sequential rules. Runtime was improved
up to 5598 times! The number of rules was reduced up
to 8583 times!

ARTICLE IN PRESS

Fig. 2. CNR algorithm.

D. Lo et al. / Information Systems 34 (2009) 438–453 447

Recently, there have been active interests in analyzing
program traces [21]. We generate traces from a simple
Traffic alert and Collision Avoidance System (TCAS) from
Siemens Test Suite [22] used as one of the benchmarks for
research in error localization (e.g., [23]). The test suite
comes with 1578 correct test cases. We run the test cases
and obtain 1578 traces. Each trace is treated as a sequence.
The sequences are of average length of 61 and maximum
length of 97. It contains 106 different events—the events
are the line numbers of the statements being executed.
We call this dataset as TCAS dataset.

Mining rules from program execution traces can shed
light on implicit rules that govern the behavior of program
or which are made by programmers. Since the analysis is
based on traces rather than code, one will not face the
problem of infeasible paths [24], also dynamic inputs and
environment will be taken into consideration and the

analysis is not restricted to cases where source code is
available (i.e., third-party binary code, network events,
etc.). These rules can potentially be used for detection of
abnormal behavior either corresponding to software bugs,
anomalies or intrusion (cf., [25]). We leave these potential
case studies for future work and focus more on perfor-
mance issues.

In the experiments with TCAS dataset, we did not mine
the full set of rules as the number of rules are huge and
not minable even at support level of 100%. The traces
share many similarities (the longest rule of support 100%
is of length 28). The result for mining CNR rule set is
shown in Fig. 6. It shows that the non-redundant rule
mining algorithm can work in a real application setting
where the full-set rule mining algorithm fails due to
scalability issues. This shows a major benefit of mining
CNR rules.

ARTICLE IN PRESS

Fig. 3. Algorithm mining all significant rules.

0.1

1

10

102

103

104

105

8

R
un

tim
e

(s
) -

(lo
g)

min_sup (absolute)

Full

CNR

103

104

105

106

107

108

8 9 10 11 12

|R
ul

es
| -

(lo
g)

min_sup (absolute)

Full

CNR

9 10 11 12

Fig. 4. Varying min_sup at min_conf ¼ 50% for D5C20N10S20 dataset.

D. Lo et al. / Information Systems 34 (2009) 438–453448

8. Related work

We discuss three areas of research related to our work.
Non-redundant association rule mining and non-deriva-

ble itemset mining: Zaki and Hsiao mined a non-redundant
set of association rules [26] (see also [27]). Different from
the usual association rules, sequential ordering is impor-
tant in a sequential rule setting. Sequential rules and
association rules are formed from different types of
patterns: sequential patterns vs. itemsets. hA;Bi and
hB;Ai are regarded as different sequential patterns but
the same itemset. Consequently, their mining processes
differ significantly.

The association rule generation technique of Zaki and
Hsiao hinges on the following equivalence property: two
rules r1 ¼ X1 ! X2 and r2 ¼ Y1 ! Y2 are considered
equivalent iff citðX1Þ ¼ citðY1Þ and citðX2Þ ¼ citðY2Þ, where
citðXÞ denotes X’s representative closed itemset. X’s
representative closed itemset is a maximal super-set of
X supported by the same sequences in the database. Given

a set of equivalent rules, only its representative rules need
to be reported; the rest are considered redundant. This
equivalence property no longer holds in a sequential rule

setting, as illustrated below.
Consider a sequence database consisting of: S1 :

hA;C;Bi and S2 : hCi. Consider two rules r1 ¼ hAi ! hCi

and r2 ¼ hA;Bi ! hCi. These two rules are considered
equivalent in an association-rule setting. However, they
are not when sequential ordering is taken into considera-
tion: as sequential rules, r1 has 100% confidence and 50%
support, whereas r2 is not even exhibited in the database.

Hence, the approaches to mine a non-redundant set of
sequential rules and association rules are different from
each other, much as sequential pattern mining is different
from frequent itemset mining.

A related study by Calders et al. [28] discuss non-
derivable frequent itemsets. A frequent itemset is non-
derivable if its support value cannot be inferred from the
support of one or more of its subsets. In this study,
different from the study by Calders we focus on both rules

ARTICLE IN PRESS

0.1

1

10

102

103

104

105

50

R
un

tim
e

(s
) -

(lo
g)

min_conf (%)

Full

CNR

102

103

104

105

106

107

50 60 70 80 90

|R
ul

es
| -

(lo
g)

min_conf (%)

Full

CNR

60 70 80 90

Fig. 5. Varying min_conf at min_sup ðabsoluteÞ ¼ 12 for D5C20N10S20 dataset.

0.1

1

10

102

103

20 40 60 80 100

R
un

tim
e

(s
) -

(lo
g)

min_sup (%)

CNR

Full-set not minable

101

102

103

104

105

20 40 60 80 100

|R
ul

es
| -

(lo
g)

min_sup (%)

CNR

Full-set not minable

Fig. 6. Varying min_sup (in %) at min_con f ¼ 50% for TCAS dataset.

D. Lo et al. / Information Systems 34 (2009) 438–453 449

and sequential data. Also, we do not consider inference of

support value rather inference of the rule itself.
Mining closed sequential pattern and generators: The

pioneer work in closed-pattern mining was CloSpan by
Yan et al. [6]. It was further extended by Wang and Han
[7]. Gao et al. and Lo et al. mines sequential generators
[18,19]. Compared to mining a full set of frequent patterns
proposed in [1], closed sequential pattern mining and
sequential generator mining run much faster and poten-
tially reduces the number of mined patterns.

Sequential rules extend the usability and expressive-
ness of patterns beyond the understanding of sequential
data. A mined rule represents a constraint that its premise
is followed by its consequent in sequences. Furthermore,
the interestingness of a rule is measured by both support
and confidence. The notion of confidence is useful
especially when the support threshold specified is low.
Hence, rules are potentially useful for detecting and
filtering anomalies which violate the corresponding
constraints. They have potential application in detecting
errors, intrusions, bugs, etc. Mining rule-like sequencing
constraints from sequential data has also been shown
useful in medicine (e.g., [10]) and software engineering
(e.g., [11–13]) domains.

In this paper, the question how a set of non-redundant

rules can be generated from compact representative patterns,
is comprehensively addressed. Issues pertaining to gen-
erating a non-redundant set of rules are orthogonal to that
pertaining to generating a closed set of patterns or a set of
sequential generators. We introduce the concept of rule
inference to generate a non-redundant rule set in which
all frequent and confident rules are either reported or
inferred by some reported rules.

Generation of sequential rules: Spiliopoulou has pro-
posed generating a full set of sequential rules from a full
set of sequential patterns [8]. Generation of a full set of
rules is often not scalable. The number of frequent
patterns is exponential to the maximum pattern length,
and for every frequent sequential pattern of length l,
possibly Oð2l

Þ rules can be generated. Spiliopoulou added
a post-mining filtering step to remove some redundant
rules. Unfortunately, the number of intermediate patterns
and rules can be very large.

Recently, studies in [10–13,29] mine temporal rules,
outlier detection rules, sequential classification rules,
progressive confident rules and recurrent rules, respec-
tively. These rules can be considered as variants of
sequential rules; they add or remove some constraint or
information from the sequential rules. In this study, we
focus on the classical sequential rules. More importantly,
different from our study, none of the above studies
consider redundancy based on rule inference. Aside from
these more general differences, other specific differences
are described in the following paragraphs.

The study in [11] only mines temporal rules of length
2; rules of longer length are formed by a simple
concatenation of length-2 rules. Some length-(42) rules
might be missed or introduced although not having
enough significance. The study in [12] mines outlier
detection rules; however, the confidence and support
values are only approximated. Also, there is no guarantee

that a complete set of rules are mined. Different from the
above studies, we guarantee completeness, correctness of
reported support and confidence values and also tight-
ness.

The studies in [10,29] mine two different variants of
classification rules. A mined rule pre-condition is a series
of events, while the post-condition is a classification
decision or state. Different from the above, we consider a
different and more general problem where a rule can have
a post-condition composed of multiple events.

Among these five studies, nearest to our study is the
study in [13] which mines long recurrent rules by actively
removing those shorter rules which are sub-sequences of
the longer rules. In [13], the resultant set of rules will be
more compact, but there will be no semantic, but only

syntactic relationship between the smaller set of rules and
the original set of rules. Using the set of mined rules as a
composite filter, replacing a full-set of rules with the non-
redundant set of rules may potentially impact the accuracy
of the filter. Since these studies mined different rules and

consider different scenarios, we focus our comparative
study on the classical sequential rules originally proposed
by Spiliopoulou [8]. In the future, we are looking into
extending the study further to address non-redundant
rule mining based on classical rule inference to the above
studies.

9. Discussion

In this section, we discuss: (1) uniqueness of a tight
and complete set of non-redundant rules, (2) more
complex rule inference strategy.

Uniqueness of a tight and complete set of rules: An
interesting question is given a sequence database and a
minimum support threshold, is there only one unique or
are there multiple tight and complete sets of non-
redundant rules? The following theorem and lemma
shows that given a sequence database and a minimum
support threshold, there is only one unique tight and
complete set of non-redundant rules.

Theorem 14. Given a sequence database and a minimum

support threshold, there is only one unique tight and

complete set of non-redundant rules.

Proof. Assume for contradiction that 9RSet0aRSet and
RSet and RSet0 are tight and complete sets of non-
redundant rules mined from SeqDB at min_sup. There
must exists a rule r1 where r1 2 RSet0 and r1eRSet. Since
RSet is complete 9r2 2 Rset. r2 ! r1. Since RSet0 is tight,
)r2 2 RSet0. Also since RSet0 is complete 9r3 2 RSet0.
r3 ! r2. However, due to transitivity property of rule
inference, r3 ! r1. This is a contradiction since we assume
that RSet0 is tight. Note that, due to Property 4, r1 ¼ r3 is
impossible unless r1 ¼ r2. &

More complex rule inference strategy: In this study, we
consider a rule to be redundant if there exists another
mined rule that infers it. We guarantee that the resultant
non-redundant rule set to be tight and complete. Another
interesting study is to consider more complex rule
inference strategy involving inference by a set of

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453450

rules: multiple mined rules can infer another mined rule
which can then be rendered removed. The issue of potentially
multiple solution sets (i.e., non-uniqueness of resultant non-
redundant rule set) need to be addressed accordingly.

We leave this interesting direction of study for future
work. In this work, we see that even with the current
redundancy inference strategy, there is a huge reduction
in the size of mined rules and improvement in the mining
speed at both high-and-low support thresholds.

10. Conclusion and future work

In this paper, we propose and characterize a non-

redundant set of sequential rules. A mined rule is
redundant if it can be inferred by another mined rule.
We base our investigation and characterization on past
studies on compact representative sets of sequential
patterns. In particular we address the following questions
not studied before in the literature: Can a non-redundant
set of sequential rules be obtained from compact
representative sequential patterns? What types of com-
pact representative patterns need to be mined to form
non-redundant rules? What do we mean by a non-
redundant set of rules? Can we characterize the non-
redundant set of rules? How to use representative
patterns to form non-redundant rules? How much effort
is needed to obtain a non-redundant set of rules from
compact representative patterns? Can we design an
efficient algorithm to obtain a non-redundant set of rules
from patterns?

To answer the above questions, we investigate various
configuration of rule sets based on composition of four
different pattern sets. We analyze these rule-sets based on
the properties of completeness (i.e., all rules can be
inferred) and tightness (i.e., no mined rules are redun-
dant). We find that Configuration (Prefix-Key,CS-Closed) �
REDUNDANT is the tight and complete set of non-
redundant sequential rules. Additionally, we propose and
characterize a compressed set of non-redundant rules. A
mining algorithm has been proposed and developed to
mine this compressed set of rules. A performance study
has been performed to evaluate the benefit of mining CNR
rule set. The study shows large improvements in both
runtime and compactness of mined rules over mining a
full set of sequential rules. Runtime was improved up to
5598 times! The number of rules was reduced up to 8583
times!

As a future work, we plan to investigate the following
areas. First, we would like to try to improve further the
efficiency of the mining algorithm. Also, it is the case that
if some events A and B occur frequently in the background,
then rules A! B and/or B! A will both have high
support and high confidence. Yet these rules are coin-
cidental and do not indicate any meaningful sequential
relationship between A and B. We plan to consider
generating non-redundant set of rules while avoiding
producing such purely coincidental rule. For example, by
performing a hypergeometric test (Fisher’s exact test) on
the co-occurrence of A and B. We believe the incorporation

of such a test may be an interesting direction for future
work.

Furthermore, investigation of application of non-
redundant set of sequential rules to tasks such as web-
log analysis, software engineering, etc. will also be an
interesting direction we plan to explore. We believe the
efficiency of non-redundant sequential rule mining and
the compactness of mined rules will facilitate applications
of sequential rules to more application domains.

Appendix A. Concurrently mining CS- and LS-Closed

To understand how BIDE [7] can be modified to
concurrently mine both CS- and LS-Closed sets, in this
section, we first describe some terminologies mentioned
in BIDE’s paper [7], present some lemmas and relate these
to how BIDE’s algorithm can be modified.

Definition A.1 (First instance). Given a sequence S which
contains a single event pattern he1i, the prefix of S to the
first appearance of the event e1 in S is called the first
instance of pattern he1i in S. Recursively, we can define the
first instance of an ðiþ 1Þ-event pattern he1; e2; . . . ; ei; eiþ1i

from the first instance of the i-event pattern he1; e2; . . . ; eii

(where iX1) as the prefix of S to the first appearance of
event eiþ1 which also occurs after the first instance of the
i-event pattern he1; e2; . . . ; eii. For example, the first
instance of the prefix sequence hA;Bi in sequence
hC;A;A;B;Ci is hC;A;A;Bi.

Definition A.2 (i-th last-in-first appearance). For an input
sequence S containing a pattern Sp ¼ he1; e2; . . . ; eni, the i-
th last-in-first appearance w.r.t. the pattern Sp in S is
denoted as LFi and defined recursively as: (1) if i ¼ n, it is
the last appearance of ei in the first instance of pattern Sp

in S; (2) if 1 pion, it is the last appearance of ei in the first
instance of the pattern Sp in S while LFi must appear
before LFiþ1. For example, if S ¼ hC;A;A;B;Ci and
Sp ¼ hC;A;Ci, the 2nd last-in-first appearance w.r.t. pat-
tern Sp in S is the second A in S.

Definition A.3 (i-th semi-maximum period). For an input
sequence S containing a pattern Sp ¼ he1; e2; . . . ; eni, the i-
th semi-maximum period of the pattern Sp in S is defined
as: (1) if 1oipn, it is the piece of sequence between the
end of the first instance of pattern he1; e2; . . . ; ei�1i in
S (exclusive) and the i-th last-in-first appearance w.r.t.
pattern Sp (exclusive); (2) if i ¼ 1, it is the piece of
sequence in S locating before the 1st last-in-first appear-
ance w.r.t. pattern Sp. For example, if S ¼ hA;B;C;Bi and the
pattern Sp ¼ hA;Ci, the 2nd semi-maximum period of
prefix hA;Ci in S is hBi, while the 1st semi-maximum
period of pattern hA;Ci in S is an empty string.

Lemma 15. P is in LS-Closed if and only if there does not

exist an e and i, where event e appears in the i-th semi-

maximum periods of P for every S 2 SeqDB.

Proof. The left to right direction: We first show that if P is
in LS-Closed, then there is no e and i, where event e is in
the i-th semi-maximum periods of P for every S 2 SeqDB.
Taking the contrapositive of the above statement we have
if there is an e and i, where event e is in the i-th

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453 451

semi-maximum periods of P for every S 2 SeqDB, then P is
not in LS-Closed.

Suppose there is an event e which is in the i-th semi-

maximum period of P for every S 2 SeqDB, we can then

form a longer pattern P0 by inserting e between event

(i� 1) and (i) of P (if i4 1) or by pre-pending e before P

(if i ¼ 1) which will have the same support as P. From the

definition of semi-maximum period, first instances of P0

and P in SeqDB will be the same. Hence, P and P0 have the

same projected database. Since there exists a P0 which is a

super-sequence of P having the same projected database,

P is not in LS-Closed. This is a contradiction. We have

proven the left to right direction of the lemma.

The right to left direction: We next need to show that if

there is no e and i, where event e is in the i-th semi-

maximum period of P for every S 2 SeqDB, P will be in

LS-Closed. Again, taking the contrapositive, the above

statement is equivalent to: if P is not in LS-Closed then

there exists an e and i, where event e is in the i-th semi-

maximum period of P for every S 2 SeqDB.

Suppose P is not in LS-Closed, this means that there

exists a longer pattern P0, where P0 is a super-sequence of

P, the length of P0 is one event longer than P and they have

the same projected database. It must be the case then that

there exists two shorter patterns X and Y (with X possibly

empty), where:

P ¼ X þþe2þþY

P0 ¼ X þþeþþe2þþY

Since P and P0 have the same projected database, for

every sequence S in SeqDB, the first instance of P0 in each

sequence S which is a super-sequence of P0 in SeqDB

will also be the first instance of P. Let i be the length of

pattern X. From the above, event e must occur between

the first instance of X (exclusive) and the (iþ 1)-st last-in-

first appearance w.r.t. to P (exclusive) for every sequence

S in SeqDB. From the definition of semi-maximum period,

e must be in the ðiþ 1Þ-st semi-maximum period of P for

every S 2 SeqDB. We have proven the right to left direction

of the lemma. &

Lemma 16. If P and P0 have the same projected database

and P0 is a super-sequence of P, then for an arbitrary series of

events evs, P++evs will not be in LS-Closed.

BIDE employs the search space pruning strategy called
backscan pruning: Let evs be an arbitrary series of events,
if a pattern P has an event e appearing in each of its i-th
semi-maximum period for all sequence S in SeqDB than P

as well as P++evs are not in CS-Closed. Lemma 15
guarantees that any pattern not pruned by the backscan
pruning strategy must be in LS-Closed. Lemma 16
guarantees that there is no point in extending pattern P

if it has been pruned by the backscan pruning strategy.
Using the above two lemmas, one can continue to cut

the search space by using the backscan pruning of BIDE.
BIDE employs an online check to see whether a pattern
which is not pruned in CS-Closed which is called the BIDE

closure checking scheme. We can distinguish members of
LS-Closed that is not a member of CS-Closed by the result
of this check. The runtime of modified BIDE is similar to
the original BIDE since we cut the same search space as
BIDE, i.e., search space containing those patterns which
are not in LS-Closed.

References

[1] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings
of IEEE International Conference on Data Engineering, 1995, pp.
3–14.

[2] M. Zaki, SPADE: An efficient algorithm for mining frequent
sequences, Machine Learning 42 (2001) 31–60.

[3] J. Pei, J. Han, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu, PrefixSpan:
mining sequential patterns efficiently by prefix-projected pattern
growth, in: Proceedings of IEEE International Conference on Data
Engineering, 2001, pp. 215–226.

[4] J. Han, J. Wang, Y. Lu, P. Tzvetkov, Mining top-k frequent closed
patterns without minimum support, in: Proceedings of IEEE
International Conference on Data Mining, 2002, pp. 211–218.

[5] J. Ayres, J. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining
using a bitmap representation, in: Proceedings of SIGKDD Con-
ference on Knowledge Discovery and Data Mining, 2002,
pp. 429–435.

[6] X. Yan, J. Han, R. Afshar, Clospan: mining closed sequential patterns
in large datasets, in: Proceedings of SIAM International Conference
on Data Mining, 2003.

[7] J. Wang, J. Han, BIDE: efficient mining of frequent closed sequences,
in: Proceedings of IEEE International Conference on Data Engineer-
ing, 2004, pp. 79–90.

[8] M. Spiliopoulou, Managing interesting rules in sequence mining, in:
Proceedings of European Conference on Principles of Data Mining
and Knowledge Discovery, 1999, pp. 554–560.

[9] R. Agrawal, R. Srikant, Fast algorithms for mining association rules,
in: Proceedings of International Conference on Very Large Data
Bases, 1994, pp. 487–499.

[10] M. Zhang, W. Hsu, M.-L. Lee, Mining progressive confident rules, in:
Proceedings of SIGKDD Conference on Knowledge Discovery and
Data Mining, 2006, pp. 803–808.

[11] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, M. Das, Perracotta: mining
temporal API rules from imperfect traces, in: Proceedings of
International Conference on Software Engineering, 2006,
pp. 282–291.

[12] D. Lo, S.-C. Khoo, SMArTIC: toward building an accurate, robust and
scalable specification miner, in: Proceedings of SIGSOFT Sympo-
sium on the Foundations of Software Engineering, 2006,
pp. 265–275.

[13] D. Lo, S.-C. Khoo, C. Liu, Efficient mining of recurrent rules from
a sequence database, in: Proceedings of International Confer-
ence on Database Systems for Advanced Applications, 2008,
pp. 67–83.

[14] Windows Driver Kit: driver development tools—SpinLock hhttp://
msdn.microsoft.com/en-us/library/aa469109.aspxi.

[15] F. Masseglia, F. Cathala, P. Poncelet, The PSP approach for mining
sequential patterns, in: Proceedings of European Conference on
Principles of Data Mining and Knowledge Discovery, 1998,
pp. 176–184.

[16] R. Srikant, R. Agrawal, Mining sequential patterns: generaliza-
tions and performance improvements, in: Proceedings of Inter-
national Conference on Extending Database Technology, 1996,
pp. 25–29.

[17] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu, FreeSpan:
frequent pattern-projected sequential pattern mining, in: Proceed-
ings of SIGKDD Conference on Knowledge Discovery and Data
Mining, 2000, pp. 355–359.

[18] D. Lo, S.-C. Khoo, J. Li, Mining and ranking generators of sequential
patterns, in: Proceedings of SIAM International Conference on Data
Mining, 2008, pp. 553–564.

[19] C. Gao, J. Wang, Y. He, L. Zhou, Efficient mining of frequent sequence
generators, in: Proceedings of International Conference on World
Wide Web, 2008, pp. 1051–1052.

[20] J. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan
Kaufmann, Los Altos, CA, 2001.

[21] Workshop on Dynamic Analysis hhttp://www.cs.wisc.edu/
woda-2008/i. Last accessed 24 February 2009.

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453452

http://msdn.microsoft.com/en-us/library/aa469109.aspx
http://msdn.microsoft.com/en-us/library/aa469109.aspx
http://www.cs.wisc.edu/woda-2008/
http://www.cs.wisc.edu/woda-2008/

[22] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy
criteria, in: Proceedings of International Conference on Software
Engineering, 1994, pp. 191–200.

[23] H. Cleve, A. Zeller, Locating causes of program failures, in:
Proceedings of International Conference on Software Engineering,
2005, pp. 342–351.

[24] B. N, S. M, M.-C. Gaudel, S.-D. Gouraud, A machine learning approach
for statistical software testing, in: Proceedings of International Joint
Conferences on Artificial Intelligence, 2007, pp. 2274–2279.

[25] Z. Li, Y. Zhou, PR-Miner: automatically extracting implicit program-
ming rules and detecting violations in large software code, in:
Proceedings of Joint Meeting of European Software Engineering

Conference and SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, 2005, pp. 306–315.

[26] M. Zaki, C. Hsiao, CHARM: an efficient algorithm for closed itemset
mining, in: Proceedings of SIAM International Conference on Data
Mining, 2002.

[27] M. Zaki, Mining non-redundant association rules, Data Mining and
Knowledge Discovery 9 (3) (2004) 223–248.

[28] T. Calders, B. Goethals, Mining all non-derivable frequent itemsets,
in: Proceedings of European Conference on Principles of Data
Mining and Knowledge Discovery, 2002, pp. 74–85.

[29] E. Baralis, S. Chiusano, R. Dutto, Applying sequential rules to protein
localization prediction, Computer and Mathematics with Applica-
tions 55 (5) (2008) 867–878.

ARTICLE IN PRESS

D. Lo et al. / Information Systems 34 (2009) 438–453 453

