
Searching Connected API Subgraph via Text Phrases

Wing-Kwan Chan, Hong Cheng
Department of Systems Engineering and

Engineering Management
The Chinese University of Hong Kong

{chanwk, hcheng}@se.cuhk.edu.hk

David Lo
School of

Information Systems
Singapore Management University

davidlo@smu.edu.sg

ABSTRACT

Reusing APIs of existing libraries is a common practice dur-
ing software development, but searching suitable APIs and
their usages can be time-consuming [6]. In this paper, we
study a new and more practical approach to help users find
usages of APIs given only simple text phrases, when users
have limited knowledge about an API library. We model
API invocations as an API graph and aim to find an opti-
mum connected subgraph that meets users’ search needs.

The problem is challenging since the search space in an
API graph is very huge. We start with a greedy subgraph
search algorithm which returns a connected subgraph con-
taining nodes with high textual similarity to the query phrases.
Two refinement techniques are proposed to improve the qual-
ity of the returned subgraph. Furthermore, as the greedy
subgraph search algorithm relies on online query of short-
est path between two graph nodes, we propose a space-
efficient compressed shortest path indexing scheme that can
efficiently recover the exact shortest path. We conduct ex-
tensive experiments to show that the proposed subgraph
search approach for API recommendation is very effective
in that it boosts the average F1-measure of the state-of-the-
art approach, Portfolio [15], on two groups of real-life queries
by 64% and 36% respectively.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – Productiv-
ity ; D.2.13 [Software Engineering]: Reusable Software –
Reusable libraries

Keywords

API graph, API recommendation, Subgraph searching

1. INTRODUCTION
Application Programming Interfaces (APIs) from third-

party libraries provide many of the needed functions for pro-
grammers. Re-implementing these functions from scratch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

is obviously very costly in both time and money. Besides,
these APIs are usually reliable and bug-free since they are
well tested with many test cases before releasing to the pub-
lic. Therefore, reusing APIs of existing libraries is a com-
mon practice during software development. If a program-
mer locates suitable APIs and discovers rules in using them,
he/she can accomplish a task efficiently. However, this is
not an easy task especially when the API library is large
and complex [20]. For example, the object-oriented library
- JavaTM Platform Standard Edition v1.6 (JSE 1.6) pro-
vides more than 3,100 classes and 28,900 methods. From
the study of query logs of a search engine in [6], developers
spend much time and effort in searching related APIs. It is
because the learning curve of re-using APIs can be steep due
to several barriers. Two of them are selection barrier and
coordination barrier [10]. First, a programmer attempts to
overcome selection barrier by finding suitable APIs that are
appropriate for a particular task. Afterwards, the program-
mer attempts to overcome coordination barrier to find the
usages of the selected APIs by referring to sample code or
method invocations in the documentation.

There are many API (and Code) recommendation meth-
ods to facilitate re-using APIs (Code). Some approaches
(Group 1) such as [16, 6, 18, 1] aim at solving selection bar-
rier only, but they enable users to use high level natural
language as the query. Other approaches (Group 2) such
as [25, 14] aim at solving coordination barrier by providing
method invocation context, but they start with exact signa-
ture of method(s). A user may want to pass through both
barriers at the same time, and a simple way is to glue exist-
ing approaches. But this is time-consuming as a user has to
decide suitable functions to be the inputs of a Group 2 ap-
proach, after issuing a series of queries in natural language
to a Group 1 approach. In this paper, we consider a new at-
tempt for helping a user to pass through both barriers with
minimum human interventions. The proposed approach al-
lows a user to use a set of short text phrases as the query,
and returns a connected subgraph where its nodes repre-
sent classes or methods exhibiting high textual similarity
with the query phrases, and its edges indicate the invoca-
tion relationship between the nodes. We first model classes
and methods in an API library as well as their invocation
relationships as an API graph. Given a query, after locat-
ing the initial API candidates (methods or classes) based
on textual similarity, we try to find an optimum subgraph
with the highest score from the API graph among all pos-
sible connected subgraphs. A possible connected subgraph
is a graph where each phrase in the query can be similar to

1



at least one of its nodes (methods or classes). A subgraph
scores higher if the accumulated textual similarity is higher
while the total number of nodes is smaller.

Let us first illustrate the benefits and challenges of the new
problem setting with a sample query Q consisting of 3 short
phrases q0 = ‘database connection’, q1 = ‘create sql state-
ment’ and q2 = ‘get result’. These 3 phrases in Q concisely
describe that the goal of the task is ‘connect to database,
issue a SQL and get the result’. Figure 1 shows the query
Q together with a small API graph 1 constructed from a
snapshot of 4 classes and 8 methods in java.sql package of
JSE 1.6. The dashed edges link each phrase in Q to corre-
sponding candidate classes/methods nodes, if their textual
similarity is above a certain threshold. The optimum sub-
graph for Q only consists of nodes 0, 3, 4 and 6, illustrating
a typical API usage w.r.t. the query Q, i.e., a Connection
object invokes its member function createStatement(), which
then returns a Statement object. The Statement object then
invokes its member function getResultSet().

The new problem setting has two benefits. First, form-
ing a high-level query consisting of phrases in natural lan-
guage is flexible because it allows a user to issue the query
without getting familiar with the names of methods/classes.
Second, a connected subgraph indicates clear relationships
among methods/classes of interest. On the other hand, it
has two challenges which are mainly related to finding con-
nected subgraphs. First, an API library is usually large and
complex. As a result, the constructed API graph usually
forms a huge search space. Exhaustively enumerating all
the possible connected subgraphs is not feasible due to expo-
nential runtime when the number of phrases in Q increases,
especially given a low textual similarity threshold. Second,
existing greedy subgraph search algorithms [11, 9] rely on
online query of shortest path between two graph nodes. It
is necessary to precompute and store all pairwise shortest
paths between graph nodes in memory to support efficient
subgraph search with a small distance. However, it takes at
least O(n2) space to index all pairwise shortest paths for a
graph with n nodes. When an API graph contains a large
number of nodes, this is prohibitively expensive.

At a first glance, we can reuse an existing code recom-
mendation approach Portfolio [15] to solve the new problem
(details of the approach are in Section 5). However, it does
not guarantee a connected subgraph since it only outputs
top-k most similar nodes to the query. For example, for the
query in Figure 1, if k = 4, nodes 1, 3, 6 and 11 will be
returned. But these isolated nodes do not reveal the invoca-
tion relationships among methods and classes, thus they are
less useful. In contrast, in our problem formulation, we bear
the consideration of subgraph connectivity in mind and aim
to find a connected subgraph such that it has high textual
similarity to the query phrases, contains very few irrelevant
nodes and shows clear invocation relationships among meth-
ods and classes. Our contributions include:

1. We start from a greedy subgraph search algorithm
which was originally designed for the team formation
problem in an expertise network [11]. We identify two
limitations in this basic solution and propose refine-
ment techniques to improve the quality of the subgraph

1For visualization purpose, the API graph shown here is
directed. In Section 2 we formally define an API graph as
undirected.

for API recommendation. The improved solution has
the same time complexity of O(n2) as that of the orig-
inal approach, where n is the number of nodes in the
API graph.

2. To enable efficient online query of shortest paths be-
tween graph nodes, we propose a space-efficient domain-
specific indexing scheme that only indexes pairwise
shortest paths between classes. The indexing scheme
can recover the exact shortest path efficiently with two
supplementary indexing structures. It is applicable to
any object-oriented libraries.

3. We conducted extensive experiments using two groups
of real-life queries to compare the proposed approach
with Portfolio. The results show that the average F1-
measure of the proposed approach is 64% (Group I)
and 36% (Group II) higher than that of Portfolio.

The rest of the paper is organized as follows. Section
2 defines preliminary concepts and the problem statement.
Section 3 describes the basic greedy subgraph search algo-
rithm for finding a connected subgraph and our proposed re-
finement techniques. Section 4 introduces the space-efficient
shortest path indexing scheme. We present our experimen-
tal results in Section 5, and discuss related work in Section
6. Finally, Section 7 concludes our study.

2. PROBLEM STATEMENT
There are two kinds of components in an object-oriented

API library, namely (1) classes/interfaces, denoted as C;
and (2) methods and constructors, denoted as M . The sizes
of C and M are |C| and |M | respectively. Besides, there are
four kinds of relationships between classes and methods: (1)
inheritance of a child class from its parent, denoted as Inh;
(2) a class to its member methods, denoted as Mem; (3) an
input parameter to a method (if any), denoted as Inp; and
(4) a method to its output parameter (if any), denoted as
Out. We use Rel = {Inh, Mem, Inp,Out} to denote these
four kinds of relationships among C and M . An API graph
defined below can be constructed from an object-oriented
API library.

Definition 1. (API Graph): An API graph G = (VG,
EG) is an unweighted and undirected graph. The node set
VG = C ∪M corresponds to all classes and methods and its
size is |VG| = |C| + |M |. Each node v ∈ VG is associated
with a bag of words BOWv. There is an edge e(u, v) ∈ EG

for u, v ∈ VG iff ∃Rel(u, v) ∈ Rel.

Example 1. Figure 1 shows a sample API graph, where
the 4 nodes in oval shape are classes in java.sql packages and
the other 8 nodes in box shape are member methods of the
4 class nodes. Edges e(0, 1) and e(1, 4) represent the rela-
tionships Mem (i.e., method createStatement() is a member
of class Connection) and Out (i.e., the output of method
createStatement() is class Statement) respectively.

Definition 2. (Query): A query Q consists of a set of
required phrases {qi ∈ Q|1 ≤ i ≤ |Q|}, where |Q| is the size
of the query Q. Each phrase q ∈ Q is associated with a bag
of words BOWq.

For each phrase q ∈ Q, we need to pick at least one node
from the API graph G with high textual similarity to q in
the resultant subgraph. We use Dice’s coefficient in Eq. 1 to

2



API graph

Query

0: Connection

1: createStatement()

2: prepareStatement()

3: createStatement(int, int) 4: Statement 5: executeQuery()

6: getResultSet()

7: getGeneratedKeys()

8: ResultSet

9: DatabaseMetaData
10: getSchemas()

11: getResultSetHoldability()

q0: database connection 0.5

0.4

q1: create sql statement

0.5

0.8

0.4

0.8

q2: get result

0.5

0.8

0.67

Figure 1: Sample query and API graph from a snapshot of java.sql package (For simplicity and clarity, we
only show the input parameters of method nodes 1 and 3)

measure the textual similarity between a phrase q ∈ Q and
a node v ∈ VG based on their BOWs2. In addition, we set a
textual similarity threshold α ∈ (0, 1]. Given a query phrase
q, for any v ∈ VG, if Sim(q, v) ≥ α, v is a candidate match
node for q.

Sim(q, v) =
2|BOWv ∩BOWq|

|BOWv|+ |BOWq |
(1)

Next, how to measure the goodness of a subgraph w.r.t.
a query Q for API recommendation? Intuitively, if the ac-
cumulated textual similarity between nodes in a subgraph
G′ and phrases in the query is higher, G′ is a better choice.
For convenience, we refer to the node set in G′ with highest
similarity to each of the query phrases as necessary nodes
Vo, and other nodes VG′ \Vo as dummy nodes. A better sub-
graph shall contain less dummy nodes that are not textually
similar to any phrases in the query. Therefore, we use Gain
in Definition 3 to measure the goodness of a subgraph.

Definition 3. (Gain): For a subgraph G′ ⊆ G, the
Gain of G′, Gain(G′, Q, ρ) w.r.t. a query Q is measured by
Eq. 2.

Gain(G′
, Q, ρ) =

∑
qi∈Q

Sim(qi, v
∗
i )

|Q|+ ρ|VG′ \ Vo|
(2)

where v∗
i = arg maxv∈VG′

Sim(qi, v) is the best matching
node of phrase qi, Vo = {v∗

i |1 ≤ i ≤ |Q|} is the set of best
matching (necessary) nodes to each of the query phrases, and
ρ ∈ (0, 1] is the dummy node penalty.

Example 2. Consider Figure 1. BOWs of node 1 are
[create, statement] and BOWs of phrase q1 ‘create sql state-
ment’ of the query Q are [create, sql, statement]. Thus
Sim(q1, v1) = 0.8. Given α = 0.4 and ρ = 0.2, the subgraph
in Figure 2(b) has a Gain of 0.656 w.r.t. Q.

Now, we formally define our API recommendation in Prob-
lem 1, which contains three conditions for an optimum sub-
graph G′ w.r.t. a query.

Problem 1. (Searching API Subgraph): Given a query
Q, an API graph G = (VG, EG), a similarity threshold α
and a dummy node penalty ρ, the problem of searching API
subgraph is to find a subgraph G′(VG′ , EG′) ⊆ G s.t. the
following three conditions hold:
2BOWs represent textual information for a node or a query
phrase. In our implementation, we split the name (identifier)
of a node by Camel Case to obtain BOWs for a node.

1. G′ is connected;

2. ∀q ∈ Q,∃v ∈ VG′ s.t. Sim(q, v) ≥ α;

3. Gain(G′, Q, ρ) = maxH′⊆G Gain(H ′, Q, ρ).

Condition 1 states that G′ shall be connected. Condition 2
states that for every phrase in the query, we can find a node
in G′ that is textually similar to this phrase by passing the
similarity threshold α. Condition 3 states that G′ shall have
the highest Gain among all possible subgraphs satisfying
conditions 1 and 2.

3. API SUBGRAPH SEARCH
According to Problem 1, finding a subgraph with the high-

est Gain for the API recommendation task is very hard, as
we need to exhaustively enumerate all the possible connected
subgraphs consisting of candidate nodes whose textual sim-
ilarity with the query phrases is above α. This time com-
plexity increases exponentially with the number of phrases
in a query Q, especially when α is low, i.e., the number of
candidate nodes which pass the similarity threshold is large.

3.1 A Greedy Subgraph Search Algorithm
Considering the prohibitive computational cost in finding

the optimum API subgraph, we resort to a greedy algorithm,
called RarestFirst (RF), which was proposed in the work of
Lappas et al. [11]. The problem studied in [11] is, given a
task T which requires a set of skills, and an expertise network
where each expert (node) possesses one or more skills and
there is some communication cost between two experts, the
goal is to find a team of experts who can jointly fulfill all
required skills in T with the minimum communication cost
among them. In our problem setting, nodes in an API graph
correspond to experts and the query corresponds to the task.
Our problem setting is a little different in that we account
for textual similarity between nodes (classes or methods)
and required phrases of the query. The modified RF method
to suit our problem setting is in Algorithm 1.

We explain the main idea of algorithm RF. It first invokes
a procedure FindSupport (line 1), which, for each query
phrase q ∈ Q, finds all candidate match nodes v ∈ VG whose
textual similarity with q is above α, i.e., Sim(q, v) ≥ α.
The set of candidate match nodes for q is denoted as S(q).
Then we find the query phrase q with the smallest cardinal-
ity |S(q)| and denote it as qrare, i.e., the query phrase with
the smallest number of match nodes. For each candidate
c ∈ S(qrare), it finds the closest node v ∈ S(q) to c for all

3



other q ∈ Q (lines 2–7). Finally, it picks a c∗ ∈ S(qrare)
with the smallest diameter to form a connected subgraph
(lines 8–9). The subgraph is formed by connecting c∗ with
the closest node v∗

q ∈ S(q) for all other q ∈ Q by the shortest
path from c∗ to v∗

q . The diameter w.r.t. a center c is defined
as

diameter(c) = max
q∈Q

min
v∈S(q)

Dist(v, c) (3)

By ‘the smallest diameter’, we hope the resultant subgraph
involves very few dummy nodes that are not similar to any
query phrase.

Example 3. Let us reconsider the query Q consisting
of 3 short phrases q0 = ‘database connection’, q1 = ‘create
sql statement’ and q2 = ‘get result’. For the API graph in
Figure 1, given similarity threshold α = 0.4, we compute the
candidate match nodes for each phrase in Q as:

S(q0) = {0, 9}, S(q1) = {1, 2, 3, 4}, S(q2) = {6, 8, 11}

Therefore, q0 is the rarest phrase (qrare) with two candidate
match nodes 0 and 9. For node 0, the closest node in S(q1)
is any of nodes 1, 2 and 3, with the same shortest distance
of 1; the closest node in S(q2) is node 6 and the shortest
distance is 3. Thus diameter(v0) = 3 according to Eq. 3.
Similarly, if we start from node 9, the closest node in S(q1)
is node 4 and the shortest distance is 4; the closest node
in S(q2) is node 11 and the shortest distance is 1. Thus
diameter(v9) = 4. Therefore, algorithm RF will pick node
0 as c∗ to form an API subgraph, as it has the smallest
diameter in S(q0). Node 0 can also be regarded as the center
of the subgraph.

Next, RF will arbitrarily choose any one of nodes 1, 2
and 3 for q1 as they have the same shortest distance of 1 to
node 0. Suppose node 2 is selected and connected to node
0. For q2, RF will choose node 6, as it is the closest node
in S(q2) to node 0. Note that there are three shortest paths
from node 0 to node 6: (0, 1, 4, 6), (0, 2, 4, 6) and (0, 3, 4, 6).
Suppose RF picks Path(0, 6) = (0, 3, 4, 6) as a shortest path
from nodes 0 to 6. The resultant API subgraph is shown in
Figure 2(a). When compared with the optimum subgraph
in Figure 2(b), the solution of RF contains an extra node 2,
which is redundant to node 3, as both of them match query
phrase q1 = ‘create sql statement’.

0 3 4 62

(a) Solution of RF

0 3 4 6

(b) Optimum

Figure 2: The solution of greedy algorithm RF ver-
sus optimum solution for the query in Figure 1

3.2 Selecting Node with High Textual
Similarity

A problem of RF is that, it considers any node v ∈ VG as a
candidate match of a query phrase q, as long as Sim(q, v) ≥
α. For all candidates in S(q), RF does not differentiate
them according to the textual similarity; however, some
of them may have higher similarity, and some others have
lower similarity. In Example 3, RF selects node 2 in the
answer subgraph. But Sim(q1, v2) = 0.4, which is lower
than Sim(q1, v1) = Sim(q1, v3) = 0.8. To address this prob-
lem, we formally define a new node selection measure, called
LocalGain, in Definition 4.

Algorithm 1: RarestFirst(Q, G, α)

Input: query Q, API graph G = (VG, EG), similarity
threshold α

Output: subgraph g ⊆ G
qrare, S ← FindSupport(Q,G, α)1

foreach c ∈ S(qrare) do2

foreach q ∈ Q and q 6= qrare do3

Rcq ← min v∈S(q)Dist(v, c)4

end5

Rc ← maxq Rcq6

end7

c∗ ← arg min Rc8

g ← c∗ ∪ {Path(c∗, v∗
q )|q ∈ Q, v∗

q =9

arg min v∈S(q)Dist(v, c∗)}
return g10

Procedure FindSupport(Q, G, α)11

foreach q ∈ Q do12

S(q)← {v|Sim(q, v) ≥ α,∀v ∈ VG}13

end14

qrare ← arg minq∈Q |S(q)|15

return qrare, {S(q)|q ∈ Q}16

Definition 4. (Local Gain): Given a center c and a
query phrase q ∈ Q, for a candidate match node v ∈ S(q),
the Local Gain GainL(v, q, c) of connecting v with c is mea-
sured by Eq. 4.

GainL(v, q, c) = Sim(q, v)− ρ(Dist(v, c)− 1) (4)

where ρ ∈ (0, 1] is the dummy node penalty.

Given a fixed center c, LocalGain prefers a node v ∈ S(q)
having a high textual similarity with the phrase q, and hav-
ing a small distance to c. We add the dummy node penalty
ρ for flexibility. With a lower (or higher) value of ρ, we
give a lower (or higher) penalty for the distance Dist(v, c)
between a node v and the center c. Accordingly, we pro-
pose an improved algorithm called RarestGainFirst (RGF)
in Algorithm 2, which uses the LocalGain as the criterion
to select the best node v∗ from S(q), ∀q ∈ Q and q 6= qrare

(line 5). Then, a shortest path Path(c, v∗) is added to the
resultant subgraph to connect v∗ to c.

Example 4. Consider Figure 1, for the center node 0 and
q1=‘create sql statement’, GainL(v1, q1, v0) = GainL(v3, q1,
v0) = 0.8, GainL(v2, q1, v0) = 0.4, for any value of ρ. Thus
RGF will select node 1 or 3 according to LocalGain.

Moreover, algorithm RF finds a subgraph with the small-
est diameter, according to Eq. 3. However, the subgraph
with the smallest diameter does not necessarily have the
highest Gain defined in Eq. 2. It is necessary to form a sub-
graph for each center node c ∈ S(qrare) and return the one
with the highest Gain. Therefore, algorithm RGF searches
a subgraph Lc for each center c ∈ S(qrare). Finally, the sub-
graph with the highest Gain according to Eq. 2 is returned
as the answer (lines 9–10).

3.3 Handling Multiple Shortest Paths
Problem

Algorithm RGF can find a better subgraph in terms of
Gain by selecting nodes with high textual similarity for each
phrase. However, RGF still faces the problem of multiple
shortest path, i.e., the shortest path between two nodes in a

4



Algorithm 2: RarestGainFirst(Q, G, α, ρ)

Input: query Q, API graph G = (VG, EG), similarity
threshold α, node penalty ρ

Output: subgraph g ⊆ G
qrare, S ← FindSupport(Q,G, α)1

foreach c ∈ S(qrare) do2

Lc ← ∅3

foreach q ∈ Q and q 6= qrare do4

v∗ ← arg max v∈S(q)GainL(v, q, c)5

Lc ← Lc ∪ {Path(c, v∗)}6

end7

end8

L∗
c ← arg maxLc Gain(Lc, Q, ρ)9

return g = L∗
c10

graph is not unique. Consider the query Q in Figure 1. From
the center node 0, for the phrase q1, RGF may select node 1
or 3, as GainL(v1, q1, v0) = GainL(v3, q1, v0) = 0.8 are the
highest. Suppose node 3 is selected, and then node 0 is con-
nected to node 3. Next, for q2, it will select node 6 accord-
ing to LocalGain. However, the shortest path Path(0, 6) is
not unique in Figure 1. As mentioned previously, there are
three shortest paths: (0, 1, 4, 6), (0, 2, 4, 6) and (0, 3, 4, 6), all
of which have the same distance of 3. Suppose RGF chooses
Path(0, 6) = (0, 1, 4, 6) to add to the subgraph. Figure 3
shows the resultant subgraph found by RGF. This subgraph
is less optimum, as dashed node 3 is redundant to node 1.
This is due to the multiple shortest path phenomenon: when
there are multiple shortest paths from a source node to a
destination node, an arbitrary one will be selected to add
to the resultant subgraph. If the pairwise shortest paths
are pre-computed and stored to support queries, only one
path between a pair of nodes will be retained. It is hard to
decide which shortest path should be stored among multi-
ple choices, because at the pre-computation phase, we know
nothing about a query.

0 1 4 63

Figure 3: Less optimum subgraph from RGF

To address the multiple shortest path problem, we propose
a refinement technique using Steiner Tree. The Steiner Tree
problem [7] is to find a minimum-weight tree connecting a
given subset of nodes of a graph.

We name this refinement technique as LocalRegionRefine
(LRR), as shown in Algorithm 3. Initially, we start with
a subgraph g′ returned by Algorithm RGF (line 1). Then,
from the node set Vg′ , we select a subset of nodes as Vbest

by including nodes with highest textual similarity to each
phrase q ∈ Q (lines 4–6). Then, we invoke the SteinerTree
procedure to find a refined graph g (line 9), where Vbest is
the input as the set of necessary nodes for a steiner tree.
The graph can be refined as SteinerTree is multiple-path-
aware: it always connects any covered node (in Vg) to an
uncovered necessary node (in Vo) through a shortest path
with the smallest distance.

Example 5. Consider the graph g′ returned by RGF in
Figure 3. Necessary nodes are Vbest = {0, 3, 6} from nodes
{0, 1, 3, 4, 6}. Node 3 has a higher textual similarity than
node 4 (0.8 vs. 0.5) to the phrase q1=‘create sql statement’,
so we choose node 3 accordingly. By feeding Vbest = {0,

3, 6} to the SteinerTree procedure, we can get an opti-
mum subgraph as shown in Figure 2(b). The refinement is
possible because SteinerTree can tell that the shortest path
Path(3, 6) = (3, 4, 6) is shorter than Path(0, 6) = (0, 1, 4, 6)
when adding Path(3, 6) from the covered node 3 to the un-
covered necessary node 6 to g. Note that another possible
necessary node set can be Vbest = {0, 1, 6}, as node 1 has
the same textual similarity (0.8) as node 3. In this case,
the refined graph should contain nodes 0, 1, 4, 6, which is
essentially the same (has the same Gain) as Figure 2(b).

Algorithm 3: LocalRegionRefine(Q, G, α, ρ)

Input: query Q, API graph G = (VG, EG), similarity
threshold α, node penalty ρ

Output: subgraph g ⊆ G

g′ ← RarestGainF irst(Q,G, α)1

Vbest ← ∅2

foreach q ∈ Q do3

Vq = {v|v ∈ S(q) ∧ v ∈ Vg′}4

v∗ ← arg maxv∈Vq Sim(q, v)5

Vbest ← Vbest ∪ {v
∗}6

end7

v∗ ← arg minv∈Vbest,u∈Vbest,u 6=v Dist(u, v)8

g ← SteinerTree(Vbest, G, v∗)9

return g10

Procedure SteinerTree(Vo, G, v′)11

Vo ← Vo \ {v
′}12

g ← {v′}13

while Vo 6= ∅ do14

u∗, v∗ ← arg min u∈Vg,v∈VoDist(u, v)15

if Path(u∗, v∗) 6= ∅ then16

g ← g ∪ {Path(u∗, v∗)}17

Vo ← Vo \ {v
∗}18

end19

end20

return g21

4. CLASS-ONLY PATH INDEXING
Our proposed approaches rely on online query of shortest

distances and paths between two graph nodes. The time
complexity of single source shortest paths to all other desti-
nation nodes is O(n + m) using breadth first search (BFS)
for unweighted graphs and O(n log n + m) using Dijkstra’s
algorithm (implemented with Fibonacci heaps) for positive
weighted graphs, where n and m are the number of nodes
and edges of a graph respectively. In our application, an API
graph constructed from Java SE 1.6 has a large n ≃ 32, 000.
Algorithm LRR needs to compute shortest paths and dis-
tances between many pairs of graph nodes before returning
a resultant subgraph, so online shortest path computation is
not feasible given limited query response time for a large n.
On the other extreme, storing all pairs of shortest paths and
distances in the main memory is not feasible given limited
memory space, as the space complexity is at least O(n2) to
index all pairwise shortest paths/distances.

There have been numerous studies on approximate short-
est distance estimation. A representative approach is land-
mark embedding, which pre-computes and stores shortest
distances (or paths) from a subset of graph nodes called

5



landmarks to every node in the graph [5, 19]. During on-line
query, an approximate shortest distance between two nodes
u and v is obtained indirectly using triangular inequality by

D̃ist(u, v) = min
w∈VL

Dist(u, w) + Dist(w, v),

where VL is the landmark set. In general graphs, the approx-
imation can have an error bound on the estimated shortest
distances [19]. Although landmark embedding uses less in-
dexing space than full path/distance indexing, this approxi-
mate distance estimation approach may affect the quality of
the resultant graph in our problem, as the estimated shortest
distances and paths are not precise.

To design an effective scheme to index exact shortest dis-
tances/paths instead of approximate ones, we can have some
observations from the API graph G in Figure 1. G has
two types of nodes: classes C = {0, 4, 8, 9} and methods
M = {1, 2, 3, 5, 6, 7, 10, 11}. Moreover, there is no direct
interaction between methods, i.e., the adjacent nodes of a
method node must be class nodes. Therefore, we propose to
only index paths among class nodes in an API graph, which
is more space-efficient and can support full recovery of ex-
act shortest paths between any type of nodes. Note that
shortest distance can be computed trivially from a shortest
path.

4.1 Three Indexing Structures

0 4 8 9

Figure 4: Class graph of Figure 1

First, we construct a class graph GC = (VGC
, EGC

) from
the original API graph G = (VG, EG). The formal construc-
tion process is in Definition 5. Figure 4 shows the class graph
of the API graph in Figure 1.

Definition 5. (Class Graph): A Class Graph for an
API graph G = (VG, EG) is a weighted undirected graph
GC = (VGC

, EGC
), where VGC

= {v|v ∈ VG, v ∈ C}, and
∃edge e(u, v) ∈ EGC

for u, v ∈ VGC
with an edge weight

Dist(u, v) iff 1 ≤ Dist(u, v) ≤ 2 in G.

Finally, based on the class graph GC , we construct three
space efficient indexing structures:

1. Parent[s][d]: For every class node pair (s, d) in the
class graph, Parent[s][d] stores the precedent node of
d on the shortest path from s to d.

2. Adj[m]: A mapping from a method node m ∈ M to
its adjacent (1-hop neighbor) class nodes.

3. Con[o][p]: A mapping from a 2-hop class node pair
(o, p) to only one and any one of their in-between con-
nector method nodes (if any). Here o, p ∈ C and
Dist(o, p) = 2 in the original API graph. As the API
graph is an undirected graph, we only store Con[o][p]
for o < p according to their node ids. Con[p][o] will be
the same and thus not stored.

Among the three indexing structures, Parent[s][d] requires
more memory space (O(|C|2)), as it indexes the shortest
paths between class nodes in C with size of |C|. As the num-
ber of classes is usually much smaller than that of methods
in an API library, our class-only path indexing scheme is

more space-efficient than path indexing on the original API
graph (full graph indexing).

Example 6. In the class graph in Figure 4, Path(4, 9) =
(4, 8, 9). So Parent[4][9] = 8, i.e., the precedent node of
9 is node 8 on Path(4, 9). Some Adj[m] mappings include
Adj[1] = {0, 4}, Adj[5] = {4, 8} and Adj[10] = {8, 9}. Some
Con[o][p] mappings include Con[0][4] = 1, Con[4][8] = 5
and Con[8][9] = 10 according to Figure 1.

4.2 Exact Path Recovery
Algorithm 4 shows how to recover the exact path between

two nodes. There are three cases in path recovery: (1) be-
tween 2 classes; (2) between 1 method and 1 class; and (3)
between 2 methods. Since the indexing is based on the class
graph, for any case, we have to query Con[o][p] to add the
connector method back to the actual path between two class
nodes (line 9). For case 2, if one of the two nodes is a method
node, denoted as v, we use Adj[v] to map v to its adja-
cent class nodes as references Ref [v] and search a minimum
shortest path among shortest paths from every reference to
the other class node (line 16). This is similar for case 3, in
which both source and destination nodes need to get refer-
ences, i.e., adjacent class nodes, for searching shortest paths
based on Parent[s][d] index.

Algorithm 4 provides an efficient way to recover the exact
shortest path between two nodes in an API graph. The
worst case runtime for exact path recovery is case 3 and it
is O(|Adj[m]|× |Adj[n]|) for two method nodes m and n. In
practice, the cardinality |Adj[m]| of a method is small (say
3), so the runtime to recover an exact path is only several
times to that of full-graph path indexing, while we can store
the class-only indexing compactly in main memory.

Example 7. Consider Figure 1. By applying path re-
covery in Algorithm 4, we find Path(4, 8) = (4, 5, 8), i.e.,
(4, Con[4][8], 8); Path(5, 11) = (5, 8, 10, 9, 11), i.e., adding
the source node 5 and destination node 11 to head and tail
of another path (8, Con[8][9], 9) respectively.

Algorithm 4: PathRecovery(s, d)

Input: source node s, destination node d
if s = d then1

return {s}2

end3

foreach u ∈ Ref [s] do4

foreach v ∈ Ref [d] do5

Pathuv ← ∅6

np ← v7

while n′
p ← Parent[u][np] do8

add np and Con[n′
p][np] (if any) to Pathuv9

np ← n′
p10

end11

add s to head of Pathuv if s ∈M12

add d to tail of Pathuv if d ∈M13

end14

end15

return Pathuv with minu∈Ref [s],v∈Ref [d] |Pathuv|16

5. EXPERIMENTS
The closest related work in API (Code) recommendation

is Portfolio (PF) [15]. A live version of Portfolio can be

6



found at http://www.searchportfolio.net, which is targeted
at searching functions in source code. It also provides con-
text among functions when given text as the query, but does
not consider the connectivity of function calling subgraph.
To have a fair comparison between the proposed API recom-
mendation approach LocalRegionRefine (LRR) and PF, we
implemented LRR and re-implemented PF, both in Python.
Then, we create queries based on sample API usage code
available from three popular Java API tutorial websites:
Kodejava3, Javadb4 and Java2s5. For each of the queries, we
construct the underlying relevant nodes (methods or classes)
and corresponding API subgraph using invocations among
nodes in the sample code. Afterwards, we evaluate LRR
and PF using standard evaluation metrics for information
retrieval, i.e., precision and recall. All experiments were
carried out on Ubuntu 11.10 (Linux OS) with a Core 2 Duo
2.26GHz CPU and 3GB DDRII RAM.

Suppose subgraph H is the optimum subgraph (ground
truth) for a query, the precision and recall for a suggested
subgraph G are as follows:

Precision(G) =
|VG ∩ VH |

|VG|
, Recall(G) =

|VG ∩ VH |

|VH |

We re-implemented Portfolio by following the linear com-
bination of PageRank (PR) [2] and Spreading Activation
Network (SAN) [4] in Eq. 5 to rank a node (method or class)
in an API graph. SAN is to propagate the weight (i.e., tex-
tual similarity) of a node in the API graph to its neighbours
with a decay factor δ. We follow the exact SAN used in [15],
where the highest propagated weight of a node is retained
when there are multiple propagation paths. Since the query
of Portfolio in [15] is one text phrase and that of ours is a set
of text phrases, we use nodes that pass similarity threshold
α in Eq. 1 for each phrase in the query as initiating (firing)
nodes for SAN. Afterwards, top-k most similar nodes are re-
turned, together with a visualization of the subgraph (may
not be connected) only containing these nodes and edges for
any two adjacent nodes. The specific parameters for Portfo-
lio in the experiments are as follows: λPR = λSAN = 0.5, k

= 10, δ = 0.8 and teleport probability for PageRank = 0.15.

SimPort(v) = λPR
PR(v)

maxu∈VG
PR(u)

+ λSANSAN(v) (5)

5.1 Query Formulation
These queries are organized in two groups:
Group I Queries. Group I consists of queries at low tex-

tual similarity threshold α = 0.6 to tolerate a query phrase
q that is not very similar to BOWs of a method/class. This
illustrates a scenario that the user is not familiar with the
API library. The queries in Group I are originated from
20 pieces of sample usage code in Kodejava. Each piece
of sample API usage code in Kodejava is associated with a
short question expressed in text. These questions are used
to formulate the queries that preserve what is expressed in
the questions. For example, the question for example 776

is ‘How do I get total space and free space of my disk?’,
so the query becomes [‘get total space’, ‘get free space’].

3http://www.kodejava.org
4http://www.javadb.com
5http://www.java2s.com
6http://www.kodejava.org/examples/77.html

For each of these queries, we obtain an optimum subgraph
from corresponding piece of sample usage code: methods or
classes (in the sample usage code) that match each phrase
the best (highest textual similarity) are required nodes and
invocations among these required nodes form the resultant
subgraph. Other methods/classes appearing in the sample
usage code but not participating in the invocations are not
taken into account. All the nodes in the optimum subgraph
for each query are the relevant nodes for evaluation.

To select these 20 pieces of sample code, we first crawl a
total of 849 pieces of sample code from Kodejava. Then, for
each piece of the sample code, we remove stop words, punc-
tuations and the phrase ‘How do I’ from the associated ques-
tion. Afterwards, we check if 95% of the remaining words
appear as substrings in the source code. If yes, we include
the corresponding piece of sample code in the candidate pool
for query selection. Finally, from a total of 83 pieces of sam-
ple code in the candidate pool, we select 20 pieces of sample
code by including various packages in the JSE 1.6 library.

Group II Queries. Group II consists of queries at high
textual similarity threshold α = 0.8 to indicate another
common scenario [14, 25] that the user is familiar with the
naming of methods/classes but not sure about the calling
relationships among them. We construct the optimum sub-
graph for each of Group II queries by referring to invocations
among methods/classes in the sample API usage code in
Javadb and Java2s. We first locate some methods/classes in
the sample code and use the invocations among them as the
corresponding subgraph. Group II consists of a total of 20
queries, 10 from Javadb and 10 from Java2s. To select these
queries, we first check if there are at least two classes that
are interacting with each other via a method in the sample
code. If yes, we use the BOWs of each of these classes as
the BOWs of each phrase of a query. Moreover, we limit the
number of queries per JSE package to 3 for sampling.

Figure 5 shows the number of Group I and Group II
queries in various JSE packages. Table 1 provides a snap-
shot of 4 queries from Group I and 3 queries from Group II.
For each of these 4 queries in Group I, we show the question
and corresponding query phrases in two separate rows.

Figure 5: Number of Group I and Group II queries
in various JSE packages

5.2 Results – Effectiveness
Since PF returns top-k most similar nodes w.r.t. the query

phrases, and k is set to 10 in our experiments, if we measure
top-10 precision, the precision could be low when the size of
the underlying optimum subgraph is small. To be fair to PF,
we first find the best F1-measure among all F1-measures for
k = 1 to 10. Afterwards, we use the corresponding precision
and recall as results. On the other hand, since our pro-
posed approach LRR always returns a connected subgraph
w.r.t. a query regardless of parameter k, we simply calcu-

7



Table 1: Sample Group I and Group II queries
Group I

Id Question & Query

5
How do I get IP address of localhost?
get ip address, local host

10
How do I set a filter on a logger handler?
set filter, log handler, add handler

15
How do I load properties from XML file?
load properties from xml, properties

20
How do I read entries in a zip / compressed file?
read entries, zip file

Group II
Id Query
4 X Path Factory, X Path
8 Date, Simple Date Format
12 Properties, Input Stream

late precision and recall using all the nodes of the suggested
subgraph.

Table 2: Avg. precision, recall and F1-measure for
PF and LRR

Portfolio LRR
Prec. Rec. F1 Prec. Rec. F1

Group I 0.24 0.51 0.33 0.53 0.56 0.54
Group II 0.48 0.64 0.55 0.79 0.72 0.75

Table 2 shows the summary of the results of both Group
I and II queries. Moreover, Figure 6 shows the detailed
results for each of Group I and II queries. For Group I
queries, PF and LRR have similar average recall at 0.51 and
0.56 respectively, but LRR improves the average precision
of PF to more than twice (from 0.24 to 0.53). When the
query size is 1, PF can have better precision and recall than
those of LRR, such as queries 14 and 16. It is because PF
outputs top-k (k = 10) nodes while LRR only returns 1 best
node. On the other hand, when the query size is increased
to 2 and 3, LRR has better precision and recall as it tries to
find a connected subgraph to match the optimum subgraph.
There are also some cases where both PF and LRR have zero
precision and zero recall, as the textual similarity between
a phrase in the query is very different from a node in the
optimum subgraph, such as queries 6 and 11. For Group II
queries, LRR has a better average recall of 0.72 and improves
the average precision of PF by 67% to 0.79. On average,
LRR improves the F1-measure of PF by 64% in Group I
and 36% in Group II respectively.

Table 3: Avg. Gain for PF, LRR and Optimum
Portfolio LRR Optimum

Group I 0.43 0.88 0.98
Group II 0.56 0.90 0.90

Meanwhile, Table 3 shows the average Gain (Eq. 2) of PF,
LRR and the optimum subgraph constructed from sample
API usage code for both Group I and II queries. While the
average recall of LRR is 0.56 for Group I queries in Table 2,
the average Gain of LRR is very close to that of the optimum
(0.88 vs. 0.98). For Group II queries, LRR has an identical

average Gain as that of the optimum. On the other hand,
PF has much lower Gain since it is not connectivity aware.

To visualize the benefits of connectivity of a subgraph,
we show the resultant API subgraphs among PF, LRR and
optimum subgraph for query 5 in Group I and query 8 in
Group II in Figure 7 and Figure 8 respectively7. In the
figures, necessary nodes are in solid box shape and dummy
nodes are in dashed box shape. For both cases, PF fails to
find a connected subgraph for necessary nodes.

String InetAddress.getHostAddress()InetAddressInetAddress InetAddress.getLocalHost()

(a) Optimum

InetAddress DatagramPacket.getAddress()

InetAddress

InetAddress InetAddress.getLocalHost()

(b) LRR

InetAddress DatagramPacket.getAddress()

Locale

ComponentJComponent

InetAddress InetSocketAddress.getAddress()

JMXServiceURL JMXAddressable.getAddress()

JMXServiceURL RMIConnectorServer.getAddress()

InetAddress InterfaceAddress.getAddress()

Graphics

JMXServiceURL JMXConnectorServerMBean.getAddress()

(c) Portfolio

Figure 7: Solutions for query 5 in Group I

5.3 Results – Efficiency

5.3.1 Runtime – using Class Graph Indexing

For a comparison of runtime among the algorithms RF,
RGF, LRR and PF, we generate a set of random queries Q
from CG (class graph) of JSE library. Q has a total of 180
queries whose sizes range from 3 to 20 and the number of
queries per size is 10. To ensure there is at least one resultant
connected API subgraph for each Q ∈ Q, we first select a
pool of candidate nodes Vc, in which each node v ∈ Vc has
at least 50 (sufficiently larger than maximum query size of
20) children nodes in the shortest path tree PTv rooted at
it. Then, from PTv of a randomly selected node v ∈ Vc,
we randomly pick a set of nodes VQ with size equal to that
of a query Q. The associated bag-of-words (BOWs) of each
v ∈ VQ is the corresponding BOWs of each q ∈ Q. We
further ensure Q has at least 5 possible resultant connected

7Porter2 stemming algorithm [17] for English is applied to
BOWs of nodes in the API graph and query phrases in our
implementation for the similarity measure in Eq. 1

8



(a) Group I - Precision (b) Group I - Recall

(c) Group II - Precision (d) Group II - Recall

Figure 6: Precision and recall for Group I and II queries. (X-axis: query Id; Y-axis: precision or recall)

SimpleDateFormat

StringBuffer SimpleDateFormat.format(Date, StringBuffer, FieldPosition)

Date

(a) Optimum, LRR

SimpleDateFormat

SimpleDateFormat.SimpleDateFormat()

SimpleDateFormat.SimpleDateFormat(String)

SimpleDateFormat.SimpleDateFormat(String, DateFormatSymbols)

SimpleDateFormat.SimpleDateFormat(String, Locale)

ComponentJComponent

Date Date.Date()sql.Date

(b) Portfolio

Figure 8: Solutions for query 8 in Group II

subgraphs (local regions) at a similarity threshold α = 0.6.
We name this dataset for JSE as DSJSE.

Table 4: Avg. runtime (seconds) for all queries at
varying α for dataset DSJSE

α RF RGF LRR PF
0.5 0.269 0.282 0.293 1.774
0.6 0.033 0.038 0.052 0.519
0.7 0.012 0.013 0.024 0.203
0.8 0.012 0.012 0.025 0.176

Using dataset DSJSE, Table 4 shows the comparison of
average runtime over all queries for RF, RGF, LRR and
PF at α = 0.5, 0.6, 0.7 and 0.8 respectively, where RF,
RGF and LRR use class graph indexing to store shortest
paths in the main memory. Without refinement process us-
ing SteinerTree, RGF has comparable runtime to those of

RF. With SteinerTree refinement, LRR has some overhead
but the worst runtime is only ∼2 times to that of RF at
α = 0.8. Runtime for PF is much longer than that of LRR,
ranging from 6 to 10 times by varying α.

5.3.2 Indexing: Class Graph Vs. Full Graph

How space-efficient is the proposed CG (class graph) in-
dexing? A naive path indexing for LRR is to store all pair-
wise shortest paths in the original full API graph into a
database on hard disk. We name this disk-based approach
FG (full graph) indexing. The size of FG indexing is mea-
sured as follows. Given an API graph G = (VG, EG), for
every source node s ∈ VG, we compute its shortest paths to
every other destination node d ∈ VG and use Parent[s][d]
to store the precedent node of d in Path(s, d). Afterwards,
we dump the serialized parent entries (Parent[s][d]) with
source node s as primary key to a sqlite3 database DBpath

and measure its size as the space required for FG indexing.
For the JSE 1.6 library, FG indexing uses 10.6GB disk

space, while CG indexing can fit the indexes compactly in
main memory for 150MB space. In other words, CG index-
ing can reduce the space by ∼70 times.

Next, we study the trade-off in runtime between these
two indexing schemes, i.e., the disk-based FG indexing and
the main-memory-based CG indexing. Table 5 shows the
corresponding results using dataset DSJSE at α = 0.6 and
ρ = 0.2. On average, the runtime of disk-based LRR is
∼16 times to that of main-memory-based LRR using the
proposed CG indexing. The runtime ranges from 9 to 24
times for various sizes of queries.

5.4 Threats to Validity
Construct Validity. Are the evaluation measures suit-

able? We reduce threats to construct validity by using the
popular performance metrics, precision and recall for evalu-
ation. In addition, we use a reasonable subgraph goodness
measure called Gain as a supplement.

Internal Validity. Are there any experimental biases?
The first one is query formulation and relevance judgement.
We use sample code available from three websites as refer-
ences to annotate the queries and relevance nodes. Con-

9



Table 5: Runtime (seconds) of LRR using FG in-
dxing and LRR using CG indexing at α = 0.6 and
ρ = 0.2 for dataset DSJSE

Size Full Graph Class Graph RatioF G:CG

03-05 0.590 0.029 20.57
06-08 0.847 0.035 24.24
09-11 0.957 0.044 21.81
12-14 0.511 0.056 9.06
15-17 0.611 0.070 8.76
18-20 0.964 0.093 10.41

Average RatioF G:CG 15.81

structing ground truths from sample code shall be a more
objective evaluation approach than human judgements of
relevance. As the queries are formulated by human (based
on questions from Kodejava), the phrases constructed for a
query may affect the results so the precision and recall can
drop or increase. Since both PF and LRR receive the same
set of phrases for each query, the effects will be evenly prop-
agated to both PF and LRR but not only one of them. The
final threat is the parameter settings of PF and LRR. We
use an equally linear combination of PageRank and Spread-
ing Activation Network for PF. Changing the weight of the
combination may affect the behaviour in the similarity mea-
sure and hence the nodes of a suggested subgraph by PF.

External Validity. Could the results be generalized?
We included various packages in JSE 1.6 library. However,
we have not evaluated other Java libraries and API libraries
of non-Java languages, though the idea of LRR is applicable
to API of any languages. Besides, the queries may not be
representative samples to common API querying habits of
the majority.

6. RELATED WORK
API/Code Recommendation. Popular code search

engines include Google Code Search8, Koders9 and Codase10 .
They allow users to search from a large collection of code
repositories for common programming languages but only
use simple word matching. More complex and useful API/
Code recommendation tools can be roughly divided into two
groups.

The first group uses natural language as a query, such as
Sourcerer [1], Gridle [18], Assieme [6], the work of McMil-
lan et al. [16] and a cross-library API recommendation ap-
proach [24]. They can help users to overcome selection
barrier to suggest related APIs. Sourcerer supports 5 types
of searches using keyword(s), including components, com-
ponent use, functions, function use and program structures.
Gridle uses a variant of PageRank [2] to suggest popular
classes that match the query words. Assieme groups the
suggested results tidily into packages, types, members and
code examples as well as inter-group hyperlinks. The work
of McMillan et al. [16] suggests source code examples in 2
steps, by first locating a set of candidate APIs that are tex-
tually similar to the query and then finding code examples
that cover most of these APIs. Similar to Gridle and the

8http://www.google.com/codesearch. Service is closed
9http://www.koders.com

10http://www.codase.com

work of McMillan et al., we also take the structure of API
calling graph into similarity measure using Gain.

The second group uses method/class name as a query,
such as Prospector [14], MAPO [25], Altair [13] and FACG
(Flow-Augmented Call Graph) [23]. Prospector suggests a
list of ranked shortest paths given two methods to indicate
method invocations. MAPO suggests frequent API usage
patterns and associated code snippets. Both Prospector and
MAPO provide context of functions of interest, which can be
considered as the connected API subgraph suggested by our
approach. Altair and FACG suggest similar API functions
(no context) to the query function using common functions
overlapping and weighted API call graph respectively.

The most related work in API/Code recommendation to
our work is Portfolio [15], as briefly discussed in Section 5.
We further consider to output a connected subgraph from
the API graph.

Team Formation. Given a task, a pool of experts with
different skills and possibly a social network that captures
the proximity among them, team formation studies how to
find a subset of experts who can jointly fulfill the task.

In the field of Operations Research, team formation prob-
lem is formulated as Integer Programming and solved ap-
proximtely using techniques such as analytical hierarchy pro-
cess [3, 26] and genetic algorithms [21]. The work in [11] is
the first team formation problem accounting for the struc-
ture of a graph that models communication costs among
experts. We improve the RarestFirst algorithm in [11] to
apply to API recommendation domain. Two extended work
of [11] are [12, 8]. The work in [12] considers a general
task that each skill requires a number of experts and solves
greedily by applying an enhanced version of SteinerTree to
a compressed group graph. The work in [8] considers the
skillfulness of experts in discrete level, and linearly combines
skillfulness with node distance in the expertise network. We
also account for skillfulness, i.e., textual similarity of BOWs
between a method/class and a query phrase. Meanwhile,
the team formation problem accounting for graph structure
is similar to keyword search in relational database [22, 9],
but with a focus on expertise network.

7. CONCLUSIONS
We proposed a novel graph search approach to help users

find usages of APIs only using simple text phrases as a query.
Our solution allows software developers to pass through both
selection and coordination barriers when reusing APIs of ex-
isting libraries. For a query, we suggested a high quality sub-
graph from the API graph based on the newly defined sim-
ilarity measure called Gain. We improved the greedy sub-
graph search algorithm RarestFirst with a refinement pro-
cess based on SteinerTree technique. Moreover, we design a
compact index based on Class Graph of an API graph, which
can efficiently support on-demand shortest path queries with
a small index size. Experiments confirmed that our approach
outperforms the state-of-the-art code recommendation ap-
proach Portfolio by improving average F1-measure by 64%
and average Gain by 2 times.

8. ACKNOWLEDGMENTS
This work is supported by the Hong Kong Research Grants

Council (RGC) General Research Fund (GRF) Project No.
CUHK 411310 and 411211.

10



9. REFERENCES
[1] S. K. Bajracharya, T. C. Ngo, E. Linstead, Y. Dou,

P. Rigor, P. Baldi, and C. V. Lopes. Sourcerer: a
search engine for open source code supporting
structure-based search. In OOPSLA Companion,
pages 681–682, 2006.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[3] S.-J. Chen and L. Lin. Modeling team member
characteristics for the formation of a multifunctional
team in concurrent engineering. IEEE Transactions on
Engineering Management, 51(2):111 – 124, 2004.

[4] F. Crestani. Application of spreading activation
techniques in information retrieval. Artif. Intell. Rev.,
11(6):453–482, 1997.

[5] K. Grant and D. Mould. Combining heuristic and
landmark search for path planning. In Future Play,
pages 9–16, 2008.

[6] R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme:
finding and leveraging implicit references in a web
search interface for programmers. In UIST, pages
13–22, 2007.

[7] F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner Tree Problem. North-Holland, Amsterdam,
Netherlands, 1992.

[8] K. Kamel, N. Tubaiz, O. AlKoky, and Z. AlAghbari.
Toward forming an effective team using social
network. In IIT, pages 308 –312, 2011.

[9] M. Kargar and A. An. Keyword search in graphs:
Finding r-cliques. PVLDB, 4(10):681–692, 2011.

[10] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning
barriers in end-user programming systems. In
VL/HCC, pages 199–206, 2004.

[11] T. Lappas, K. Liu, and E. Terzi. Finding a team of
experts in social networks. In KDD, pages 467–476,
2009.

[12] C.-T. Li and M.-K. Shan. Team formation for
generalized tasks in expertise social networks. In
SocialCom/PASSAT, pages 9–16, 2010.

[13] F. Long, X. Wang, and Y. Cai. Api hyperlinking via

structural overlap. In ESEC/SIGSOFT FSE, pages
203–212, 2009.

[14] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: helping to navigate the api jungle. In
PLDI, pages 48–61, 2005.

[15] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie,
and C. Fu. Portfolio: finding relevant functions and
their usage. In ICSE, pages 111–120, 2011.

[16] C. McMillan, D. Poshyvanyk, and M. Grechanik.
Recommending source code examples via api call
usages and documentation. In Proceedings of the 2nd
International Workshop on Recommendation Systems
for Software Engineering, pages 21–25, 2010.

[17] M. F. Porter. Readings in information retrieval.
chapter An algorithm for suffix stripping, pages
313–316. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[18] D. Puppin and F. Silvestri. The social network of java
classes. In SAC, pages 1409–1413, 2006.

[19] M. Qiao, H. Cheng, and J. X. Yu. Querying shortest
path distance with bounded errors in large graphs. In
SSDBM, pages 255–273, 2011.

[20] C. Scaffidi. Why are apis difficult to learn and use?
ACM Crossroads, 12(4):4, 2006.

[21] H. Wi, S. Oh, J. Mun, and M. Jung. A team formation
model based on knowledge and collaboration. Expert
Syst. Appl., 36(5):9121–9134, 2009.

[22] J. X. Yu, L. Qin, and L. Chang. Keyword search in
relational databases: A survey. IEEE Data Eng. Bull.,
33(1):67–78, 2010.

[23] Q. Zhang, W. Zheng, and M. R. Lyu. Flow-augmented
call graph: A new foundation for taming api
complexity. In FASE, pages 386–400, 2011.

[24] W. Zheng, Q. Zhang, and M. R. Lyu. Cross-library
api recommendation using web search engines. In
SIGSOFT FSE, pages 480–483, 2011.

[25] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo:
Mining and recommending api usage patterns. In
ECOOP, pages 318–343, 2009.

[26] A. Zzkarian and A. Kusiak. Forming teams: an
analytical approach. IIE Transactions, 31:85–97, 1999.

11




