
F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 775–787, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Hierarchical Parallel Algorithm  
for Modularity-Based Community Detection Using GPUs 

Chun Yew Cheong1, Huynh Phung Huynh1, David Lo2, and Rick Siow Mong Goh1 

1 Institute of High Performance Computing, A*STAR, Singapore 
{cheongcy,huynhph,gohsm}@ihpc.a-star.edu.sg 

2 Singapore Management University, Singapore 
davidlo@smu.edu.sg 

Abstract. This paper describes the design of a hierarchical parallel algorithm 
for accelerating community detection which involves partitioning a network in-
to communities of densely connected nodes. The algorithm is based on the 
Louvain method developed at the Université Catholique de Louvain, which uses 
modularity to measure community quality and has been successfully applied on 
many different types of networks. The proposed hierarchical parallel algorithm 
targets three levels of parallelism in the Louvain method and it has been imple-
mented on single-GPU and multi-GPU architectures. Benchmarking results on 
several large web-based networks and popular social networks show that on top 
of offering speedups of up to 5x, the single-GPU version is able to find better 
quality communities. On average, the multi-GPU version provides an additional 
2x speedup over the single-GPU version but with a 3% degradation in commu-
nity quality. 

Keywords: Community detection, parallel algorithm, GPU, social networks. 

1 Introduction 

Detecting community structure has attracted increasing attention [1] with the recent 
rise of social networks such as Facebook and Twitter. Community detection involves 
clustering highly connected nodes in a network into communities. For social net-
works, community detection can be applied to online marketing campaigns such as 
recommendation systems and viral marketing strategies. Besides social networks, 
community detection has many applications in other areas such as finding webpages 
that have the same topic in WWW [2], identifying communities for contact tracing in 
the event of infectious disease outbreak [3], and identifying a group of friends in a 
mobile network [4]. 

Nowadays, networks with hundreds of millions of nodes and links are common and 
their sizes continue to increase. Community detection on these huge networks will take 
a large amount of time. This will limit the quality of community information extracted 
due to significant computational complexity. In order to cope with larger networks as 
well as perform more complex analysis with faster response time, there is a need to 
accelerate the performance of the core kernel of the community detection algorithm. 



776 C.Y. Cheong et al. 

Graphics Processing Unit (GPU) acceleration has been the current trend in the high 
performance computing community. Each GPU can have up to 2000 physical 
processing cores running in parallel [5]. On top of these processing cores, tens of 
thousands of software threads are concurrently executed in interleaved fashion to 
maximize the performance. With its massively parallel computing power, GPU is 
potentially a suitable candidate for accelerating community detection algorithms for 
large networks. However, mapping a community detection algorithm to GPU faces 
some challenging problems. Firstly, processing a large graph requires a large amount 
of data communication among different functions of the algorithm but data communi-
cations between CPU and GPU or within GPU memory hierarchy are very expensive. 
Secondly, core computation of the community detection algorithm is quite diversified 
among nodes and communities but GPU execution uses a Single Instruction Multiple 
Threads (SIMT) model. In the SIMT model, all threads execute the same instructions 
at a time step. Finally, there is a need to efficiently utilize the heterogeneous compu-
ting power in GPU, multi-GPU, and multi-core systems. To address the above chal-
lenges, an efficient implementation of the community detection algorithm using GPU 
as accelerator is proposed in this paper. The proposed parallel community detection 
algorithm is based on the highly-cited Louvain method [4]. The key contributions of 
this paper are summarized: 

1. Proposing the first parallel community detection algorithm based on the Lou-
vain method. 

2. Accelerating the parallel Louvain version on single GPU platform. 
3. Further accelerating the parallel Louvain version on a multi-core with multi-

GPU architecture. 
4. Comprehensive experiments on different networks: social networks (Facebook 

[6], Twitter (extracted by Twitter API), Orkut [7], LiveJournal [7], Flickr [8]) 
and web-based networks (uk-2005 [9], webbase-2001 [10]). 

2 Background 

2.1 Modularity-Based Community Detection 

The community detection problem has been well-studied in the literature. Existing 
algorithms can be classified into a few major classes: divisive algorithms [11], mod-
ularity-based methods [12], dynamic methods [13], and spectral methods [14]. A 
more complete summary about community detection algorithms can be found in the 
survey paper [1]. In this paper, the focus is on modularity-based methods which use 
modularity as a measure of the quality of a community. Modularity, proposed by 
Newman [12], is the comparison between the actual density of links in a sub-graph 
(community) and the density one is expected to have in the sub-graph if the vertices 
of the sub-graph were attached arbitrarily. For a directed graph, the modularity Q is 
defined as follows: 

 ܳ ൌ ଵ௠∑ ൬ܣ௜௝ െ ௞೔೚ೠ೟௞ೕ೔೙௠ ൰௜,௝א௏ ,൫ܿ௜ߜ ௝ܿ൯ (1) 



Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs 777 

where V is the set of nodes in the network, ܣ௜௝  is the weight of the link between 
nodes i and j, ݇௜௢௨௧ and ௝݇௜௡ are the sum of the weights of the outgoing and incoming 
links of i and j, respectively, ܿ௜ is the community that node i is in, the ߜ function ߜሺݑ,  ሻ is 1 if u is equal to v and 0 otherwise, and m is the sum of the weights of allݒ
the links in the network. From (1), the modularity of a network ranges between 0 and 
1, with a higher value indicating a stronger community structure. 

Among modularity-based methods, the Louvain method [4] is well-known to be 
able to perform fast community detection. It has been successfully applied on many 
different types of networks [15-17]. Instead of computing modularity for the whole 
network as in (1), which is computationally expensive, the Louvain method intro-
duced the gain in modularity of moving a node i into a community C, which is com-
puted as follows: 

 ∆ܳ ൌ ଵ௠ ൬݇௜,஼ ൅ ݇஼,௜ െ ௞೔೚ೠ೟௞಴೔೙ା௞೔೔೙௞಴೚ೠ೟௠ ൰ (2) 

where ݇௜,஼  is the sum of the weights of the links from i to the nodes in C, ݇஼,௜  is the 
sum of the weights of the links from the nodes in C to i, and ݇஼௜௡ and ݇஼௢௨௧ are the 
sums of the weights of the incoming and outgoing links of all the nodes in C, respec-
tively. ݇௜௢௨௧, ݇௜௜௡, and m are as defined in (1). 

2.2 GPU Computing 

A GPU supports massive parallelism through a number of streaming multi-processors 
(SMs), each consisting of a number of physical processing cores running in SIMT 
mode. Parallel software threads are grouped into thread blocks which run on each of 
the available SMs. There are typically more software threads than there are physical 
processing cores. In order to efficiently schedule the large number of software threads 
on SMs, 32 threads are statically grouped into scheduling units, referred to as warps 
in the NVIDIA literature. Warps execute in lockstep, and if one or more threads in a 
warp wait for data to be ready, the entire warp has to wait as well. A hardware sche-
duler will then select another ready warp for execution. Recently, Soman et al. [18] 
proposed a community detection algorithm based on label propagation and mapped it 
to GPU platform using some standard GPU primitives such as Bitonic sort. 

3 The Louvain Method for Community Detection 

3.1 Description of the Louvain Method 

The Louvain method [4] is a greedy optimization method for community detection.  
It partitions a network into communities by maximizing the modularity of the parti-
tion. In essence, the Louvain method consists of two phases, modularity optimization 
and community aggregation. In the modularity optimization phase, each node of the 
network is initially assigned to its own community, i.e. the number of communities is 
equal to the number of nodes. Each node is then considered, in turn, if it would stay in 
its original community or move to one of its neighboring communities. This is done 



778 C.Y. Cheong et al. 

by removing the node from its original community, computing the gain in modularity 
if the node were inserted into each of its neighboring communities, and moving the 
node to the community with the maximum positive gain. Each cycle of this process 
through all the nodes in the network is referred to as an iteration. The modularity 
optimization phase terminates when no improvement in modularity can be achieved. 
At the end of the modularity optimization phase, the network is partitioned into a 
number of communities. Next, the community aggregation phase involves building a 
new, but smaller, network by aggregating nodes in the original network that belong to 
the same community such that the nodes in the new network are the communities at 
the end of the preceding modularity optimization phase. The weight of the link be-
tween two nodes in this new network is the total weight of the links between the 
nodes of the two corresponding communities in the original network. The links be-
tween the nodes of the same community become self-loops of the corresponding node 
in the new network. With the new network, the modularity optimization phase can 
then be applied again and the two phases iterate until no improvement in modularity 
can be achieved. Each application of the modularity optimization phase followed by 
the community aggregation phase is referred to as a pass.  

3.2 Profiling of the Louvain Method 

In order to identify the computational bottlenecks that should be targeted when paral-
lelizing the Louvain method to speed up its computation, a profiling of the method 
was conducted on a web-based network. The network is a sub-network of the .uk 
domain and it has 16 million nodes and 287 million links. The profiling results are 
shown in Fig. 1. In order to highlight the contribution of this paper, the profiling re-
sults, as well as all subsequent timing results, will only consider the computation time 
spent on community detection, while I/O times are omitted. 
 

 
(a) (b)

Fig. 1. Profiling results: (a) Percentage of computation time spent in each pass and (b) breakdown 
of computation time of each iteration of the modularity optimization phase of the first pass 

Figure 1(a) shows that 94.8% of the computation time is spent in the first pass of 
the Louvain method. This result is expected since all the nodes in the network are 

93.00 1.80 2.17 0.54 2.24

85% 90% 95% 100%

Pass 1 (Modularity optimization)
Pass 1 (Community aggregation)
Pass 2

Pass 3
Pass 4

Others

37.28

42.88

45.60

43.54

44.72

43.39

43.65

58.46

39.54

36.14

37.87

37.34

37.28

36.77

4.26

17.59

18.27

18.59

17.93

19.33

19.59

0% 50% 100%

1

2

3

4

5

6

7

It
er

at
io

n 
#

FNC FBM Others



Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs 779 

considered in the first pass, while the other passes process much smaller networks due 
to the community aggregation phase. Figure 1(a) also shows that 93% of the computa-
tion time is spent in the modularity optimization phase of the first pass. It can be seen 
in Fig. 1(b) that within each of the seven iterations of the modularity optimization 
phase of the first pass, approximately 80% of the computation time is spent on two 
main components of the modularity optimization phase. The first component, referred 
to as Find Neighboring Communities (FNC), involves computing the set of unique 
neighboring communities for each node i. For each neighboring community C, ݇௜,஼  
and ݇஼,௜, which are needed for the calculation of the gain in modularity in (2), are also 
computed at the same time. The other component, referred to as Find Best Move 
(FBM), computes the gain in modularity of moving each node into each of its neigh-
boring communities and then moving the node to the community that gives the maxi-
mum positive gain. 

From the profiling results, it is clear that the modularity optimization phase of the 
first pass of the Louvain method is the main computational bottleneck that should be 
targeted when parallelizing the algorithm. In order to speed up the modularity optimiza-
tion phase of the first pass, it is critical to accelerate the computation of FNC and FBM. 

4 Hierarchical Parallel Algorithm 

The hierarchical parallel algorithm for community detection proposed in this paper 
targets three levels of parallelism in the Louvain method to speed up its computation. 

At the highest level, the original network is partitioned into a number of sub-
networks and a set of removed links which consists of the links that join nodes resid-
ing in different sub-networks. The Louvain method can then be applied to solve the 
community detection problem in each of the sub-networks in parallel. After this, the 
resulting networks are combined into a single network using the removed links, and 
then the Louvain method is applied once more on this combined network to obtain the 
final community results. On top of decomposing the original network into sub-
networks and processing them in parallel, the effectiveness of this level of parallelism 
also stems from the fact that the combined network, obtained from the resulting net-
works after processing the sub-networks in parallel, is typically a few orders of mag-
nitude smaller than the original network due to the community aggregation phase of 
the Louvain method. 

 

Fig. 2. Illustration of the second and third levels of parallelism 

1st batch

Node ID

2nd level of parallelism

3rd level of parallelism

Neighboring 
communities 
of node 0

Gain in modularity values

2nd batch 3rd batch

FBMFBMFBM FBM FBM

0 1 2 3 4 5 6 7 8 9 10 11 12 13

FNC FNC FNC FNC FNC

3 6 8 10



780 C.Y. Cheong et al. 

The second level of parallelism involves visiting nodes in parallel during each ite-
ration of the modularity optimization phase. In the original Louvain method, nodes 
are visited sequentially in each iteration, where each node visit involves applying 
FNC to obtain the set of neighboring communities of the node, followed by FBM to 
move the node to the community that results in the maximum positive gain in mod-
ularity. As shown in Fig. 2, this level of parallelism suggests the division of nodes in 
the network into batches, with the nodes in each batch being processed in parallel. It 
is to be noted that the computations for visiting two nodes in a batch may not be inde-
pendent since one of the nodes may be in the neighboring community of the other 
node. While it is possible to find mutually independent batches, it would incur addi-
tional computational cost. In this paper, this inaccuracy is allowed but only atomic 
updates to a node’s community status are permitted. 

The third and lowest level of parallelism involves computing the gain in modulari-
ty of inserting a node into each of its neighboring communities in parallel (See Fig. 
2). This level of parallelism is intuitive and would be effective when a node has a 
large number of neighboring communities. 

5 Mapping to GPU 

This section describes how the three levels of parallelism proposed in the previous 
section for the Louvain method are implemented on the GPU.  

5.1 Mapping of Find Neighboring Communities to GPU 

As described in Section 3.2, Find Neighboring Communities (FNC) performs two 
functions. It not only finds the set of neighboring communities for each node i but for 
each neighboring community C of i, it also computes ݇௜,஼  and  ݇஼,௜  which are 
needed for the calculation of the gain in modularity as given in (2). 

An example to illustrate the mapping of FNC to GPU is shown in Fig. 3. In the 
figure, the current community status of the network is shown. It can also be seen in 
the figure that the network is represented by an array of structures. Each structure 
consists of four elements – the node ID, the neighboring node ID, the outgoing link 
weight, and the incoming link weight. For example, the first column in the data struc-
ture indicates that node 0 has an outgoing link of weight 1 to its neighboring node 1. 
Only five nodes, i.e. node 0 to node 4, are considered in the data structure in the fig-
ure as it is assumed that nodes are processed in batches of five in the second level of 
parallelism as shown in Fig. 2. The data for the five nodes are combined into a single 
array and copied to the host memory of the GPU to reduce communication overhead 
for each memory copy instruction, which can add up to a significant amount due to 
the sheer size of the network.  

GPU kernel 1 performs two functions. Based on the current community status of 
the network, the assigned GPU thread converts each neighboring node ID in the data 
structure to its corresponding community ID. The thread also prepares the key for the 
GPU radix sort in the next step. The GPU radix sort arranges the entire array first in 
 



Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs 781 

 

Fig. 3. Example to illustrate mapping of Find Neighboring Communities to GPU 

order of increasing node ID and then in order of increasing neighboring community 
ID for array elements with the same node ID. The radix sort in the Thrust library is 
used in this paper. With the sorted array, each node is being assigned a GPU thread in 
GPU kernel 2. The thread goes down the array elements belonging to the node and 
sums up the weights for adjacent elements with the same neighboring community ID 
to give the final output of FNC. As can be seen in Fig. 3, node 0 has outgoing links to 
communities 0, 1, and 2 and the weights of the links are as shown. 

5.2 Mapping of Find Best Move to GPU 

The second and third levels of parallelism are considered when mapping Find Best 
Move (FBM) to GPU. As described in Section 4, the second level of parallelism in-
volves dividing the nodes in the network into batches, with the nodes in each batch 
being processed in parallel. In the GPU implementation, the GPU kernel for FBM 
assigns a number of threads to each node in a batch. The threads handle the third level 
of parallelism by computing the gain in modularity of inserting the node into each of 
its neighboring communities in batches. The first thread of the assigned threads is also 
responsible for all computations in the second level of parallelism, such as determin-
ing which neighboring community offers the maximum positive gain in modularity 
and moving the node into the community.  

 

Neighboring node ID
Outgoing link weight
Incoming link weight

Node ID 0 0 0 0 1 1 2 2 2 3 3 3 3 3 3 4 4 4
1 2 3 4 0 3 0 3 5 0 1 2 4 6 11 0 3 5
1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0

0 0 0 0 1 1 2 2 2 3 3 3 3 3 3 4 4 4
1 0 1 2 0 1 0 1 2 0 1 0 2 1 3 0 1 2
1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0

0 0 0 0 1 1 2 2 2 3 3 3 3 3 3 4 4 4
0 1 1 2 0 1 0 1 2 0 0 1 1 2 3 0 1 2
1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1
0 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 0

0 0 0 1 1 2 2 2 3 3 3 3 4 4 4
0 1 2 0 1 0 1 2 0 1 2 3 0 1 2
1 2 1 0 1 0 0 0 1 1 0 1 0 1 1
0 0 0 1 0 1 1 1 1 1 1 0 1 0 0

GPU kernel 1

GPU radix sort

GPU kernel 2

13

0

1

2

3

4
5

6

7

8
9

10

11

12

C2C0

C1

C3

Data structure

Community Nodes

0 0, 2

1 1, 3, 6

2 4, 5

3 7, 8, 9, 10, 11, 12,13

Neighboring node ID
Outgoing link weight
Incoming link weight

Node ID

Neighboring node ID
Outgoing link weight
Incoming link weight

Node ID

Neighboring node ID
Outgoing link weight
Incoming link weight

Node ID



782 C.Y. Cheong et al. 

5.3 Multi-core with Multi-GPU Implementation 

The highest level of parallelism is implemented by using a multi-core with multi-GPU 
architecture as illustrated in Fig. 4 for a four-partition example. A simple partitioning 
scheme, which divides the nodes in the network evenly between the sub-networks 
(SNs) based on their node IDs, is used. The links that join nodes residing in different 
sub-networks are set aside. The Louvain method is then applied to solve the commu-
nity detection problem in each sub-network in parallel. The Louvain method incorpo-
rates the second and third levels of parallelism as described in the previous two  
sections. It is to be highlighted that since the profiling results show that most of the 
computation time is spent in the first pass of the Louvain method, only the FNC and 
FBM in the first pass is offloaded to the GPU. The parts of the Louvain method that 
have been offloaded to the GPU are implemented using a multi-GPU architecture, 
while the serial parts of the Louvain method are implemented as a multi-core architec-
ture. The results obtained for the individual sub-networks are then combined with the 
removed links into a single network. The serial version of the Louvain method is ap-
plied once more on this combined network to obtain the final community results. 

 

Fig. 4. Illustration of multi-core with multi-GPU implementation 

6 Evaluation 

The performance of the hierarchical parallel algorithm for community detection pro-
posed in this paper is evaluated using the networks in Table 1. The considered net-
works include large web-based networks and popular social networks. The results 
reported in this section were obtained on a server with Intel Xeon E5405 2 GHz pro-
cessor and four NVIDIA Fermi C2070 GPUs. All executables have been obtained 
using the ‘-O3’ compiler optimization option. Due to memory limitations of the serv-
er, the original Louvain method was not able to process the larger web-based net-
works, namely uk-2005 and webbase-2001, as a whole. As such, a sub-network of the 
original network was generated using random sampling. 

Original network

Partitioning scheme

Multi-core
Multi-GPU
Multi-core

SN0

Combine results

Result0 Result1 Result2 Result3

Final results

Removed
linksSN1 SN2 SN3



Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs 783 

Table 1. Details of the networks used in the evaluation 

Network Description 
# Vertices

(M) 
# Links 

(M) 
Degree Reference 

uk-2005 Web network (.uk domain) 15.99 287.20 17.96 [9] 
webbase-2001 Web network 19.97 138.07 6.91 [10] 

twitter Twitter user follow links 3.26 13.13 4.03 Twitter API 
flickr Flickr follow links 2.30 33.14 14.39 [8] 

livejournal LiveJournal social network 5.20 76.94 14.79 [7] 
orkut Orkut social network 3.07 223.53 72.75 [7] 

facebook Facebook social network 2.94 41.92 14.26 [6] 

6.1 GPU Thread Configuration 

The performance of the GPU is generally susceptible to its thread configuration. This 
section seeks to find the optimal thread configuration for the single-GPU implementa-
tion of the hierarchical parallel algorithm. This means that only the second and third 
levels of parallelism are considered. The computation times for the different thread 
configurations obtained on the uk-2005 network are shown in Table 2.  

Table 2. Computation times (in seconds) for different GPU thread configurations on uk-2005 

# Blocks 
per SM 

2 4 6 8 

# Threads 
per block 

# Threads per node # Threads per node # Threads per node # Threads per node 
16 32 16 32 16 32 16 32 

256 181.59 243.99 134.71 182.32 122.22 146.72 118.4 132.66 
512 133.8 183.02 118.02 134.07 110.89 122.72 107.17 119.02 
768 123.6 146.9 112.02 124.37 108.06 118.41 106.94 113.62 

Table 3. Computation times (in seconds) for uk-2005 using different GPU thread 
configurations but fixing the number of nodes that is processed in parallel per SM 

# Nodes processed 
in parallel per SM 

# Threads per node Configuration 

4 8 16 32 
# Blocks 
per SM 

# Nodes 
per block 

32 188.82 192.74 179.81 182.32 4 8 
32 188.54 186.14 181.59 183.02 2 16 
48 150.76 146.96 143.84 146.72 6 8 
48 151.34 148.28 146.43 146.9 2 24 
64 137.32 134.69 131.86 132.66 8 8 
64 137.57 135.47 134.71 134.07 4 16 
96 125.76 123.89 122.22 122.72 6 16 
96 124.42 124.03 121.73 124.37 4 24 

 



784 C.Y. Cheong et al. 

In Table 2, by fixing the number of blocks per SM and the number of threads in 
each block and then assigning different number of threads to each node, the degrees 
of parallelism in the second and third levels can be controlled. Assigning a larger 
number of threads to each node would increase the degree of parallelism in the third 
level since there are more threads to compute the gain in modularity of inserting the 
node into its neighboring communities. However, this would lead to a corresponding 
decrease in the degree of parallelism in the second level with less nodes being able to 
be processed in parallel. It is clear from Table 2 that assigning 16 threads to each node 
has a performance advantage over assigning 32 threads to each node. This result is 
likely due to the fact that the uk-2005 network has a degree of 17.96 and some of the 
32 threads assigned to each node would be idling.  

To study how the degrees of parallelism in the second and third levels affect com-
putational performance, another set of experiments, whose results are tabulated in 
Table 3, is performed. In these experiments, the number of nodes that are processed in 
parallel per SM, which controls the degree of parallelism in the second level, is fixed 
at 32, 48, 64, and 96. The number of threads assigned to each node, which determines 
the degree of parallelism in the third level, is set at 4, 8, 16, and 32. It can be seen in 
Table 3 that by fixing the number of nodes that are processed in parallel per SM, the 
number of threads assigned to each node has a small, but not negligible, effect on 
computation times. In all settings, assigning 16 threads to each node resulted in the 
lowest computation times. The results in Table 3 also show that the GPU configura-
tion, i.e. the number of blocks per SM and the number of nodes per block, has very 
little effect on computational performance as well. The main parameter that affects 
performance is the number of nodes that are processed in parallel per SM. The larger 
the number of nodes processed in parallel per SM, the better the performance. 

The best configuration is highlighted in bold in Table 2 and is used to obtain the 
rest of the results in this paper. 

6.2 Comparison of Computation Times 

This section assesses the performance, in terms of computation time, of the paralle-
lized Louvain method proposed in this paper. The computation times for three  
versions of the Louvain method are compared in Table 4. In Table 4, Louvain is the 
original Louvain method [4], SingleGPU utilizes the second and third levels of paral-
lelism, and MultiGPU considers the highest level of parallelism as well by splitting 
the original network into four sub-networks. The amount of computational speedups 
SingleGPU has over Louvain and MultiGPU has over both Louvain and SingleGPU 
are also shown in the table. 

The results in Table 4 show that SingleGPU offers varying degrees (3x on average) of 
speedup over Louvain. The highest speedups are achieved on the three largest graphs, i.e. 
uk-2005, webbase-2001, and orkut. On average, MultiGPU offers another 2x speedup 
over SingleGPU. MultiGPU did not perform as well on facebook, only achieving a spee-
dup of 1.27x over SingleGPU. A detailed examination revealed that MultiGPU suffered a 
load balancing problem. For facebook, although the nodes in the network were divided 
evenly between the sub-networks, one of the sub-networks had a disproportionate num-
ber of links, resulting in an uneven distribution of the computational load. 



Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs 785 

Table 4. Computation times (in seconds) for three versions of the Louvain method 

Network Louvain 
SingleGPU MultiGPU 

Time 
Speedup over 

Louvain 
Time 

Speedup over 
Louvain 

Speedup over 
SingleGPU 

uk-2005 497.12 109.94 4.52 56.15 8.85 1.96 
webbase-2001 419.61 105.82 3.97 52.46 8.00 2.02 

twitter 130.54 73.03 1.79 20.97 6.23 3.48 
flickr 113.67 66.04 1.72 27.36 4.15 2.41 

livejournal 273.1 145.72 1.87 83.84 3.26 1.74 
orkut 1683.3 338.13 4.98 100.45 16.76 3.37 

facebook 165.76 51.55 3.22 40.55 4.09 1.27 

6.3 Comparison of Modularity Values 

While the hierarchical parallel algorithm proposed in this paper offers considerable 
speedups over the original Louvain method, two sources of inaccuracy have been 
introduced in the parallel versions. In SingleGPU, the second level of parallelism 
assumes that the computations for visiting any two nodes in a batch are independent, 
which may not be the case since one of the nodes may be in the neighboring commu-
nity of the other node. In addition, inaccuracy is introduced when MultiGPU parti-
tions a network into sub-networks, solves the community detection problem in each 
sub-network independently, and then combines the results. To study the extent to 
which the inaccuracies affect community detection results, a comparison of the mod-
ularity values obtained by the three versions of the Louvain method is provided in 
Table 5. The best result for each network is highlighted in bold. The percentage dif-
ferences in results between the two proposed versions and Louvain are also given. 

Table 5. Modularity values for three versions of the Louvain method 

Network Louvain 
SingleGPU MultiGPU 

Q % difference Q % difference 
uk-2005 0.998 0.998 0 0.998 0 

webbase-2001 0.998 0.998 0 0.998 0 
twitter 0.606 0.598 -1.32 0.583 -3.8 
flickr 0.655 0.665 1.53 0.641 -2.14 

livejournal 0.734 0.756 3 0.701 -4.50 
orkut 0.661 0.682 3.18 0.600 -9.23 

facebook 0.716 0.730 1.96 0.709 -0.98 

 
From Table 5, it can be observed that with the exception of the twitter network, the 

modularity values obtained by SingleGPU are equal, if not better, than those obtained 
by the original Louvain method. It is clear from these empirical results that the inac-
curacy introduced by assuming that the computations for visiting any two nodes in a 
batch are independent does not have a negative impact on the modularity values. 



786 C.Y. Cheong et al. 

However, from the modularity values of the solutions obtained by MultiGPU, it can 
be observed that the inaccuracy introduced by solving the sub-networks rather than 
solving the original network as a whole has caused an average of 3% degradation in 
the modularity values. Given the speedups it offers, MultiGPU would still be useful in 
providing a quick and approximate community detection solution. 

7 Conclusions 

This paper represents the first attempt to accelerate the Louvain method, or modulari-
ty-based methods in general, on the GPU platform. Benchmarking results on several 
large web-based networks and popular social networks show that on top of offering 
speedups, the single-GPU version of the proposed hierarchical parallel algorithm is 
able to find better quality communities. The multi-GPU version provides additional 
speedups over the single-GPU version but with a slight degradation in community 
quality. 

A future work would be to design a more effective method to partition the network 
into sub-networks at the highest level of parallelism. The method should address two 
problems with the current design. Firstly, the computational load for each sub-
network needs to be more balanced. Secondly, the degradation in community quality 
needs to be minimized. The former could be tackled by partitioning the network such 
that the sub-networks have approximately equal number of links. The latter is more 
challenging as it requires the network partitioning problem to be treated as a commu-
nity detection problem so that nodes that would eventually be in the same community 
are placed in the same sub-network. A bigger challenge lies in integrating the two 
solutions as their objectives are potentially conflicting in nature. 

References 

1. Fortunato, S.: Community Detection in Graphs. Physics Reports (2009) 
2. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-Organization and Identifica-

tion of Web Communities. IEEE Computer 35(3), 66–71 (2002) 
3. Green, D.M., Werkman, M., Munro, L.A., Kao, R.R., Kiss, I.Z., Danon, L.: Tools to Study 

Trends in Community Structure: Application to Fish and Livestock Trading Networks. 
Preventive Veterinary Medicine 99, 225–228 (2011) 

4. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast Unfolding of Communi-
ties in Large Networks. Journal of Statistical Mechanics: Theory and Experiment, P10008 
(2008) 

5. NVIDIA Kepler GK110 Architecture Whitepaper, http://www.nvidia.com/ 
content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf 

6. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User Interactions in Social 
Networks and Their Implications. In: 2009 EuroSys Conference (2009) 

7. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement 
and Analysis of Online Social Networks. In: 5th ACM/Usenix Internet Measurement Con-
ference, IMC (2007) 



Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs 787 

8. Cha, M., Mislove, A., Gummadi, K.P.: A Measurement-Driven Analysis of Information 
Propagation in the Flickr Social Network. In: 18th International World Wide Web Confe-
rence (2009) 

9. Laboratory for Web Algorithmics, http://law.dsi.unimi.it/ 
10. Stanford WebBase Project, http://dbpubs.stanford.edu:8091/~testbed/ 

doc2/WebBase/ 
11. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. 

National Academy of Sciences 99(12), 7821–7826 (2002) 
12. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. 

Physical Review E 69(2) (2004) 
13. Zhang, Y., Wang, J., Wang, Y., Zhou, L.: Parallel Community Detection on Large Net-

works with Propinquity Dynamics. In: 15th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, pp. 997–1006 (2009) 

14. Eriksen, K.A., Simonsen, I., Maslov, S., Sneppen, K.: Modularity and Extreme Edges of 
the Internet. Physical Review Letters 90(14) (2003) 

15. Pujol, J.M., Erramilli, V., Rodriguez, P.: Divide and Conquer: Partitioning Online Social 
Networks (2009), http://arxiv.org/abs/0905.4918v1 

16. Haynes, J., Perisic, I.: Mapping Search Relevance to Social Networks. In: 3rd Workshop 
on Social Network Mining and Analysis (2010) 

17. Hui, P., Sastry, N.: Real World Routing Using Virtual World Information. In: International 
Conference on Computational Science and Engineering, vol. 4, pp. 1103–1108 (2009) 

18. Soman, J., Narang, A.: Fast Community Detection Algorithm with GPUs and Multicore 
Architectures. In: IEEE International Parallel & Distributed Processing Symposium, pp. 
568–579 (2011) 


	Hierarchical Parallel Algorithmfor Modularity-Based Community Detection Using G
PUs
	1 Introduction
	2 Background
	2.1 Modularity-Based Community Detection
	2.2 GPU Computing

	3 The Louvain Method for Community Detection
	3.1 Description of the Louvain Method
	3.2 Profiling of the Louvain Method

	4 Hierarchical Parallel Algorithm
	5 Mapping to GPU
	5.1 Mapping of Find Neighboring Communities to GPU
	5.2 Mapping of Find Best Move to GPU
	5.3 Multi-core with Multi-GPU Implementation

	6 Evaluation
	6.1 GPU Thread Configuration
	6.2 Comparison of Computation Times
	6.3 Comparison of Modularity Values

	7 Conclusions
	References




