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Abstract—Debugging is a time-consuming activity. To help in
debugging, many approaches have been proposed to pinpoint the
location of errors given labeled failures and correct executions.
While such approaches have been shown to be accurate, at
times the location alone is not sufficient in helping programmers
understand why the bug happens and how to fix it. Furthermore,
a single location might not be powerful enough to discriminate
failures from correct executions. To address the above challenges,
there have been recent studies on extracting bug signatures
which are composed of multiple locations appearing together
in a particular order signifying an occurrence of a bug.

The latest study on bug signatures by Cheng et al. models pro-
gram executions as graphs. Two sets of graphs corresponding to
failures and correct executions are then contrasted to extract the
most discriminative connected subgraphs serving as bug signa-
tures. However, there are two limitations: (1) returned signatures
might not be minimal and (2) they can only capture localized
bug context. In this work, we develop a signature minimization
technique to capture minimal discriminative signatures. Also,
we propose a technique of signature fusion to fuse disconnected
subgraphs so that our method can capture bug contexts spanning
multiple locations. Experimental study on Siemens and Space
dataset shows the effectiveness of the proposed bug signature
minimization and fusion techniques. Comparing with the state-
of-the-art bug signature mining technique, we reduce the number
of bugs missed by up to 57.7%, and reduce the average number
of nodes traversed by up to 85.6%.

I. INTRODUCTION

Bugs are prevalent in day-to-day software development. As
software is getting more complex, more complex bugs arise,
causing the task of developing software systems even more
time consuming. Many valuable resources that could have been
spent in developing new systems or additional features are
spent in fixing bugs. Not surprisingly, in the United States
alone, 59.5 billion US dollars are spent annually on issues
related to software bugs [13].

One key challenge in finding and fixing bugs is to localize
the fault causing the failure. A failure could be manifested by
either a crash in a system or a system output having a wrong
value, or wrong data stored in the database, etc. Often, the
location where a failure happens differs very much from the
location of the fault. Developers typically need to backtrack
from the failure point and insert multiple print statements to
eventually localize the fault.

One research direction which aims to make debugging effort
easier is to utilize automated techniques to trace from failures
to faults. Namely, given a set of test cases causing the program
to fail, and another set causing the program to run successfully,

infer the location of the fault. These test cases could be run to
collect software behaviors, which are the execution paths taken
when a software is executed. Based on the positive behaviors
and the negative ones (i.e., failures), the task is to infer the
location in the program where the bug occurs. This task has
been termed as fault localization which has been an active
thread of study for many years [8], [12], [16], [3], [9], [10].

Most fault localization methods report single statements that
are potential candidates for bugs, usually sorted according
to some scoring function. While the approaches have been
shown to be accurate, it is hard to understand why a bug
occurs and how to fix the bug just by the flagged single
statements alone. Also, at times the execution of a single
statement is not powerful enough to differentiate correct from
faulty executions. Sometimes two or more statements executed
in a specific order might be the source of a failure.

To address the above issues there have recently been in-
terests in finding bug signatures. Different from the single
statements reported by bug localization work, bug signatures
provide the contexts where the bugs occur. Bug signatures
could be composed of multiple statements that occur together
in a particular order whose occurrences signify a bug. The
work was pioneered by Hsu et al. [6] and was improved by
Cheng et al. [2] using their algorithm named Top-K LEAP.

The signatures returned by Top-K LEAP, though useful, are
not guaranteed to be minimal in size. We have observed that
the bug signatures may include extra unrelated program ele-
ments besides the true minimal signatures which are sufficient
for revealing the bug and its context. Furthermore, the graph-
based signatures are not able to capture bug contexts spanning
two or more disjoint localities. This limitation is caused by the
graph mining algorithm, as it only mines discriminative graphs
that are connected. In this work, we further improve Top-K
LEAP by Cheng et al. by proposing two novel techniques
of signature minimization and fusion. Signature minimization
aims at reducing the size of the reported signatures by re-
moving unnecessary program elements, while signature fusion
focuses on fusing two distant contexts if they, when combined,
increase the suspiciousness of a signature.

We have performed experiments on Siemens datasets [7]
and Space [4]. The experiments show that we reduce the
number of bugs missed and the number of nodes traversed to
find a relevant signature (i.e., a signature potentially helpful
in debugging the error).

The contributions of this paper are as follows:
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1) We propose a new technique of signature minimization
to generate smaller signatures for users to analyze.

2) We design a new technique of signature fusion that helps
to connect disjoint signatures into a unified context with
a higher discriminative power.

3) We show that our unified approach of signature min-
imization and fusion is able to reduce the number of
bugs missed by up to 57.7% and reduce the number
of program elements traversed by up to 85.6% on
various Siemens datasets and a larger program Space
with 9564 lines of code. We are the first to experiment
bug signature identification on a larger non-Siemens
dataset program.

The rest of the paper is organized as follows. Section II
introduces related work. Section III defines the preliminary
concepts. Section IV examines the problem of signature mini-
mization, and proposes a complete solution as well as a greedy
one. Section V formulates the bug signature fusion problem
and proposes a solution. An integrated solution is presented in
Section VI. Experimental evaluation is presented in Sections
VII and VIII. Section IX concludes our study and describes
some future work.

II. RELATED WORK

Identifying Bug Signatures. RAPID is the pioneer work
on bug signature identification. RAPID starts by accepting
two sets of traces: faulty and correct. RAPID obtains traces
containing statements corresponding to method entries and
branch decisions. RAPID then uses Tarantula [8] to measure
the score of suspiciousness of instrumented program elements
and filters program elements with score less than 0.6 (i.e.,
60% likelihood of a statement being related to a failure).
The remaining suspicious statements in the faulty runs are
then collected and formatted to form a multi-set (or bag) of
sequences of events (or statements). This bag of sequences
are then given to the state-of-the-art sequential pattern miner
BIDE [14] with a frequency threshold of 100%. BIDE will
return one or more longest common subsequences (LCSs)
that the set of sequences have. These LCSs are then sorted
according to length and returned.

Recently, Cheng et al. [2] proposed Top-K LEAP that mines
bug signatures in the form of discriminative graphs. The
method first coils both correct and faulty software executions
into software behavior graphs. A software behavior graph is
composed of a set of nodes each corresponding to a method
or basic block, and a set of edges each corresponding to a
relationship (call, return or transition) between the respective
pair of nodes. Then Top-K LEAP extracts the most discrimi-
native subgraphs which are highly indicative of bugs and their
contexts from software behavior graphs of correct and faulty
runs. The result has been shown to be better than RAPID due
to several reasons including: a fully discriminative approach is
used (discriminative comparison at signature level rather than
event level), a graph-based approach is employed rather than
a sequence-based one, etc.

In this work, we will build upon Top-K LEAP to mine mini-
mal bug signatures and bug signatures involving disconnected
components. To do this, we propose novel techniques of graph
minimization and graph fusion. The results have shown that
the proposed techniques could substantially help improving
the quality of bug signatures.
Bug Localization. Jones and Harrold proposed Tarantula
in [8] which ranks a program statement based on its level
of suspiciousness. Conceptually, a program statement is more
suspicious if it appears in the faulty runs more frequently than
in the correct runs. Given a faulty run and a set of correct
runs, Renieris and Reiss presented a fault localization tool
WHITHER [12] that compares a faulty execution to the nearest
correct run and reports the most suspicious locations in the
program. Zeller and Hildebrandt proposed a technique called
Delta Debugging that localizes the minimum state change that
results in a bug [16]. Lucia et al. evaluated the effectiveness of
many association measures for fault localization [11]. Wang
et al. employed genetic algorithm for fault localization [15].
There have been many other studies on bug localization.

In contrast to the above work that reports candidate single-
line locations where a bug potentially occurs, we follow the
strategy of bug signature identification, in which a bug is
reported together with its context.

III. PRELIMINARY CONCEPTS

This section describes a representation of software traces as
software behavior graphs which is the input to our analysis.
The concept of bug signature mining and the limitations of
the state-of-the-art technique are also described.

A. Software Behavior Graph

Software can be traced at different levels of granularity:
method, basic block and statement. We consider two different
levels of granularity, namely, method and basic block. After
an instrumented program is run, a sequence of events corre-
sponding to method or basic block, depending on the level
of granularity, is generated. These long sequential traces can
then be coiled to form software behavior graphs. We follow
the software behavior graph representation in [2].

A method level behavior graph G(αm) is a directed graph
representing a method level program execution trace αm. The
vertex set denoted by V (G(αm)) includes all the methods
appearing in αm. The edge set denoted by E(G(αm)) includes
a set of vertex pairs. Each pair (vi, vj) corresponds to an
edge from vi to vj . There are two types of edges, namely,
call and trans. An edge (vi, vj) ∈ E(G(αm)) is labeled as
call if and only if method j is called by method i in αm.
Similarly, an edge (vi, vj) ∈ E(G(αm)) is labeled as trans
if and only if method j is called right after method i returns,
with no method calls being made between the two method
invocations in αm. The trans edges in the method level graphs
capture relationships among sibling methods called consecu-
tively. We consider these two types of edges as they capture
two different relationships among method calls and enrich
the expressiveness of both the input graphs and the mined
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signatures. These in turn should enable better differentiation of
faulty and correct behaviors. We do not capture return edges,
as they are redundant, i.e., if a method m1 calls m2, m2 should
return to m1.

Similarly, a basic block level behavior graph G(αb) is a
directed graph representing a basic block program execution
trace αb. The vertex set includes all basic blocks appearing in
αb. There are three types of edge labels, namely, call, trans
and return, where the call and trans edges are similarly defined
as in the method level. An edge (vi, vj) ∈ E(G(αb)) is labeled
as return if and only if it corresponds to method return, where
basic block i returns to basic block j in αb. The three edge
types capture the different control flow relationships between
the basic blocks in the program.

B. Bug Signature Mining

Cheng et al. formulates the bug signature identification
problem as a discriminative subgraph mining problem [2].
Their approach, called Top-K LEAP, returns the top-k dis-
criminative bug signatures Gk = {g1, ..., gk} according to a
scoring function F .

Information gain [5], commonly used in data mining and
machine learning as a discriminative measure, is chosen as
the scoring function F. It is defined as in Eq.(1).

IG(c|g) = H(c)−H(c|g) (1)

where H(c) = −∑
ci∈{0,1} p(ci) log p(ci) is the entropy

and H(c|g) = −∑
p(g)

∑
ci∈{0,1} p(ci|g) log p(ci|g) is the

conditional entropy given the subgraph g. In bug signature
identification problem, the class c0 corresponds to correct exe-
cutions and c1 corresponds to faulty executions. The subgraph
g corresponds to a bug signature. According to information
gain, if the frequency difference of a subgraph/signature in
the faulty executions and the correct executions increases, the
subgraph/signature becomes more discriminative.

Definition 1 (Bug Signature Mining): Given a set of graphs
with labels D = {(G(αi), yi)}ni=1, where G(αi) ∈ G is
a software behavior graph representing an execution and
yi ∈ {Pass, Fail} is the class label representing a correct
or faulty status, an objective function F , find k subgraphs
Gk = {gi}ki=1 from D which maximize

∑k
i=1 F (gi).

The bug signature mining process in [2] is illustrated in
Example 1.

Example 1: The code snippet shown in Table 1 shows a
simple buggy method in C++ which takes in a list of unique
characters in the input array unq of size len and tries to
replace the first occurrence of either character cx or cy with
cz. The code contains two bugs. Rather than replacing the
first occurrence of either cx or cy with cz, it replaces all
occurrences of cx and cy with cz. Consider the following set
of test cases.

No arr cx cy cz
1 {a, b} a g 1
2 {a, b} g a 1
3 {a, g} a g 1
4 {a, g} g a 1

TABLE I
BUGGY CODE SNIPPET: AN EXAMPLE

1: void replaceFirstOccurrence (char unq [],
int len, char cx, char cy, char cz) {

int i;
2: for (i=0;i<len;i++) {
3: if (unq[i]==cx){
4: unq[i] = cz;
5: // a bug, should be a break;
6: }
7: if (unq[i]==cy)){
8: unq[i] = cz;
9: // a bug, should be a break;
10: }
11: }
12: }
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Fig. 1. Software Behavior Graphs of Four Executions.

The first two test cases result in correct execution traces,
while the third and fourth result in failures. Fig. 1 shows
the software behavior graphs of the four executions from the
test cases. Each number in the graphs corresponds to the line
number of the code. A discriminative graph is shown in Fig. 2.
It highlights that the problem occurs when the basic block
starting at line 4 is executed with that of line 8.

C. Two Limitations

Although the subgraph mining approach for bug signature
identification has been shown effective through experimental
evaluation on Siemens datasets in [2], we have observed that
there are two limitations in the subgraph mining method,
which affect the quality of the returned bug signatures.

The first limitation is that, the returned bug signatures are
not minimal in size. A minimal bug signature is one which
captures the bug and its context and nothing else. A signature
which is not minimal will include unrelated program elements,
thus making it harder for developers to localize the bug. Fig.
3(a) shows a bug signature which is discriminative but not
minimal. This signature appears in the latter two graphs in
Fig. 1 corresponding to failing runs but not in the correct runs,
thus it is discriminative. But this is a larger signature than the
smallest connected signature shown in Fig. 2.

The second limitation is that, the returned bug signatures
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Fig. 2. A Discriminative Subgraph as Bug Signature.
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Fig. 3. (a) A Non-Minimal Discriminative Subgraph, and (b) A Minimal
Disconnected Discriminative Subgraph.

can not capture a bug context which spans multiple program
locations, as the algorithm mines connected subgraphs only.
For the above program, the minimal signature is a discon-
nected graph as shown in Fig. 3(b). It states that nodes 4 and
8 co-occur together to discriminate failing from correct runs
from the set of input traces.

In this work, we aim to address these two limitations.
Accordingly, we have proposed two techniques of signature
minimization (in Section IV) and signature fusion (in Section
V) to achieve the above two goals. At first glance, it seems
that minimization and fusion are achieving conflicting goals as
one reduces the signature sizes while the other increases the
sizes. Actually they are achieving two independent goals: the
goal of signature minimization is to remove unrelated program
elements from a bug signature and obtain minimal signatures
with the same discriminative score; while the goal of signature
fusion is to get signatures encompassing disconnected compo-
nents so that a merged signature is more discriminative than
each of the components itself.

IV. SIGNATURE MINIMIZATION

The best bug signature should be both relevant to the bug
and minimal in size. A minimal bug signature captures the
context that discriminates faulty from correct executions but
excludes other program elements that appear in both faulty and
correct executions. If the bug signature is too large, it impairs
understanding and is less useful.

We propose two algorithms for bug signature minimization.
Both algorithms take a bug signature and try to produce
smaller signatures that have the same discriminative score as
the larger one. The first is a complete algorithm which enu-
merates all subgraphs of the original signature and returns the
smallest one with the same discriminative score. The second
is a greedy algorithm that heuristically searches and returns a
smaller bug signature that preserves the discriminative power
if there is any.

Given a bug signature with n edges, the worst case com-
plexity of the complete algorithm is O(2n), as it needs to
enumerate all possible subgraphs of g. This is not scalable.
Thus in the remainder of the paper we focus on the greedy
algorithm. Details of the complete algorithm is available in
the accompanying technical report [1].

The algorithm for greedy bug signature minimization is
shown in Algorithm 1. The algorithm greedily removes one

Algorithm 1 MinimizeGraph: Greedy

Input: A signature graph g, discriminative score F (g),
correct and failing traces D = {(Gi, yi)}ni=1

Output: One subgraph g′ ⊂ g with the same score

1: Let E(g) be all edges in g;
2: Let gmin = g;
3: for e ∈ E(g)
4: g′ = gmin � e;
5: Calculate the discriminative score F (g′);
6: if F (gmin) == F (g′)
7: gmin = g′;
8: end for
9: return gmin;

edge at a time (line 4) and evaluates the discriminative score
(line 5). If the score of the smaller graph is the same, the
current minimal signature gmin will be updated (lines 6-7)
and the algorithm continues to remove edges of gmin in the
for loop. The algorithm terminates when there is no further
edge removal that is possible. Finally gmin is returned.

Note that gmin may not be the true minimal signature as
Algorithm 1 does not consider all combinations of edge re-
movals. Also, there might be multiple real minimal signatures;
our heuristics returns only one signature that is of the same
size or smaller with the same discriminative score. At line
3, the edges in E(g) are traversed in a predefined order. Due
to the heuristics, if a different ordering is employed, it might
produce a different minimal graph. The worst case complexity
of Algorithm 1 is O(n).

V. SIGNATURE FUSION

Signatures produced by [2] do not capture bug contexts
encompassing multiple disconnected localities. However, a
bug context may be separated by a common piece of code
that is executed by both correct and faulty executions. In
this situation, a graph mining algorithm would produce two
discriminative subgraphs corresponding to the part of the
program before and after the common code segment. However,
it should be more informative for a debugger to understand and
fix the bug, if the two discriminative subgraphs are merged
into one bug signature that captures the overall context. To
accomplish this goal, a bug signature fusion strategy can be
designed to obtain discriminative bug signatures that span
multiple disconnected locations.

The basic operation in signature fusion is to merge a
pair of graphs to form a larger graph. The algorithm, called
FuseTwoGraphs is shown in Algorithm 2. The algorithm
first merges the two input graph signatures to a larger one
gfuse (line 1) where the merge operation is denoted by ‘⊕’.
In a software behavior graph, each node has a unique label
representing a unique function or basic block. This simplifies
the merge as the resultant node set would simply be the
union of the two node sets from the two input graphs; the
resultant edge set would be the union of edges from the
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Algorithm 2 FuseTwoGraphs

Input: Two signature graphs g and g′,
discriminative scores F (g) and F (g′),
correct and failing traces D = {(Gi, yi)}ni=1

Output: Fused signature gfuse with a higher score or null

1: Let gfuse = g ⊕ g′;
2: Calculate the discriminative score F (gfuse);
3: if F (gfuse) > max(F (g), F (g′))
4: return gfuse;
5: else
6: return null;

two graphs. It then computes the discriminative score of the
merged graph gfuse. To compute this score, the algorithm
needs to scan the graph database D and checks for the
number of graphs to which gfuse is subgraph isomorphic, i.e.,
|{Gi|Gi ∈ D and gfuse ⊂ Gi}|. The discriminative score of
gfuse is then compared to that of its two constituent graphs.
If the merged graph gfuse has a higher discriminative score
than the two graphs, then we return the fused signature (lines
3-4), otherwise no merge operation is performed and a null
value is returned (lines 5-6).

The function FuseTwoGraphs is used as a building block
to generate bug signatures with disconnected components. For
the problem of signature fusion, again we have two alternative
solutions: complete and greedy. The complete version enumer-
ates all kinds of disconnected graphs by merging all possible
combinations of connected graphs. It guarantees that the most
discriminative bug signatures with disconnected components
are found. The greedy version on the other hand is a best-effort
solution. Several heuristics are used to greedily explore the
promising search space that is likely to produce bug signatures
with high discriminative scores.

In the complete algorithm, we need to first generate all
possible distinct connected subgraphs that appear in the graph
database as building blocks of the larger disconnected bug
signatures. The number of such graphs is combinatorial to
the size of the largest graph in the graph database. Each
pair of connected graphs could then be fused using the
FuseTwoGraphs procedure. Such fused graphs can be fur-
ther fused with other connected graphs in a recursive fashion.
Thus this process is highly expensive, as in the worst case
2|CG| fusion operations need to be performed, where |CG |
is the number of distinct connected subgraphs in the graph
database. Hence, the approach can only work on a database
consisting of a small number of graphs of small sizes, but
can hardly scale to large graphs. In this work, we resort to
the greedy algorithm for signature fusion. We employ the
following heuristics to reduce the fusion cost:

1) Only merge graphs within the top-k discriminative graph
set Gk. It is likely that a connected component of a
highly discriminative bug signature is very discrimina-
tive itself.

2) Perform signature minimization before fusion. As a
connected graph g may be fused with many different
graphs to form multiple disconnected signatures, if we
perform minimization first, we only need to examine g
once for minimization. On the other hand, if we perform
fusion first, the same minimization operation on g is
then repeated many times on those fused signatures
containing g.

In addition, we apply Lemma 1 to avoid many useless
fusions.

Lemma 1: Consider Gk as the top-k most discriminative
connected subgraphs with unique node labels. There is no need
to merge two graphs gi, gj ∈ Gk if V (gi)

⋂
V (gj) �= ∅.

Proof: If any two graphs gi, gj ∈ Gk share some common
nodes, i.e., V (gi)

⋂
V (gj) �= ∅, then the fused graph gfuse =

gi⊕gj is also connected through the common nodes. Since Gk

contains the k most discriminative connected subgraphs and
gfuse is a connected subgraph, then either of the following
two conclusions holds:

1) gfuse ∈ Gk, if F (gfuse) ≥ ming∈Gk
F (g); or

2) gfuse /∈ Gk, if F (gfuse) < ming∈Gk
F (g).

For either case, there is no need to merge the two graphs gi
and gj as either it is already reported or would not be among
the top-k most discriminative graphs.

Furthermore, we notice that more than two graphs could
be fused together to form a larger signature. A complete
exploration of all possible combinations of fusions even among
the top-k graphs Gk would be prohibitively expensive. Thus
we employ a greedy approach that greedily fuses graphs with
the following heuristics:

1) If two graphs gi and gj could not be fused (i.e., the
fusion results in a graph with a lower discriminative
score), each of gi and gj is likely not fuse-able with
a larger graph containing the other graph.

2) If two graphs gi and gj could be fused (i.e., the fusion
results in a graph with a higher discriminative score),
each of gi and gj is likely fuse-able with a larger graph
containing the other graph.

Based on the above heuristics, we propose Algorithm 3 for
the generation of bug signatures with disconnected compo-
nents. The algorithm takes as input a list of minimized top-
k connected signatures. It then iteratively tries to fuse one
signature with another (lines 1-5). Based on Lemma 1, if two
signatures share nodes, there is no need to fuse them (lines 3-
4). If two signatures gi, gj are fused into a larger one, we add
it to the end of Gk (lines 6-7), so that this fused graph gi⊕gj
will be further fused with other graphs in Gk. In addition,
we remove gi and gj from further consideration (line 8), as
there exists the fused signature gi ⊕ gj containing them but
with a higher discriminative score. According to the above
heuristics, other graphs in Gk will be fused with the larger
graph gi⊕gj , but not with gi or gj . Finally we return a sorted
list of signatures according to their discriminative scores in
Gk (lines 9-10).

Note that gfuse may not be the best set of fused signatures
as Algorithm 3 does not consider all combinations of graph
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Algorithm 3 Gen-Disconnected-Signature

Input: Top-k connected signatures Gk,
correct and failing traces D = {(Gi, yi)}ni=1

Output: The set of fused signatures
1: for graph gi ∈ Gk

2: for graph gj ∈ Gk after gi
3: if V (gi)

⋂
V (gj) �= ∅

4: continue;
5: gfuse = FuseTwoGraphs(gi, gj, F (gi), F (gj), D);
6: if gfuse �= null
7: Add gfuse to the tail of Gk;
8: Remove gi, gj from Gk;
9: Sort all g ∈ Gk according to F (g);
10:return Gk;

fusions. Also, there might be multiple best sets of fused
signatures; our heuristics returns only one set of signatures, in
which each fused signature has a higher discriminative score
than the original signatures being fused. At line 1, the graphs
in Gk are traversed in a predefined order. Due to the heuristics,
if a different ordering is employed, it might produce a different
set of fused signatures.

VI. AN INTEGRATED SOLUTION

Based on the proposed signature minimization and fusion
techniques, we design an integrated solution, called MIN-
FUSE with the following steps.

1) Get the top-k bug signatures Gk returned by Top-K
LEAP, where k = 10 in our experiments;

2) Get the top-10 most discriminative single events Evtk
that appear in the buggy executions;

3) Remove from Gk those signatures whose events appear
in Evtk with the same or higher discriminative score;

4) Let C0 = Gk ∪ Evtk. Sort signatures in C0 in the
decreasing order of the discriminative score. If several
signatures have the subgraph-supergraph relationship but
have the same score, only keep the smallest one. The set
after this processing is denoted as C;

5) Perform signature minimization on C;
6) Perform signature fusion on the minimized signatures.

Two graphs are fused only if the resultant graph has a
discriminative score at least 10% higher than the max
of the two;

7) Sort the resultant signatures and return the top-k to users.
In our experiments, we return top-10 signatures.

In step 2, we extract Evtk, which are discriminative events
from buggy executions, to enrich the bug signature set. The
purpose is to compensate a restriction of Top-K LEAP, which
does not mine or return single events as signatures. The
smallest possible graph returned by Top-K LEAP has one
edge and two endpoints. In step 3, if a signature has the
same or lower score with one or more of its constituent
events, the signature is removed. The other steps are quite
self-explanatory.

VII. EXPERIMENTS

In this section, we present our experiments to test the
performance of the proposed signature minimization and fu-
sion techniques. We experiment with the Siemens benchmark
datasets which were developed by researchers of Siemens
Corporation to test the adequacy of test coverage strategies [7].
These datasets are based on seven programs which are seeded
by commonly found bugs. Each version of a program is seeded
with one unique bug. These datasets have been used by various
research studies on bug localization, e.g., [3], [9], [10] as well
as bug signature identification [6], [2].

To complement the Siemens dataset that focuses on small
programs and seeded bugs, we also investigated the Space
dataset from Software-artifact Infrastructure Repository (SIR)
[4]. Space is an interpreter of an array definition language
(ADL) consisting of 9564 lines of code written in C. It
checks a file that contains ADL statements for compliance
and eventually outputs either an “array data file containing
a list of array elements, positions, and excitations” or error
messages [4]. Space comes with 38 versions, each of which
has a single real fault discovered during the development of
Space. It also comes with 13,585 test cases. As three versions
(v1, v2, and v32) do not result in any faulty executions after
running the test cases, we omit them from evaluation. Hence,
in total we consider 35 versions of the Space program.

We compare our technique with Top-K LEAP, the state-of-
the-art bug signature identification tool by Cheng et al. [2].
To measure the effectiveness of the mined bug signatures,
we use the following two measures: the number of bugs
missed and the number of nodes investigated to a relevant
signature (inclusive of the relevant signature). The third author
manually browsed through the returned bug signatures and
marked whether each of the signatures (or contexts) is relevant
or not. The measures of the number of bugs missed and the
number of nodes investigated could then be computed.

A. Experimental Results

We reported the experiment results with the Siemens and
Space datasets in the following paragraphs.
Siemens Dataset. In the following we show the results on
the seven Siemens datasets. For each dataset we take the
average of the number of bugs missed and the number of nodes
investigated across all versions. We consider two levels of
granularity of the program, based on tracing at the method and
basic block levels respectively. The results for the method level
for both Top-K LEAP and our method MIN-FUSE are shown
in Table II. The corresponding results for the basic block
level are shown in Table III. The columns Bugs Missed and
|Nodes| Examined correspond to the number of bugs missed
and the number of nodes traversed to find a relevant signature
respectively.

For the method level, Top-K LEAP misses 26 bugs in
total while MIN-FUSE misses only 11 bugs. Thus MIN-FUSE
misses 57.7%fewer bugs on the Siemens datasets. The number
of nodes traversed is on average 4.83 for Top-K LEAP and
3.95 for MIN-FUSE, demonstrating that MIN-FUSE achieves
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TABLE II
RESULT – METHOD LEVEL (SIEMENS)

Top-K LEAP MIN-FUSE
Program Bugs |Nodes| Bugs |Nodes|

Missed Examined Missed Examined
tcas 2 4.66 6 3.77

print tokens 0 3.57 0 2.57
print tokens2 4 4.30 3 3.60

schedule 3 3.60 0 3.22
schedule2 7 0.60 2 5.00
tot info 5 2.96 0 2.70
replace 5 8.50 0 5.38

Total Bugs/ 26 4.83 11 3.95
Avg. Nodes

TABLE III
RESULT – BASIC BLOCK LEVEL (SIEMENS)

Top-K LEAP MIN-FUSE
Program Bugs |Nodes| Bugs |Nodes|

Missed Examined Missed Examined
tcas 0 5.71 0 4.12

print tokens 0 4.71 0 1.57
print tokens2 0 5.30 0 2.50

schedule 1 3.00 0 2.33
schedule2 4 8.80 3 5.70
tot info 2 8.70 1 5.13
replace 4 12.47 3 5.72

Total Bugs/ 11 7.83 7 4.42
Avg. Nodes

a reduction by 18.2%. Furthermore, we find at the method
level, the program schedule2 is the most difficult one for Top-
K LEAP. However, using MIN-FUSE we could reduce the
number of bugs missed from 7 to 2. There is an increase
though in the number of nodes traversed for MIN-FUSE on
schedule2. This is because in many versions of this program
Top-K LEAP does not return any signature, hence contributing
a signature of size 0.

For the basic block level, Top-K LEAP misses 11 bugs in
total while MIN-FUSE misses only 7 bugs. Thus MIN-FUSE
misses 36.4% fewer bugs. The number of nodes traversed is
reduced by 43.6% with MIN-FUSE, as the number of basic
blocks investigated is on average 7.83 for Top-K LEAP and
4.42 for MIN-FUSE. In addition, we find at the basic block
level, the program tot info is among the hardest ones for Top-
K LEAP. However, using MIN-FUSE we could reduce the
number of bugs missed from 2 to 1, along with a reduction in
the number of nodes traversed by 41.0%.
Space Dataset. For space dataset, at the method level, the
number of bugs missed is reduced from 27 to 25 (by 7.4%). The
average number of nodes investigated to the relevant signature
is reduced from 34.29 to 11.74 (by 65.8%). At the basic block
level, the number of bugs missed is reduced from 9 to 8 (by
11.1%) and the average number of nodes investigated to the
relevant signature is also steeply reduced from 34.77 to 5.00
(by 85.6%). This shows that our approach works well on larger
programs with real bugs.
Runtime. From the experiments, we find that the cost of
performing minimization and fusion is much smaller than
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Fig. 4. Runtime Comparison

the cost of mining the top-k signatures in most cases or
comparable in a few other cases. Fig. 4 shows the runtime
comparison between our approach (i.e., MIN-FUSE+Top-K
LEAP, as we ran MIN-FUSE on the Top-K LEAP results)
and Top-K LEAP alone at the method and basic block levels
of the Siemens dataset respectively. The average runtime at the
method level of Space program is 498.23 seconds by MIN-
FUSE+Top-K LEAP versus 472.77 seconds by Top-K LEAP
(5.4% overhead). The average runtime at the basic block level
of Space program is 5587.33 seconds by MIN-FUSE+Top-
K LEAP versus 5421.29 seconds by Top-K LEAP (3.1%
overhead). These results mean that we could effectively handle
a potentially explosive search space on mining signatures with
disconnected components with a reasonable additional cost.
This shows the effectiveness of our search space pruning
strategies, various heuristics, and the greedy algorithms.
Threats to Validity. Similar to other empirical studies, there
are several threats to validity in interpreting the results. First,
we ask the third author to label the bug signatures as being
relevant or not. This process might be error prone as there
are many signatures to be labeled. The signatures have been
double checked and some have been further investigated to
reduce errors. Second, we experimented with only seven
small C programs in the Siemens test suite and a larger C
program Space. Although our experiments utilized experiment
benchmarks reported in many of the past studies on bug
localization and bug signature identification on the types and
scale of the programs investigated, we have not investigated
the utility of the method on other types of programs aside from
the eight programs. We have not experimented with non-C
programs either. However since the signatures we mine make
use of discriminative control flow information and the concept
of control flow is generic, the result is likely to apply to other
types of programs.

VIII. EXPERIENCE

In this section, we describe a bug signature demonstrating
the benefit of signature minimization and fusion. Due to
space limitation, we put other experiences in an accompanying
technical report [1].

Program replace takes in a string s, a pattern p, and another
string r. It should replace the occurrences of p in string s
with r. In version 20 of program replace the bug is located
in the function esc which is meant to handle the escape
character (see Fig. 5). The statement marked as “// fault”

346



char esc(s, i)
char *s;
int *i;

{
1: char result;
2: if (s[*i] != ESCAPE)
3: result = s[*i];
4: else
5: if (s[*i + 1] == ENDSTR)
6: result = ENDSTR; // fault
...
}

void subline(lin, pat, sub)
char *lin;
char *pat;
char *sub;

{
...
1: m = amatch(lin, i, pat, 0);
2: if ((m >= 0) && (lastm != m)) {
3: putsub(lin, i, m, sub);
4: lastm = m;
5: }
6: if ((m == -1) || (m == i))
7: i = i + 1;
8: else
9: i = m;
}

Fig. 5. Code snippet from version 20 of replace.

should have been: “result = ESCAPE”. From the function,
we can see that the bug (line 6) is manifested when ESCAPE is
followed by ENDSTR in the pattern p. Furthermore, the bug is
only manifested in a particular context, namely when there is
at least one occurrence of pattern p in string s. This check is
made in function subline; the variable m would not be equal
to −1 or i, if a match is found (line 9). Whenever this happens,
a fault occurs. We return a bug signature comprising of two
disconnected nodes corresponding to line 6 of procedure esc

and line 9 of the procedure subline. The occurrence of each
of the basic blocks alone does not reveal the fault. However,
when the two occur together, the bug is manifested. This
is an example of a context-sensitive or path-dependent bug.
Bug signatures could provide information on the relationship
between fault candidates. Such information, however, could
not be provided by regular fault localization tools that return
single statements.

For this case, Top-K LEAP splits the bug signature into two.
Hence, it is harder to understand the overall context of the bug.
As reported in [6], RAPID is able to capture a similar variant
of the bug signature with a larger size: a 6-element signature
including line 6 of esc and line 3 of subline. Thus, the
signature reported by MIN-FUSE is smaller than that reported
by RAPID, and both smaller and more informative than that
by Top-K LEAP.

In effect our proposed method MIN-FUSE can capture all
bug signatures reported in the experience sections of [6], [2].
In [2], Top-K LEAP reports two signatures which RAPID fails
to identify. In [6], RAPID identifies a signature in full while
Top-K LEAP splits it into several and reports them as different
signatures.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we extend the work on bug signature iden-
tification by employing a unique strategy of signature mini-

mization and fusion. The state-of-the-art work on identifying
bug signatures called Top-K LEAP extracts the top-k most
discriminative connected signatures from two sets of graphs
corresponding to buggy and correct executions. However,
the returned graphs might not be minimal and could not
capture signatures consisting of several disconnected parts. To
address these limitations, first we employ a graph minimization
strategy to capture smaller signatures. The large search space
involved in minimizing graphs is avoided by employing a
greedy heuristic solution. Next, we employ a signature fusion
strategy to capture discriminative signatures with disconnected
parts. We have experimented our solution on Siemens bench-
mark and a larger program called Space containing many real
bugs. Our approach, called MIN-FUSE, outperforms Top-K
LEAP in terms of the number of bugs missed and the average
number of nodes traversed to the relevant signature. The results
show that the number of bugs missed could be reduced by up
to 57.7% (method level of Siemens), and the average number
of nodes traversed could be reduced by up to 85.6% (basic
block level of Space).

In the future, we plan to further improve the heuristics,
include other information in addition to the control flow
information, and further increase the number of case studies.
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