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Abstract Debugging is a crucial yet expensive activity to improve the reliability of software
systems. To reduce debugging cost, various fault localization tools have been proposed. A
spectrum-based fault localization tool often outputs an ordered list of program elements
sorted based on their likelihood to be the root cause of a set of failures (i.e., their suspi-
ciousness scores). Despite the many studies on fault localization, unfortunately, however,
for many bugs, the root causes are often low in the ordered list. This potentially causes
developers to distrust fault localization tools. Recently, Parnin and Orso highlight in their
user study that many debuggers do not find fault localization useful if they do not find the
root cause early in the list. To alleviate the above issue, we build an oracle that could pre-
dict whether the output of a fault localization tool can be trusted or not. If the output is not
likely to be trusted, developers do not need to spend time going through the list of most
suspicious program elements one by one. Rather, other conventional means of debugging
could be performed. To construct the oracle, we extract the values of a number of features
that are potentially related to the effectiveness of fault localization. Building upon advances
in machine learning, we process these feature values to learn a discriminative model that is
able to predict the effectiveness of a fault localization tool output. In this work, we consider
an output of a fault localization tool to be effective if the root cause appears in the top 10
most suspicious program elements. We have evaluated our proposed oracle on 200 faulty
versions of Space, NanoXML, XML-Security, and the 7 programs in Siemens test suite.
Our experiments demonstrate that we could predict the effectiveness of 9 fault localization
tools with a precision, recall, and F-measure (harmonic mean of precision and recall) of up
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to 74.38 %, 90.00 % and 81.45 %, respectively. The numbers indicate that many ineffec-
tive fault localization instances are identified correctly, while only few effective ones are
identified wrongly.

Keywords Fault localization · Effectiveness prediction · Classification

1 Introduction

Despite the advancement in software tools and processes, bugs are prevalent in many sys-
tems. In 2002, it was reported that software bugs cost US economy more than 50 billion
dollars annually (Tassey 2002). Software testing and debugging cost itself is estimated to
account for 30-90 % of the total labor spent on a project (Beizer 1990). Thus there is a need
to develop automated means to help reduce software debugging cost. One important chal-
lenge in debugging is to localize the root cause of program failures. When a program fails,
it is often hard to locate the faulty program elements that are responsible for the failure.
The root cause could be located far from the location where the failure is exhibited, e.g., the
location where a program crashes or produces a wrong output.

In order to address the high cost of debugging in general, and help in localizing root
causes of failures in particular, many spectrum-based fault localization tools have been pro-
posed in the literature, e.g., Jones and Harrold (2005), Abreu et al. (2007), and Lucia et al.
(2010). These tools typically take in a set of normal execution traces and another set of
faulty execution traces. Based on these set of program execution traces, these tools assign
suspiciousness scores to various program elements. Next, program elements could be sorted
based on their suspiciousness scores in descending order. The resultant list of suspicious
program elements can then be presented to a human debugger to aid him/her in finding the
root cause of a set of failures.

An effective fault localization tool would return a root cause at the top of a list of sus-
picious program elements. Although past studies have shown that fault localization tools
could be effective for a number of cases, unfortunately, for many other cases, fault local-
ization tools are not effective enough. Root causes are often listed low in the list of most
suspicious program elements. Parnin and Orso pointed out in their user study that many
developers do not find fault localization useful if they do not find the root cause early in the
list (Parnin and Orso 2011). This unreliability of fault localization tools potentially cause
many developers to distrust fault localization tools.

In this work, we plan to increase the usability of fault localization tools by building an
oracle to predict if a particular output of a fault localization tool is likely to be effective
or not. We define an output of a fault localization tool to be effective if the faulty pro-
gram element or root cause is listed among the top-10 most suspicious program elements.
With our tool, the debuggers could be better informed whether he can trust or distrust the
output of a fault localization tool run on a set of program execution traces. The follow-
ing scenarios illustrate the benefits of predicting the effectiveness of a fault localization
output:

Scenario 1 - Without Oracle: Tien-Duy had 10 bugs to fix. He ran a fault localization tool
for the 10 bugs. He followed the tool recommendations, however he only found 2 of the 10
recommendations to be effective. He wasted much time following 8 bad recommendations
given by the tool.
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Scenario 2 - With Oracle: Tien-Duy had 10 bugs to fix. He ran a fault localization tool for
the 10 bugs and he had an oracle that can predict which fault localization outputs are likely
to be effective. The oracle predicted that 3 outputs are likely to be effective. For 2 out of
the 3 outputs, the fault localization outputs are indeed effective and saved Tien-Duy much
time. Tien-Duy only wasted time following 1 bad recommendation.

To build the oracle, we extract values of important features from the execution traces and
outputs of fault localization tools. These feature values extracted from a training data are
then used to build a discriminative model leveraging a machine learning solution. The resul-
tant discriminative model serves as an oracle and could be used to predict the effectiveness
of a fault localization tool on other inputs. If fault localization instances are predicted to be
effective, developers can continue to use these instances to localize bugs. Otherwise, devel-
opers could consider switching to other fault localization tools or traditional debugging.
Thus, time and effort to follow a bad output of a fault localization tool can be saved.

We have experimented our approach on 200 faulty versions from NanoXML, XML-
Security, Space, and the 7 programs in the Siemens test suite. We investigate a well known
spectrum-based fault localization tool namely Tarantula (Jones and Harrold 2005) which
was also studied by Parnin and Orso (2011). Our experiments show that we can predict
whether Tarantula’s outputs are effective or not by a precision, recall, and F-measure (i.e.,
harmonic mean of precision and recall) of 54.36 %, 95.29 %, and 69.23 %. We also inves-
tigate if our tool is effective to help eight other fault localization tools, i.e., Ochiai (Abreu
et al. 2007), Information Gain (Lucia et al. 2010), ER1a (Xie et al. 2013), ER1b (Xie
et al. 2013), ER5a (Xie et al. 2013), ER5b (Xie et al. 2013), ER5c (Xie et al. 2013), and
DStar (Wong et al. 2014), with promising results. We could achieve a precision, recall, and
F-measure of up to 74.38 %, 90.00 % and 81.45 %, respectively (for ER1a and ER1b).
Furthermore, we investigate whether a model trained based on one set of programs can be
used on other programs. We perform cross-program validation in which we use data from a
set of programs to learn a model and apply the model on a new program. Our experiments
show that the F-measures of our approach in predicting the effectiveness of DStar, Ochiai,
Information Gain, ER1a , and ER1b in the cross-program setting are all above 70 %, which
are reasonably high.

In our experiments, the time it takes to train a model is always less than one minute.
Thus, when a new spectrum-based fault localization technique is analyzed, our approach
only takes less than a minute to train a prediction model. The model can be used many
times and thus effort invested to train a model is very minimal. Also, developers do not
need to wait for a long time when using our approach as our trained models can compute
the effectiveness of a fault localization instance in a fraction of a second.

In this work, our contributions are as follows:

1. We define a new research problem namely predicting the effectiveness of a fault local-
ization tool given a set of execution traces. Solving this problem would help developers
to better trust the output of a fault localization tool.

2. We present a machine learning framework to tackle the research problem. We propose
a novel set of features that are relevant for predicting the effectiveness of a fault local-
ization tool. We build upon and extend a state-of-the-art machine learning solution for
the prediction problem by addressing the issue of imbalanced data. The issue of imbal-
anced data occurs since many outputs of Tarantula and several other fault localization
tools are ineffective.

3. We have evaluated our approach on 200 faulty programs from NanoXML, XML-
Security, Space, and the 7 programs from the Siemens test suite. We show that, for
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Tarantula, we could achieve a precision, recall, and F-measure of 54.36 %, 95.29 %,
and 69.23 %, respectively. This shows that many ineffective and almost all effective
outputs of Tarantula are detected correctly. For the other 7 fault localization tools,
we could achieve a precision, recall, and F-measure of up to 74.38 %, 90.00 % and
81.45 %, respectively (for ER1a and ER1b).

The structure of this paper is as follows. In Section 2, we describe preliminary materi-
als on spectrum-based fault localization and an intuition how effectiveness prediction could
be solved. In Section 3, we present a birds-eye-view of our proposed framework. Section 4
outlines what features are extracted from the execution traces and output of the fault local-
ization tool. Section 5 elaborates our approach to learn a discriminative model using a
classification algorithm and how we address the problem of imbalanced data. We present
our experiment settings, datasets, and results which answer a number of research questions
in Section 6. We discuss related studies in Section 7. We finally conclude and mention future
work in Section 8.

2 Preliminaries & Problem Definition

In this section, we first introduce fault localization. We then define the problem of
effectiveness prediction and give some intuitions on how this could be solved.

2.1 Fault Localization

Fault localization takes as input a faulty program, along with a set of test cases, and a test
oracle. The faulty program is instrumented such that when a test case is run over it, a pro-
gram spectra is generated. A program spectra records certain characteristics of a particular
program run and thus it becomes a behavioral signature of the run (Reps et al. 1997). This
program spectra could constitute a set of counters which record how many times different
program elements (e.g., statement, basic block, etc.) are executed in a particular program
run (Harrold et al. 2000). Alternatively, the counter could record a boolean flag that indi-
cates whether a program element is executed or not. The test oracle is used to decide if a
particular program run is correct or faulty. Faulty runs or executions are also referred to as
failures. Fault localization task is to analyze program spectra of correct and faulty runs with
the goal of finding program elements that are the root causes of the failures (i.e., the faults
or errors).

Various spectra have been proposed in past studies (Harrold et al. 2000). In this study,
we use block-hit spectra; we instrument every block of a program and collect information
on which blocks are executed in a run. Block-hit spectra is suitable as all statements in a
basic block have the same execution profile. It has also been shown in the literature that the
cost of collecting block-hit spectra is relatively low and the resultant spectra could be used
for fault localization (Abreu et al. 2007; Harrold et al. 2000).

Figure 1 shows an example code with several program spectra. The identifiers of the
basic blocks are shown in the first column. The statements located in the basic blocks are
shown in the second column. There is a bug in the example code at basic block three; the
condition of the if statement should be “count >= 1” instead of “count > 1”. Columns
3 to 6 show the program spectra that are produced when four test cases are run. Three of
the test cases do not expose the bug, i.e., running them result in correct executions. The
fourth test case exposes the bug, i.e., running it result in a faulty execution. A cell marked
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Fig. 1 Four Block-Hit Program Spectra. T1, T2, T3, and T4 are the four test cases used in the example. The
bullet indicates its corresponding program element is executed by a particular test case (i.e., T1, T2, T3, and
T4). “P” and “F” stand for passed and failed execution of a test case, respectively

by a • indicates that a particular basic block is executed when a particular test case is run.
An empty cell indicates that a particular basic block is not executed when a particular test
case is run.

To identify the faulty program elements (e.g., basic block 3 in Fig. 1), we compute the
suspiciousness scores of each of the program elements. There are various ways to define sus-
piciousness. In this work, we primarily consider a well-known suspiciousness score defined
by Jones and Harrold, named Tarantula (Jones and Harrold 2005). Considering several
notations in Table 1, Tarantula’s suspiciousness score can be defined as follows:

Tarantula (e) =
ne

f

nf

ne
s

ns

+ ne
f

nf

Table 1 Spectra notations used in this work

Symbol Definition

n Total number of test cases in the test suite

ne Number of test cases that executes a program element e

ns Number of test cases that pass

nf Number of test cases that fail

ne
s Number of test cases that execute e and pass

ne
f Number of test cases that execute e and fail
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Tarantula considers an element more suspicious if it occurs more frequently in failed
executions than in correct executions. Considering the example shown in Fig. 1, the suspi-
ciousness score of block 1 is: 1

(1+1)
= 0.5. The suspiciousness scores of block 2, 4, and

5 are zeros since the numerator of Tarantula (i.e.,
ne

f

nf
) is zero. The suspiciousness score of

block 3 is: 1
( 2

3 +1)
= 0.6. Thus using Tarantula, the most suspicious block is block 3, fol-

lowed by block 1, followed by blocks 2, 4, and 5. We could sort the basic blocks based on
their suspiciousness scores and the debugger could check the blocks one-by-one from the
most to the least suspicious block. Following Tarantula’s recommendation, the fault could
be found after one basic block inspection.

Aside from Tarantula, there are several other fault localization studies that propose
various suspiciousness score formulas including: Ochiai (Abreu et al. 2007), Information
Gain (Lucia et al. 2010), ER1a (Xie et al. 2013), ER1b (Xie et al. 2013), ER5a (Xie et al.
2013), ER5b (Xie et al. 2013), ER5c (Xie et al. 2013), and DStar (Wong et al. 2014). We
highlight them in the following paragraphs.

Ochiai. Abreu et al. propose Ochiai which has been shown to outperform Tarantula (Abreu
et al. 2007). The formula for Ochiai is shown below:

Ochiai (e) = ne
f√

nf (ne
f + ne

s)
= ne

f√
nf × ne

Information Gain. Lucia et al. perform a study of 20 association measures proposed in the
data mining and machine learning community and highlight that information gain (Geng
and Hamilton 2006) is the most effective measure for identifying suspicious program ele-
ments (Lucia et al. 2010). An association measure computes the strength of association
between two variables: A and B. Information gain of A and B can be computed by the
following formula:

IG(A,B) = (−P(B) log P(B) − P(B) log P(B)) −
(P (A) × (−P(B|A) log P(B|A)) − P(B|A) log P(B|A) −

P(A) × (−P(B|A) log P(B|A)) − P(B|A) log P(B|A)))

In the above formula, P(A) and P(B) are the probabilities of A and B happening,
respectively. P(A) is the probability of A not happening. P(A, B) is the probability of A

and B happening together. P(A|B) is the probability of A happening given that B happens.
P(B|A) is the conditional probability of B happening given that A happens.

Based on the above formula, let IG(e, f ) denote an information gain score between the
executions of a program element e (e) and program failures (f ). The suspiciousness score
of a program element e is then defined as follows. If e is a control block (e.g., while or if
statements), and direct is the set of direct children of e in the control dependence graph of
the containing program, the information-gain-based suspiciousness score of e (denoted as
InfoGain(e)) is the maximum of the following:

1) IG(e, f ),
2) maxc∈direct · IG(c, f ).

Otherwise, the suspiciousness score of e is IG(e, f ).
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Theoretically best formulas. Xie et al. recently theoretically analyze 30 suspiciousness
score formulas and prove that two families consisting of 5 formulas outperform the rest (Xie
et al. 2013). The 5 formulas are named ER1a , ER1b, ER5a , ER5b, and ER5c. These
formulas are shown below:

ER1a(e) =
{ −1, if ne

f < nf

ns − ne
s , if ne

f = nf

ER1b(e) = ne
f − ne

s

ne
s + (ns − ne

s) + 1

ER5a(e) = ne
f

ER5b(e) = ne
f

ne
f + (nf − ne

f ) + ne
s + (ns − ne

s)

ER5c(e) =
{

0, if ne
f < nf

1, if ne
f = nf

Note that the above formulas have been shown to be theoretically the best under certain
conditions (e.g., 100 % code coverage). The conditions are often not met in practice. Le
et al. have shown that the performance of these formulas although are good, but are not the
best on real datasets (Le et al. 2013).

DStar. Wong et al. propose a spectrum-based fault localization technique named
DStar (Wong et al. 2014). They modify the formula of Ochiai (which is also known as
Kulczynski coefficient) to obtain the following formula of DStar:

DStar(e) = (ne
f )∗

(nf − ne
f ) + ne

s

In the above formula, * is an exponent (or power) of ne
f whose value is greater than or equal

to 1. Wong et al. show that DStar outperforms many spectrum-based fault localization tech-
niques including Tarantula and Ochiai. They set * equals to 2, and find that the effectiveness
of DStar increases until it levels off as the value of * is increased. In our study, we set *
equals to 3.

2.2 Effectiveness Prediction

The goal of our work is to predict if a particular fault localization tool is effective for a
particular set of execution traces. We refer to the process where a fault localization tool is
used to process a set of execution traces and output a list of suspicious program elements as
a fault localization instance. In our approach, we define a fault localization instance to be
effective if the root cause is located among the top-10 most suspicious program elements.
Ties are randomly broken; this means that for example, if the top-20 program elements have
the same suspiciousness scores, we randomly select 10 out of the 20 to be the top-10. Also,
in case the root cause spans more than one program element (i.e., basic block) as long as
one of the program elements is in the top-10, we consider the fault localization instance
to be an effective one. Recently, Parnin and Orso highlighted in their paper (Parnin and
Orso 2011) that “. . . programmers will stop inspecting statements, and transition to tradi-
tional debugging, if they do not get promising results within the first few statements they
inspect . . .”. That means the percentage of program elements inspected is not a suitable
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evaluation metric to reflect how developers will use a fault localization tool in practice.
Therefore, we use absolute rank rather than percentage rank to assess the effectiveness of
fault localization instances.

Various information could be leveraged to predict if a fault localization tool is effective
given a set of program execution traces. We could investigate the execution traces. If there
are very few failing execution traces, then it is likely to be harder for a spectrum based fault
localization tool to differentiate faulty from correct program elements. In the extreme case,
when there are no test cases that expose the fault (no failing execution traces), then the
output of a fault localization tool cannot be effective. We could also investigate the output
of the fault localization tool. In the special case where all program elements are given the
same suspiciousness score, there is a very low likelihood that the fault localization tool will
be effective for those execution traces.

3 Overall Framework

The goal of our framework is to build an oracle that is able to predict if a fault localization
instance is effective or not. To realize this, our framework, illustrated in Fig. 2, works on
two phases: training and deployment. The training phase would output a model that is able

Fig. 2 Proposed framework. There are two main phases (stages) in our framework: training phase and
deployment phase. Each phase consists of a number of processes. The main processes include: (1) feature
extraction, (2) model learning, and (3) effectiveness prediction
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to differentiate effective and ineffective fault localization instances. The deployment phase
would apply this model to a number of unknown fault localization instances and output if
the cases are likely to be effective or not. Let us describe these two phases in more detail.

In the training phase, we take in a set of fault localization instances. Some of these cases
are effective and some others are ineffective. Each of these cases is represented by the
following:

1. Program spectra corresponding to correct and faulty execution traces.
2. A list of suspiciousness scores that are assigned by the fault localization tools to the

program elements.
3. An effectiveness label: effective (if the root cause is in the top-10) or ineffective

(otherwise).

The training phase consists of two processes: feature extraction, and model learning.
During feature extraction, based on a training data, we extract some feature values that
shed light into some important characteristics that potentially differentiate effective from
ineffective instances. In the model learning step, the feature values of each of the training
instances along with the effectiveness labels are then used to build a discriminative model
which is able to predict whether an unknown fault localization instance is effective or not.
This discriminative model is output to the deployment stage.

The deployment stage consists of two blocks: feature extraction, and effectiveness pre-
diction. We extract feature values from unknown instances whose labels, effective or
ineffective, are to be predicted. These values are then fed to the discriminative model learned
in the training phase. The model would then output a prediction.

We elaborate the feature extraction block in Section 4. The model learning and
effectiveness prediction blocks are elaborated in Section 5.

4 Feature Extraction

We extract values of a number of features from input execution traces and from the outputs
of a fault localization tool. Table 2 shows these features. We have in total 50 features. Fif-
teen of the features are extracted from input execution traces and the remaining thirty five
features are extracted from the suspiciousness scores output by the tool.

The first fifteen input features capture information about program execution traces and
program elements covered by these execution traces. Features T1 to T5 capture informa-
tion on the number of execution traces available for fault localization. Too few number of
traces might cause poor fault localization performance especially if there are too few failing
traces. In the worst case where the number of failing traces is zero, the fault localization tool
reduces to random guess. Features PE1 to PE4 capture the information on program ele-
ments that are covered by the execution traces. The more the number of program elements,
the more difficulty a fault localization tool is likely to have as it needs to compare and dif-
ferentiates more elements. With more program elements, the more likely a faulty program
element to be assigned the same or lower suspiciousness scores as other program elements.
Feature PE5 captures cases where some program elements only appear in faulty but not
correct executions. Intuitively, the chance for such cases to be effective is likely to be high.
Feature PE6 captures the opposite which might indicate omission errors: some program
elements that should be executed are not executed. Features PE7 to PE10 capture the two
highest proportions of failures that passed by one program element. Intuitively, the higher
the proportion of failures that passes a program element, the more likely it is the root cause.
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Table 2 List of features used in this work. In total, we use 50 features

ID Description

Input: Traces (5 Features)

T1 Number of traces

T2 Number of failing traces

T3 Number of passing traces

T4 T3 − T2

T5
T2
T3

Input: Program Elements (10 Features)

PE1 Number of program elements covered in the failing execution traces

PE2 Number of program elements covered in the correct execution traces

PE3 PE2 − PE1

PE4
PE1
PE2

PE5 Number of program elements that appear only in failing execution traces

PE6 Number of program elements that appear only in correct execution traces

PE7 Highest proportion of failing execution traces that pass by one program element

PE8 Second highest proportion of failing execution traces that pass by one program element

PE9 PE7 − PE8

PE10
PE8
PE7

Output: Raw Scores (10 Features)

R1 Highest suspiciousness score

R2 Second highest suspiciousness score

Ri ith highest suspiciousness score, where 3 ≤ i ≤ 10

Output: Simple Statistics (6 Features)

SS1 Number of distinct suspiciousness scores in {R1, . . . , R10}
SS2 Mean of {R1, . . . , R10}
SS3 Median of {R1, . . . , R10}
SS4 Mode of {R1, . . . , R10}
SS5 Variance of {R1, . . . , R10}
SS6 Standard deviation of {R1, . . . , R10}

Output: Gaps (11 Features)

G1 R1 − R2

G2 R2 − R3

Gi Ri − R(i+1), where 3 ≤ i ≤ 9

G10 Max1≤i≤9(Gi)

G11 Min1≤i≤9(Gi)

Output: Relative Differences (8 Features)

C1
(R2−R10)
(R1−R10)

Ci
(R(i+1)−R10)

(R1−R10)
, where 2 ≤ i ≤ 8

The next thirty five output features capture the suspiciousness scores that are output by
the fault localization tool. Features R1 to R10 capture the top-10 suspiciousness scores.
If the suspiciousness scores are too low, intuitively it is less likely for a fault localization
instance to be effective. Features SS1 to SS6 compute some simple statistics of the top-10
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suspiciousness scores. They serve as statistical summary of the scores. Features G1 to G11
and C1 to C8 are aimed to capture a “break” or gap in the top-10 suspiciousness scores. This
“break” shows that the localization tool is able to differentiate some program elements to be
significantly more suspicious than the others. That might indicate that some of the top-10
program elements are probably to be the root cause. If the fault localization tool is unable
to differentiate program elements, it is less likely to be effective. In the worst case, if it is
unable to distinguish all program elements, fault localization again turns into random guess.

5 Model Learning & Effectiveness Prediction

We first describe our model learning process. Next, we describe how we apply the model to
effectiveness prediction.

5.1 Model Learning

As inputs to this process, we have a set of training instances with their effectiveness labels.
Each of the instance is represented as 50 feature values (aka. a feature vector) produced by
the feature extraction process described in Section 4. The goal of the model learning process
is to convert these set of feature vectors into a discriminative model that could predict the
effectiveness label of a fault localization instance whose effectiveness is unknown.

We build upon and extend a state-of-the-art classification algorithm namely Support Vec-
tor Machine (SVM) (Han and Kamber 2006). SVM has been used in many past software
engineering research studies, e.g., Anvik et al. (2006), Sun et al. (2010), Maiga et al. (2012),
Thung et al. (2012), and Tian et al. (2012). We first describe standard off-the-shelf SVM.
We then describe our extended SVM that handles the issue of imbalanced data caused since
there are more ineffective fault localization instances than effective ones.

5.1.1 Off-the-Shelf SVM

SVM solves the classification problem by looking for a linear optimal separating hyper-
plane, which separates data instances of one class from another (Vapnik 2000). The
chosen hyperplane is called maximum marginal hyperplane (MMH) in which the separa-
tion between two classes are maximized. For example, consider a training dataset in form of
( �xk, yk), where �xk is the feature vector of the kth training data instance. Each yk represents
class label of data instance (yk ∈ {+1, −1}). The problem of searching for a separat-
ing hyperplane with maximal margin could be reduced to finding the minimal value of
1
2‖ �w‖ = 1

2

√
w1

2 + · · · + wn
2 which satisfies the constrains: yk( �w · �xk + b) ≥ 1∀k, where

�w is perpendicular to the separating hyperplan, n is the number of attributes, and b is a con-
stant number indicates position of the hyperplan in multi-dimensional space. In this study,
we use SVMlight version 6.021 with linear kernel.

5.1.2 SVMExt

Imbalanced training data is one of the issues that we encounter during the course of our
study. There are more ineffective than effective fault localization instances. Thus we build

1http://svmlight.joachims.org/

http://svmlight.joachims.org/
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upon standard off-the-shelf SVM to address this imbalanced data problem. We call our
solution SVMExt .

The pseudo-code of our proposed SVMExt is shown in Fig. 3. The algorithm takes as
input a set of effective and ineffective fault localization instances - EI and II . We first
check if there are more ineffective than effective localization instances (Line 1). If there are,
we perform a data balancing step (Lines 2-8). We would like to duplicate effective instances
that appear close to the hyperplane – these are effective instances that are close to one of
the ineffective instances. In order to find these effective instances, we compute the simi-
larity between each effective instance with each of the ineffective instances (Line 2). Each
fault localization instance could be viewed as a 50-dimensional vector; each dimension is a
feature and a localization instance is represented by the values of the 50 features described
in Section 4. To measure the similarity between two instances we compute the Cosine
similarity (Salton and McGill 1983) of their representative vectors. Consider two vectors
(a1, . . . , a50) and (b1, . . . , b50). The Cosine similarity of these two vectors is defined as:

∑50
i=1(ai × bi)√∑50

i=1(ai)2 ×
√∑50

i=1(bi)2

Next, for each effective instance, we calculate its highest similarity with an ineffec-
tive instance (Line 3). We sort the effective instances based on their highest similarities
with ineffective instances (Line 4). We then insert these instances from the most similar to
the least similar to the collection of effective instances EI until the number of effective
instances matches that of ineffective ones (Lines 5-8). We then proceed to learn a model
using off-the-shelf SVM and output the resultant model (Lines 9-10).

5.2 Effectiveness Prediction

The discriminative model learned in the model learning phase would be able to predict if
an unknown instance (i.e., a fault localization instance whose effectiveness is unknown) is
effective or not. The unknown instance needs to be transformed to a set of feature values

Fig. 3 Pseudocode of SVMExt algorithm
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using the feature extraction process described in Section 4. These feature values (aka. a
feature vector) are then compared with the model and a prediction would be output. The fea-
ture vector is compared with the hyperplane that separates effective and ineffective training
instances. Based on which side of the hyperplane the feature vector lies, the corresponding
unknown instance is assigned either effective or ineffective prediction label.

6 Experiments

In this section we first describe our dataset, followed by our evaluation metrics, research
questions, and results.

6.1 Dataset

We analyze 10 different programs. These include NanoXML, XML-Security, Space, and
the 7 programs from the Siemens test suite (Hutchins et al. 1994). These programs have
been widely used in past studies on fault localization and thus could collectively be used
as a benchmark (Jones and Harrold 2005; Renieris and Reiss 2003; Liu et al. 2005; Abreu
et al. 2007). Table 3 provides the details on the programs.

NanoXML is an XML parsing utility written in Java. We download NanoXML from Soft-
ware Infrastructure Repository (SIR) (Do et al. 2005). SIR contains 5 variants of NanoXML:
NanoXML v1, NanoXML v2, NanoXML v3, NanoXML v4, and NanoXML v5. Each of
the variants contains faulty versions except NanoXML v4. We downloaded all 32 faulty
versions of these variants. We exclude two of the faulty versions as there are no failure-
inducing test cases that expose the bugs. Thus, for NanoXML, in total, we analyze 30
faulty versions. XML-Security is a digital signature and encryption library written in Java.
There are 3 variants of XML-Security in SIR: XMLSec v1, XMLSec v2, and XMLSec v3.
For each variant, several faulty versions are provided. In total, we downloaded 52 faulty

Table 3 Dataset descriptions: name, lines of code, programming language, number of faulty versions, and
number of test cases

Dataset LOC Language # Faulty # Tests

print token 478 C 5 4130

print token2 399 C 10 4115

replace 512 C 31 5542

schedule 292 C 9 2650

schedule2 301 C 9 2710

tcas 141 C 36 1608

tot info 440 C 19 1051

space 6,218 C 35 13,585

NanoXML v1 3,497 Java 6 214

NanoXML v2 4,007 Java 7 214

NanoXML v3 4,608 Java 9 216

NanoXML v5 4,782 Java 8 216

XML security v1 21,613 Java 6 92

XML security v2 22,318 Java 6 94

XML security v3 19,895 Java 4 84
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versions from these variants; we analyze 16 of them, as there are no failure-inducing test
cases that expose the other bugs. Space was used in European Space Agency and is an
interpreter for Array Definition Language (ADL) written in C. All 35 faulty versions of
Space downloaded from SIR are used for our experiments. For these 3 programs, in total
we analyze, 81 faulty versions.

Siemens programs are originally created for a study on test coverage adequacy per-
formed by researchers from Siemens Corporation Research (Hutchins et al. 1994). Each of
the seven programs has many faulty versions derived “by seeding realistic faults” (Hutchins
et al. 1994). Each faulty version contains one bug that may span more than one program
element (i.e., basic block). It comes with test cases and bug free versions. Siemens pro-
grams have been used in many fault localization studies including (Jones and Harrold 2005;
Renieris and Reiss 2003; Liu et al. 2005; Abreu et al. 2007). The Siemens test suite2 include
the following programs: print tokens, print tokens2, replace, schedule, schedule2, tcas, and
tot info. There are a total of 132 versions in the test suite. We instrumented each blocks in
the versions. We exclude versions that are seeded by bugs residing in variable declarations
as our instrumentation cannot reach these declarations. Thus, we exclude the following ver-
sions: version 12 of replace, versions 13, 14, 15, 36, 38 of tcas, and versions 6, 10, 19, 21 of
tot info. Versions 4 and 6 of print token are also excluded because they are identical with
the bug free version. We exclude version 9 of schedule2 as running all test cases only pro-
duces correct executions – no test case is a failure-inducing one. In total, we include 119
faulty versions from Siemens test suite for our experiment. Adding the 81 faulty versions
from the 3 other programs, we have in total 200 faulty versions.

6.2 Evaluation Metrics & Experiment Settings

We evaluate the accuracy of our solution in terms of precision, recall, and F-measure. These
metrics have been frequently used to evaluate various prediction engines (Han and Kamber
2006). We first define the concepts of true positives, false positives, true negatives, and false
negatives:

True Positives (TP): Number of effective fault localization instances that are predicted
correctly

False Positives (FP): Number of ineffective fault localization instances that are predicted
wrongly

True Negatives (TN): Number of ineffective fault localization instances that are predicted
correctly

False Negatives (FN): Number of effective fault localization instances that are predicted
wrongly

Based on the above concepts, we can define precision, recall, and F-measure as follows:

Precision = T P

T P + FP
(1)

Recall = T P

T P + FN
(2)

F − Measure = 2 × Precision × Recall

P recision + Recall
(3)

2We use the variant at: www.cc.gatech.edu/aristotle/Tools/subjects

www.cc.gatech.edu/aristotle/Tools/subjects
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There is often a trade-off between precision and recall. Higher precision often results
in lower recall (and vice versa). To capture whether an increase in precision (or recall)
outweighs a reduction in recall (or precision), F-measure is often used. F-measure is the har-
monic mean of precision and recall and it combines the two measures together into a single
summary measure. Both precision and recall are important. If precision is low, it means that
many of fault localization instances predicted as effective are actually ineffective. Inspect-
ing ineffective fault localization instances costs developers time and resource. Thus these
false positive cases are bad. On the other hand, if recall is low, it means that many of effec-
tive fault localization instances are wrongly predicted as ineffective. These false negative
cases correspond to missed opportunities; developers lose out on the opportunity to benefit
from effective usages of a fault localization tool. Thus false negative cases are also bad. We
believe precision and recall should be given equal weight. Thus, in this paper, we compute
F-measure (i.e., F1) which is a harmonic mean of precision and recall that considers the
weights of precision and recall to be the same.

We perform ten-fold cross validation to evaluate the effectiveness of our proposed
approach. Ten-fold cross validation is a standard approach in data mining to estimate the
accuracy of a prediction engine (Han and Kamber 2006). Its goal is to assess how the result
of a prediction engine generalizes to an independent test data. In ten-fold cross validation,
we divide the dataset into ten groups. To create these ten groups, we initialize ten empty
buckets. We then randomly assign each fault localization instance into one of the ten buck-
ets such that the numbers of instances in the buckets are equal or differ at most by one. At
the end of the process, instances in each bucket become a group. We use nine of the groups
for training and one of the groups for testing. We repeat the process 10 times using different
groups as the test group. We aggregate all the results and compute the final precision, recall,
and F-measure.

6.3 Research Questions

We would like to answer the following research questions. The research questions capture
different aspects that measure how good our proposed approach is.

RQ1. How effective is our approach in predicting the effectiveness of a popular spectrum-
based fault localization tool?

We first evaluate the accuracy of our tool in predicting the effectiveness of Tarantula
which is a well-known fault localization tool.

RQ2. Could our approach be used to predict the effectiveness of other spectrum-based
fault localization tools?

There are different spectrum-based fault localization tools proposed in the literature.
We would like to investigate if our approach also works for these spectrum-based fault
localization tools. We consider the following tools: Ochiai (Abreu et al. 2007), Information
Gain (Lucia et al. 2010), ER1a (Xie et al. 2013), ER1b (Xie et al. 2013), ER5a (Xie et al.
2013), ER5b (Xie et al. 2013), ER5c (Xie et al. 2013), and DStar (Wong et al. 2014).

RQ3. How effective is our extended Support Vector Machine (SVMExt ) compared with
the off-the-shelf Support Vector Machine (SVM)?

To learn a discriminative model, we extend SVM to address the data imbalance issue.
We would like to investigate if this extension is necessary to make our framework effective.



1252 Empir Software Eng (2015) 20:1237–1274

RQ4. How effective is our extended Support Vector Machine (SVMExt ) compared with a
popular solution for imbalanced learning?

We are interested to compare the performance of SVMExt with random undersam-
pling (Japkowicz 2000; He and Garcia 2009) that is often used to handle imbalance data.
Random undersampling randomly removes data instances from the majority class in order
to make the number of training instances belonging to the two classes (in our case: effective
and ineffective) to be the same. We denote the application of SVM algorithm with random
undersampling to balance training data as SVMus . We calculate and compare F-measures
achieved by SVMExt and SVMus .

RQ5. What are some important features that help in discriminating if a fault localization
tool would be effective given a set of input traces?

We investigate which of the 50 features that we use are more dominant and thus more
effective to help us achieve higher prediction accuracy. In the machine learning community,
Fisher score is often used to measure how dominant or discriminative a feature is, e.g., Duda
et al. (2001) and Gu et al. (2011). We compute the Fisher score of every feature as follows:

FS(j) =
∑#class

class=1(x̄
(class)
j − x̄j )

2

∑#class
class=1(

1
nclass−1

∑nclass

i=1 (x
(class)
i,j − x̄

(class)
j )2)

In the equation, FS(j) denotes the Fisher score of the j th feature. nclass is the numbers of
data points (i.e., fault localization instances) with label class (i.e., effective or ineffective).
x̄j denotes the average value of the j th feature of all data points. x̄(class)

j is the average value

of the j th feature of class-labeled data points. x(class)
i,j denotes the value of the j th feature of

the ith class-labeled data point. Fisher scores range from 0 to 1. Features with higher Fisher
scores are more discriminative, while features with Fisher scores of 0 are not discriminative.

RQ6. How sensitive is our approach to the amount of training data?

We use ten-fold cross validation to evaluate our approach. In ten-fold cross validation,
we use 90 % of the data for training, and the remaining 10 % for testing. In this research
question, we investigate the impact of reducing the number of training data on the accuracy
of the proposed approach.

RQ7. Could data from one software program be used to train a discriminative model used
to predict effectiveness of a fault localization tool on failures from other software
programs?

To answer this research question, we use data from N-1 (i.e., 9) software programs to
build a model. This model is then used to predict the effectiveness of a fault localization tool
on the remaining one software program. We refer to this process as N-fold cross-program
validation.

RQ8. How effective are various classifiers in predicting the effectiveness of a fault
localization instance?
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In the previous research questions, we only investigate the effectiveness of SVMExt and
SVM. However, there are many other classification algorithms proposed in the literature.
In this research questions, we investigate several other classifiers including J48 (Quinlan
1993), KStar (Cleary and Trigg 1995), and IBk (Aha and Kibler 1991), and see if they are
as effective as SVM in predicting the effectiveness of a fault localization instance.

RQ9. How effective is our approach in predicting the effectiveness of a fault localization
instance on multi-bugs setting (i.e., more than one program element are responsible
for the failures)?

In the previous research questions, we only consider single-bug setting (i.e., only one
program element is responsible for the failures). In this research question, we want to see if
it is as effective in multi-bugs setting. We reuse the multi-bugs dataset created by Lucia et al.
(2014). The multi-bugs dataset contains 173 versions each injected with 2-5 bugs. In the
multi-bugs setting, we define a fault localization instance to be effective if a root cause of a
bug appears in the top-10 most suspicious program elements (ties are randomly broken).

6.4 Results

In this section, we answer our research questions one at a time by performing a set of
experiments.

6.4.1 RQ1: Overall Accuracy

To answer our first research question, we simply run Tarantula on the 200 faulty versions.
We then predict if Tarantula is effective or not for each of the 200 faulty versions using
SVMExt . We perform ten-fold cross validation and aggregate the result for the final preci-
sion, recall, and F-measure. For Tarantula, 85 of the localization instances are effective and
115 of the instances are ineffective. Thus, the data is imbalanced.

The result of our experiment is shown in Table 4. The result shows that we can achieve a
precision of 54.36 %. This means that we can correctly identify many ineffective fault local-
ization instances (i.e., 47 out of the 115 ineffective instances). Note that if our approach
is not used, none of the ineffective fault localization instances can be identified. Thus,
our approach can reduce wasted developer effort by 40.87 % (i.e., 47/115). Past studies
have shown that an approach that can result even in a small reduction of wasted developer
effort is useful, e.g., Jalbert and Weimer (2008). Furthermore, we can achieve a recall of
95.29 %. This means that we correctly identify almost all effective instances (i.e., 81 out of
the 85 effective instances). F-measure, the harmonic mean of precision and recall, is often
used to gauge on how effective a prediction engine is. Our F-measure is 69.23 %. Com-
paring with many other studies performing other prediction tasks in software engineering
research literature, e.g., Seo and Kim (2012) and Shihab et al. (2012), our F-measure is
comparable or higher.

Table 4 Precision, recall, and
F-measure of our proposed
approach in predicting
effectiveness of Tarantula

Precision 54.36 %

Recall 95.29 %

F-Measure 69.23 %
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6.4.2 RQ2: Different Fault Localization Tools

We also investigate if our approach could be generalized to other spectrum-based fault local-
ization tools aside from Tarantula. We use the same set of 200 faulty versions and perform
the same ten-fold cross validation using SVMExt to evaluate eight other spectrum-based
fault localization tools: Ochiai (Abreu et al. 2007), Information Gain (Lucia et al. 2010),
ER1a (Xie et al. 2013), ER1b (Xie et al. 2013), ER5a (Xie et al. 2013), ER5b (Xie et al.
2013), ER5c (Xie et al. 2013), and DStar (Wong et al. 2014). We run each spectrum-based
fault localization tool independently. For each tool, we train a model and use the model to
predict if other fault localization instances of the same tool are effective or not. Table 5
shows the precision, recall, and F-measure when we predict the effectiveness of Tarantula,
Ochiai, Information Gain, ER1a , ER1b, ER5a , ER5b, ER5c, and DStar.

Comparing the results with those of Tarantula, we note that higher precision, recall, and
F-measure can be achieved for predicting the effectiveness of Ochiai, Information Gain,
ER1a , ER1b, and DStar. Our approach can achieve a F-measure of more than 75 % for
Ochiai, Information Gain, and DStar. It can achieve a F-measure of more than 80 % for
ER1a and ER1b. However, the performance of our approach is lower for ER5a , ER5b,
and ER5c. Predicting the effectiveness of ER5a , ER5b, and ER5c is harder as their cor-
responding fault localization instance datasets are highly imbalanced. Most (i.e., 74.5 %) of
the fault localization instances are ineffective.

6.4.3 RQ3: SVMExt vs. SVM

Next, we compare our extended SVM (SVMExt ) with standard off-the-shelf SVM. We
consider 8 scenarios depending on the target fault localization tool: Tarantula, Ochiai,
Information Gain, ER1a , ER1b, ER5a , ER5b, ER5c, and DStar.

Tarantula. The precision, recall, and F-measure of using SVMExt and SVM for Tarantula
is shown in Table 6. We also compute the relative improvement of SVMExt over SVM by
the following formula:

Relative Improvement = (SV MExt Result − SV M Result)

SV M Result

Table 5 Precision, recall, and F-measure of our approach in predicting effectiveness of various fault
localization tools

Tool Precision Recall F-Measure

Tarantula 54.36 % 95.29 % 69.23 %

Ochiai 63.23 % 97.03 % 76.56 %

Information Gain 64.47 % 93.33 % 76.26 %

ER1a 74.38 % 90.00 % 81.45 %

ER1b 74.38 % 90.00 % 81.45 %

ER5a 42.50 % 100.00 % 59.65 %

ER5b 42.50 % 100.00 % 59.65 %

ER5c 42.50 % 100.00 % 59.65 %

DStar 66.23 % 94.44 % 77.86 %
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Table 6 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of Tarantula

SVMExt SVM Relative Improvement

Precision 54.36 % 51.04 % 6.50 %

Recall 95.29 % 57.65 % 65.29 %

F-Measure 69.23 % 54.14 % 27.87 %

SVMExt clearly outperforms SVM with respect to precision, recall, and F-measure.
We find that SVMExt outperforms SVM in terms of precision, recall, and F-Measure by
6.50 %, 65.29 %, and 27.87 %, respectively.

Ochiai. The precision, recall, and F-measure of using SVMExt and SVM for Ochiai is
shown in Table 7. We find that the performance of SVMExt and SVM are the same. There is
no difference in the performance of SVMExt and SVM since the fault localization instance
dataset of Ochiai is much more balanced than that of Tarantula (i.e., 50.50 % of the fault
localization instances are effective, and the rest are ineffective).

Information Gain. The precision, recall, and F-measure of using SVMExt and SVM for
Information Gain is shown in Table 8. We find that the performance of SVMExt and SVM
are the same. There is no difference in the performance of SVMExt and SVM since the
fault localization instance dataset of information gain is much more balanced than that of
Tarantula (i.e., 52.50 % of the fault localization instances are effective, and the rest are
ineffective).

ER1a . The precision, recall, and F-measure of using SVMExt and SVM for ER1a is
shown in Table 9. We find that the performance of SVMExt and SVM are the same. There is
no difference in the performance of SVMExt and SVM since the fault localization instance
dataset of ER1a is much more balanced than that of Tarantula (i.e., 50.00 % of the fault
localization instances are effective, and the rest are ineffective).

ER1b. The precision, recall, and F-measure of using SVMExt and SVM for ER1b is
shown in Table 10. We find that the performance of SVMExt and SVM are the same.
There is no difference in the performance of SVMExt and SVM since the fault localization
instance dataset of ER1b is much more balanced than that of Tarantula (i.e., 50.00 % of the
fault localization instances are effective, and the rest are ineffective).

ER5a . The precision, recall, and F-measure of using SVMExt and SVM for ER5a is
shown in Table 11. We find that SVM is not able to predict the effectiveness of ER5a (its
precision, recall, and F-measure score are all 0). Thus, SVMExt clearly outperforms SVM.

Table 7 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of Ochiai

SVMExt SVM Relative Improvement

Precision 63.23 % 63.23 % 0 %

Recall 97.03 % 97.03 % 0 %

F-Measure 76.56 % 76.56 % 0 %
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Table 8 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of information
gain

SVMExt SVM Relative Improvement

Precision 64.47 % 64.47 % 0 %

Recall 93.33 % 93.33 % 0 %

F-Measure 76.26 % 76.26 % 0 %

Note that the improvement of SVMExt over SVM is more pronounced for ER5a than for
Tarantula since the fault localization instance dataset of ER5a is much more imbalanced
than that of Tarantula (i.e., 25.50 % of the fault localization instances are effective, and the
rest are ineffective).

ER5b. The precision, recall, and F-measure of using SVMExt and SVM for ER5b is
shown in Table 12. We find that SVM is not able to predict the effectiveness of ER5b (its
precision, recall, and F-measure score are all 0). Thus, SVMExt clearly outperforms SVM.
Note that the improvement of SVMExt over SVM is more pronounced for ER5b than for
Tarantula since the fault localization instance dataset of ER5b is much more imbalanced
than that of Tarantula (i.e., 25.50 % of the fault localization instances are effective, and the
rest are ineffective).

ER5c. The precision, recall, and F-measure of using SVMExt and SVM for ER5c is shown
in Table 13. We find that SVM is not able to predict the effectiveness of ER5c (its precision,
recall, and F-measure score are all 0). Thus, SVMExt clearly outperforms SVM. Note that
the improvement of SVMExt over SVM is more pronounced for ER5c than for Tarantula
since the fault localization instance dataset of ER5c is much more imbalanced than that
of Tarantula (i.e., 25.50 % of the fault localization instances are effective, and the rest are
ineffective).

DStar. The precision, recall, and F-measure of using SVMExt and SVM for DStar is shown
in Table 14. We find that the performance of SVMExt outperforms SVM in terms of preci-
sion and F-measure by 1.30 % and 0.76 %, respectively (their recall scores are the same).
Note that the fault localization instance dataset of DStar is much more balanced than that
of Tarantula (i.e., 54 % of the fault localization instances are effective, and the rest are
ineffective).

6.4.4 RQ4: SVMExt vs. SVMus

We compare SVMExt with the application of SVM that uses random undersampling to
handle imbalanced training data (i.e., SVMus). We use the two approaches to predict the

Table 9 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of ER1a

SVMExt SVM Relative Improvement

Precision 74.38 % 74.38 % 0 %

Recall 90.00 % 90.00 % 0 %

F-Measure 81.45 % 81.45 % 0 %
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Table 10 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of ER1b

SVMExt SVM Relative Improvement

Precision 74.38 % 74.38 % 0 %

Recall 90.00 % 90.00 % 0 %

F-Measure 81.45 % 81.45 % 0 %

effectiveness of 9 fault localization techniques, and compute relative improvement between
SVMExt and SVMus as follows:

Relative Improvement = (SVMExt Result − SVMus Result)

SVMus Result

Table 15 shows F-measures of SVMExt and SVMus when predicting effectiveness of
Tarantula, Ochiai, Information Gain, ER1a , ER1b, ER5a , ER5b, ER5c, and DStar. From
the table, we have zero relative improvements for 4 out of the 9 fault localization techniques,
i.e., Ochiai, Information Gain, ER1a , and ER1b. For these 4 techniques, we find that there
are more effective fault localization instances than ineffective ones (i.e., more than 50 %
of the instances are effective). On the other hand, there are 5 out of the 9 fault localization
techniques that have none-zero relative improvements. They are Tarantula, ER5a , ER5b,
ER5c, and DStar where ER5a has the highest relative improvement (i.e., 8.77 %). Among
the 5 techniques, only DStar has more effective instances than ineffective ones (i.e., 54 % of
the instances are effective). Overall, our proposed technique for handling imbalanced train-
ing data (i.e., SVMExt ) outperforms random undersampling for 5 out of 9 fault localization
techniques, especially for harder cases when there is more pronounced data imbalance and
the number of effective instances are fewer than the number of ineffective ones.

6.4.5 RQ5: Important Features

Next, we investigate which features are important. We use Fisher score to rank the features.
We consider 9 scenarios depending on the target fault localization tool: Tarantula, Ochiai,
Information Gain, ER1a , ER1b, ER5a , ER5b, ER5c, and DStar.

Tarantula. Table 16 shows the list of the top-10 most important features. Interestingly, we
find that the top-10 features include input and output features. Both input execution traces
and suspiciousness scores generated by a fault localization tool are important to predict the
effectiveness of a fault localization instance.

Relative difference features, i.e., C7, C8, C6, C5, and C1, are the most discriminative
(5 out of the top-10 features). These features can capture a “break” or gap in the top-10
discriminative scores. This “break” signifies that the fault localization tool is able to differ-
entiate some program elements to be significantly more suspicious than the others. Three of

Table 11 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of ER5a

SVMExt SVM Relative Improvement

Precision 42.50 % 0 % ∞
Recall 100 % 0 % ∞
F-Measure 59.65 % 0 % ∞
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Table 12 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of ER5b

SVMExt SVM Relative Improvement

Precision 42.50 % 0 % ∞
Recall 100 % 0 % ∞
F-Measure 59.65 % 0 % ∞

the top-10 features are related to program elements, i.e., PE1, PE2, and PE4. They capture
the number of program elements covered in execution traces. The more program elements
are covered, the harder it is to get effective fault localization as the fault localization tool
needs to differentiate more program elements to find the root cause. The other two of the
top-10 features are the highest suspiciousness score (R1) and the number of distinct suspi-
ciousness scores in the top-10 scores (SS1). These are intuitively related to fault localization
effectiveness: the higher a suspiciousness score is, the more likely a program element is
the root cause; the more the number of distinct suspiciousness scores, the more that a fault
localization tool differentiates program elements.

Ochiai. Table 16 shows the list of the top-10 most important features of Ochiai. Ignoring
the ordering of the features, Ochai and Tarantula are sharing 7 important features. They
are C5, C6, C7, C8, SS1, PE1, and PE2. But, different from Tarantula, the list of top-10
most important features for Ochiai also contains information of gaps between suspicious-
ness scores (i.e., G10) and information on the variance and standard deviation of of the
suspiciousness scores (i.e., SS5 and SS6).

Information Gain. Table 16 shows the list of the top-10 most important features. The top
6 features for Information Gain also appear in the top-10 for Tarantula. For Information
Gain, the 7th to 10th most important features do not appear in the top-10 for Tarantula. They
are: T3, T1, T4, and C2. C2 is similar to other relative difference features that appear in
the top-10 for Tarantula. Different from Tarantula, for Information Gain, features related to
number of traces (T3, T1 and T4) are also important in predicting the effectiveness of an
information-gain-based fault localization tool outputs.

ER1a . Table 16 shows the list of the top-10 most important features. Half of the top-10
features for ER1a appear in the top-10 for Tarantula. The features that do not appear in the
top-10 for Tarantula are: R8, R7, SS2, SS6, and R9. Different from Tarantula, for ER1a ,
features related to raw scores (R8, R7, R9), mean of the raw scores (SS2), and standard
deviation of the raw scores (SS6) are also important in predicting the effectiveness of ER1a

outputs.

ER1b. Table 16 shows the list of the top-10 most important features. Seven out of the top-
10 features for ER1b also appear in the top-10 for Tarantula. The features that do not appear
in the top-10 for Tarantula are: C4, PE6, and PE3. C4 is similar to other relative difference
features that appear in the top-10 for Tarantula. PE6 and PE3 are similar to other program
element features that appear in the top-10 for Tarantula.

2Please refer to Table 2 for the description of the features.
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Table 13 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of ER5c

SVMExt SVM Relative Improvement

Precision 42.50 % 0 % ∞
Recall 100 % 0 % ∞
F-Measure 59.65 % 0 % ∞

ER5a . Table 16 shows the list of the top-10 most important features. Only 2 of the top-10
features for ER5a appear in the top-10 for Tarantula – they are: PE2, and PE1. The other 8
that do not appear in the top-10 for Tarantula are: PE6, PE3, T1, T3, PE5, R10, R5, and R4.
PE6, PE3, and PE5 are similar to other program element features that appear in the top-10
for Tarantula. Different from Tarantula, for ER5a , features related to number of traces (T1
and T3) and raw scores (R10, R5, and R4) are also important in predicting the effectiveness
of ER5a outputs.

ER5b. Table 16 shows the list of the top-10 most important features. Only 2 of the top-10
features for ER5b appear in the top-10 for Tarantula – they are: PE2, and PE1. The other
8 that do not appear in the top-10 for Tarantula are: PE6, PE3, R10, R5, R4, R6, R8, and
R7. PE6 and PE3 are similar to other program element features that appear in the top-10 for
Tarantula. Different from Tarantula, for ER5b, features related to raw scores (R10, R5, R4,
R6, R8, and R7) are also important in predicting the effectiveness of ER5b outputs.

ER5c. Table 16 shows the list of the top-10 most important features. Only 3 of the top-10
features for ER5c appear in the top-10 for Tarantula – they are: PE2, PE1, and SS1. The
other 7 that do not appear in the top-10 for Tarantula are: PE6, PE3, T1, T3, PE5, T2, and
R10. PE6, PE3, and PE5 are similar to other program element features that appear in the top-
10 for Tarantula. Different from Tarantula, for ER5c, features related to number of traces
(T1, T3, and T2) and raw scores (R10) are also important in predicting the effectiveness of
ER5c outputs.

DStar. Table 16 shows the list of the top-10 most important features. Only 1 feature of
the top-10 features for DStar appears in the top-10 for Tarantula (i.e., C8). Different other
fault localization techniques in our study, DStar has no important features extracted from
input traces and program elements. Five out of the top-10 features are raw suspiciousness
score features (i.e., R10, R9, R8, R7, and R6), and 3 out of the top-10 are simple statistics
(i.e., SS2, SS5, and SS6). The other two are C8 and G10 that capture the gap and relative
difference of suspiciousness scores, respectively.

Table 16 shows that top-10 most discriminative features of 9 fault localization tech-
niques are different from one another. This is because suspiciousness scores that are output

Table 14 Precision, recall, and F-measure of SVMExt and SVM in predicting effectiveness of DStar

SVMExt SVM Relative Improvement

Precision 66.23 % 65.38 % 1.30 %

Recall 94.44 % 94.44 % 0.00 %

F-Measure 77.86 % 77.27 % 0.76 %
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Table 15 F-measures of SVMExt and SVMus

SBFL SVMExt SVMus Relative Improvement

Tarantula 69.23 % 68.62 % 0.89 %

Ochiai 76.56 % 76.56 % 0 %

Information Gain 76.26 % 76.26 % 0 %

ER1a 81.45 % 81.45 % 0 %

ER1b 81.45 % 81.45 % 0 %

ER5a 59.65 % 54.84 % 8.77 %

ER5b 59.65 % 56.35 % 5.86 %

ER5c 59.65 % 56.35 % 5.86 %

DStar 77.86 % 77.39 % 0.61 %

The First Column Specifies Spectrum-Based Fault Localization Techniques Whose Effectiveness is to be
Predicted. The Second and Third Columns are F-measures of SVMExt and SVMus , respectively. The Last
Column is Relative Improvements of SVMExt over SVMus

by each technique have distinct characteristics. From the formulas of the 9 techniques (see
Section 2), we find that each of the techniques combines basic spectrum-based fault local-
ization statistics listed in Table 1 in various ways. Some formulas are in the form of
fractions, while some others are arithmetic expressions with plus and minus operators only.
DStar involves exponentiation which results in a large number. These result in suspicious-
ness scores of different techniques having different characteristics. For example, Tarantula
and Ochiai’s suspiciousness scores are real numbers in range of [0,1]; Information Gain
and DStar’s suspiciousness scores are non-negative real numbers, but different from Taran-
tula and Ochiai, their values can be far greater than 1. Furthermore, suspiciousness scores
of some techniques are real numbers while others are integers. For example, ER1a , ER5a ,
and ER5c’s suspiciousness scores are integers. Hence, the differences between distinct sus-
piciousness scores of the 3 techniques have to be at least 1. However, for suspiciousness
scores that are real numbers, the differences between two distinct suspiciousness scores can

Table 16 Important features of Tarantula, Ochiai, information gain, ER1a , ER1b , ER5a , ER5b , ER5c ,
and DStar

Tarantula Ochiai IG ER1a ER1b ER5a ER5b ER5c D*

1 C7 C8 PE1 R8 SS1 PE2 PE2 PE2 SS6

2 C8 SS1 PE2 C7 C7 PE1 PE1 PE1 R10

3 C6 C7 C7 SS1 C6 PE6 PE6 PE6 R9

4 PE1 PE1 C8 R7 PE2 PE3 PE3 PE3 R8

5 PE2 C6 SS1 C6 PE1 T1 R10 T1 R7

6 SS1 PE2 C6 PE2 C8 T3 R5 T3 G10

7 C5 SS6 T3 SS2 C5 PE5 R4 PE5 SS5

8 C1 G10 T1 SS6 C4 R10 R6 T2 C8

9 PE4 C5 T4 R9 PE6 R5 R8 SS1 SS2

10 R1 SS5 C2 C8 PE3 R4 R7 R10 R6

“IG” and “D*” Stand for Information Gain and DStar, Respectively. List of Features is Available at Table 2
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be between 0 and 1. Consequently, these diverse characteristics of output suspiciousness
scores make top important features for the 9 fault localization techniques different.

Important features for fault localization techniques with similar formulas tend to be sim-
ilar. For example, the formulas for ER5a , ER5b, and ER5c look different, but actually they
are rather similar. ER5a is simply ne

f (i.e., number of failures that execute program element

e), while ER5b is a normalized ne
f , and ER5c is an indicator function defined based on ne

f .
Thus, the top-4 features of these 3 fault localization techniques are the same.

6.4.6 RQ6: Different Amount of Training Data

In ten-fold cross validation, we use 90 % of the data for training on only 10 % for testing.
To answer this research question, we vary the amount of training data from 10 % to 90 %
and show the resultant precision, recall, and F-measure. We randomly pick the data that we
use for training. We consider 9 scenarios depending on the target fault localization tool:
Tarantula, Ochiai, Information Gain, ER1a , ER1b, ER5a , ER5b, ER5c, and DStar.

Tarantula. We show the result in Fig. 4. Note that as we randomly resample the 90 % data,
the result is different with that of RQ1. We find that the performance of our framework does
not degrade too much (F-measure > 60 %) if there is sufficient data for training (30-90 %),
the performance degrades substantially if there is too little training data (10-20 %).

Ochiai. We show the result in Fig. 5. Note that as we randomly resample the 90 % data, the
result is different with that of RQ2. We find that the performance of our framework does
not degrade too much (F-measure > 60 %) if there is sufficient data for training (20-90 %),
the performance degrades substantially if there is too little training data (10 %).

Information Gain. We show the result in Fig. 6. Note that as we randomly resample the
90 % data, the result is different with that of RQ2. We find that the performance drops
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Fig. 4 Precision, recall, and F-measure of our approach in predicting effectiveness of Tarantula for various
amount of training data
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Fig. 5 Precision, recall, and F-measure of our approach in predicting effectiveness of Ochiai for various
amount of training data

substantially for 60 %, 30 %, and 20 % of the training data. For the other percentages the
performance does not degrade too much (F-measure > 60 %).

ER1a . We show the result in Fig. 7. Note that as we randomly resample the 90 % data, the
result is different with that of RQ2. We find that the performance of our framework does
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Fig. 6 Precision, recall, and F-measure of our approach in predicting effectiveness of information gain for
various amount of training data
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Fig. 7 Precision, recall, and F-measure of our approach in predicting effectiveness of ER1a for various
amount of training data

not degrade too much (F-measure > 60 %) for all percentages of the training data that we
investigate (10 %-90 %).

ER1b. We show the result in Fig. 8. Note that as we randomly resample the 90 % data, the
result is different with that of RQ2. We find that the performance of our framework does
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Fig. 8 Precision, recall, and F-measure of our approach in predicting effectiveness of ER1b for various
amount of training data
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Fig. 9 Precision, recall, and F-measure of our approach in predicting effectiveness of ER5a for various
amount of training data

not degrade too much (F-measure > 60 %) for all percentages of the training data that we
investigate (10-90 %).

ER5a . We show the result in Fig. 9. Note that as we randomly resample the 90 % data, the
result is different with that of RQ2. We find that the performance of our framework does
not degrade too much (F-measure > 50 %) if there is sufficient data for training (20-90 %),
the performance degrades substantially if there is too little training data (10 %).

ER5b. We show the result in Fig. 10. Note that as we randomly resample the 90 % data,
the result is different with that of RQ2. We find that the performance of our framework does
not degrade too much (F-measure > 50 %) if there is sufficient data for training (20-90 %),
the performance degrades substantially if there is too little training data (10 %).

ER5c. We show the result in Fig. 11. Note that as we randomly resample the 90 % data,
the result is different with that of RQ2. We find that the performance of our framework does
not degrade too much (F-measure > 50 %) if there is sufficient data for training (20-90 %),
the performance degrades substantially if there is too little training data (10 %).

DStar. We show the result in Fig. 12. Note that as we randomly resample the 90 % data,
the result is different with that of RQ2. We find that the performance drops substantially for
30 % of the training data. For the other percentages the performance does not degrade too
much (F-measure > 60 %).

6.4.7 RQ7: Cross-program Setting

We perform N-fold cross-program validation to answer this research question. The results
are presented in Table 17. Comparing the cross-program setting with the default setting
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Fig. 10 Precision, recall, and F-measure of our approach in predicting effectiveness of ER5b for various
amount of training data

considered in earlier RQs, there is however a modest loss in F-measure. For example, for
Tarantula, the F-measure is 63.43 %, which is lower than the result for RQ1 (i.e., 69.23 %).
The fact that a model learned on a set of programs will have a reduced performance when
applied to a new program is well known in the literature (Zimmermann et al. 2009). This
reduction is expected, but does the performance remain reasonable? The F-measures of our
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Fig. 11 Precision, recall, and F-measure of our approach in predicting effectiveness of ER5c for various
amount of training data
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Fig. 12 Precision, recall, and F-measure of our approach in predicting effectiveness of DStar for various
amount of training data

approach in predicting the effectiveness of DStar, Ochiai, Information Gain, ER1a , and
ER1b in the cross-project setting are all above 70 %. F-measure of 70 % or higher is often
considered reasonable in the literature (Hindle et al. 2009; Kim et al. 2008; Shihab et al.
2010; Jing et al. 2014). Thus, for 5 out of the 9 fault localization techniques, our approach
can perform reasonably well.

Our approach still works for the cross-program setting since we build a discriminative
model using instances from n projects rather than only one project. Consequently, the model
is not tuned or over fitted to one project. Thus, features that are considered important in
the model are likely those that can generalize across multiple projects. Still, a project might
have its own peculiar characteristics, and thus the performance of our approach in the cross-
project setting is lower than when a training data from the same project is available.

Table 17 Precision, recall, and F-measure of our approach in predicting effectiveness of various fault
localization tools for cross-program setting

Tool Precision Recall F-Measure

Tarantula 46.4 % 100.00 % 63.43 %

Ochiai 54.89 % 100.00 % 70.88 %

Information Gain 57.07 % 100.00 % 72.66 %

ER1a 54.35 % 100.00 % 70.42 %

ER1b 54.35 % 100.00 % 70.42 %

ER5a 29.48 % 100.00 % 45.54 %

ER5b 28.81 % 100.00 % 44.74 %

ER5c 28.81 % 100.00 % 44.74 %

DStar 58.70 % 100.00 % 73.97 %
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Table 18 Precision, recall, and F-measure in predicting effectiveness of tarantula using various classifiers

Tool Precision Recall F-Measure

SVMExt 54.36 % 95.29 % 69.23 %

SVM 51.04 % 57.65 % 54.14 %

J48 65.93 % 70.59 % 68.18 %

KStar 65.93 % 70.59 % 68.18 %

IBk 65.91 % 68.24 % 67.05 %

6.4.8 RQ8: Effectiveness of Different Classifiers

We consider 9 scenarios depending on the target fault localization tool: Tarantula, Ochiai,
Information Gain, ER1a , ER1b, ER5a , ER5b, ER5c, and DStar.

Tarantula. The results are shown in Table 18. In terms of F-measure, which is the har-
monic mean of precision and recall, we can see that the performance of SVMExt is the best
followed by J48 and KStar.

Ochiai. The results are shown in Table 19. In terms of F-measure, we can see that SVMExt

and SVM are the best performing classifiers followed by IBk and KStar.

Information Gain. The results are shown in Table 20. In terms of F-measure, we can see
that SVMExt and SVM are the best performing classifiers followed by KStar and J48.

ER1a . The results are shown in Table 21. In terms of F-measure, we can see that SVMExt

and SVM are the best performing classifiers followed by J48 and IBk.

ER1b. The results are shown in Table 22. In terms of F-measure, we can see that SVMExt

and SVM are the best performing classifiers followed by IBk and J48.

ER5a . The results are shown in Table 23. In terms of F-measure, we can see that SVMExt

is the best performing classifiers followed by KStar and IBk. Note that the performance of
SVMExt differs substantially from that of the worst two classifiers (SVM and J48).

ER5b. The results are shown in Table 24. In terms of F-measure, we can see that SVMExt

is the best performing classifiers followed by KStar and IBk. Note that the performance of
SVMExt differs substantially from that of the worst two classifiers (SVM and J48).

Table 19 Precision, recall, and F-measure in predicting effectiveness of Ochiai using various classifiers

Tool Precision Recall F-Measure

SVMExt 63.23 % 97.03 % 76.56 %

SVM 63.23 % 97.03 % 76.56 %

J48 64.22 % 69.31 % 66.67 %

KStar 70 % 69.31 % 69.65 %

IBk 71.43 % 74.26 % 72.82 %
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Table 20 Precision, recall, and F-measure in predicting effectiveness of information gain using various
classifiers

Tool Precision Recall F-Measure

SVMExt 64.47 % 93.33 % 76.26 %

SVM 64.47 % 93.33 % 76.26 %

J48 68.7 % 75.24 % 71.82 %

KStar 73.53 % 71.43 % 72.46 %

IBk 71.15 % 70.48 % 70.81 %

ER5c. The results are shown in Table 25. In terms of F-measure, we can see that SVMExt

is the best performing classifiers followed by KStar and IBk. Note that the performance of
SVMExt differs substantially from that of the worst two classifiers (SVM and J48).

6.4.9 RQ9: Multi-bugs Setting

In this research question, we investigate the performance of our approach to predict the
effectiveness of 9 fault localization techniques on multi-bugs setting. Our dataset contains
173 faulty versions. Different from single-bug setting, each of the versions are injected with
2-5 bugs. That means there are more failed test cases in multi-bugs setting than single-bug
setting. On average, there are 2364.13 failed test cases for a faulty version in the multi-bugs
dataset. This is much larger compared to the average number of failed test cases for a faulty
version in the single-bug dataset, which is only 416.87.

In multi-bugs setting, we find that 6 out of 9 fault localization techniques have effective
instances account for more than 50 % of all instances. They are Tarantula, Ochiai, Infor-
mation Gain, ER1a , ER1b, and DStar. Among the 6 techniques, Information Gain has the
highest percentage of effective instances (i.e., 69.94 %). We also analyze and note that the
formulas of the 6 techniques calculate suspiciousness scores by utilizing ne

f (i.e., number
of failed test cases that execute program element e) and ne

s (i.e., number of passed test cases
that execute program element e). On the other hand, for the remaining 3 techniques (i.e.,
ER5a , ER5b, and ER5c), the percentages of effective instances are only 39.88 %, 39.88 %,
and 39.31 %, respectively. We analyze and note that the formulas of the 3 techniques only
take into account information of ne

f , and ignore ne
s . Hence, for cases where two program

elements have the same ne
f value, but have different ne

s values, ER5a , ER5b, and ER5c

still assign the same suspiciousness scores to the two elements. That explains why the 3
techniques have more ineffective instances than effective ones.

Table 21 Precision, recall, and F-measure in predicting effectiveness of ER1a using various classifiers

Tool Precision Recall F-Measure

SVMExt 74.38 % 90 % 81.45 %

SVM 74.38 % 90 % 81.45 %

J48 75.23 % 82 % 78.47 %

KStar 74.29 % 78 % 76.1 %

IBk 76.92 % 80 % 78.43 %
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Table 22 Precision, recall, and F-measure in predicting effectiveness of ER1b using various classifiers

Tool Precision Recall F-Measure

SVMExt 74.38 % 90.00 % 81.45 %

SVM 74.38 % 90.00 % 81.45 %

J48 74.11 % 83.00 % 78.30 %

KStar 75.76 % 75.00 % 75.38 %

IBk 79.61 % 82.00 % 80.79 %

Table 27 shows the performance of our approach in multi-bugs setting. From the table,
we can note that for multi-bugs setting, the results are generally good (i.e., F-measure of
around 70 % or higher) for all fault localization techniques.

The fault localization formulas can be divided into two groups. The first group consists
of simpler formulas namely ER5a , ER5b, and ER5c which are defined as ne

f (number
of failures that execute a program element e), a normalized ne

f , and an indicator function
defined on ne

f , respectively. The other group consists of the other 6 formulas which are
more complicated and consider both ne

f and ne
s . We find that the effectiveness of the simpler

formulas can be better predicted than the effectiveness of the more complex formulas. Our
approach can achieve a F-measure of 84 % for the simpler formulas, but it only achieves a
F-measure of 70-75 % for the more complex formulas.

To investigate the reason why the effectiveness of the simpler formulas can be predicted
with higher accuracy, we analyze and inspect the top important features for the simpler
formulas in multi-bugs setting. We note that T2 (i.e., number of failing traces) and T3 (i.e.,
number of passing traces) are among the top important features. Interestingly, we discover
that our approach, by using T2 and T3 only, and ignoring the other features, can still achieve
the same F-measures as those listed in Table 27 for ER5a , ER5b, and ER5c. For the other
fault localization techniques (i.e., Tarantula, Ochiai, Information Gain, ER1a , ER1b, and
DStar), our approach is unable to learn effective prediction model by using T2 and T3 only.
That means F-measures of ER5a , ER5b, and ER5c are better than the other techniques in
Table 27 because of the strong discrimination of T2 (i.e., number of failed traces) and T3
(i.e., number of passed traces) features for the three techniques. Upon closer inspection, we
find that whenever the number of failing traces are too many (which also means the number
of passed traces are too few) then it is highly likely that ER5a , ER5b, and ER5c instances
are ineffective. When the number of failing traces are too many, it is likely that ne

f scores of
many program elements (including those that are not faults) are equally high. The simpler
formulas cannot distinguish these program elements resulting in ineffective instances.

Table 23 Precision, recall, and F-measure in predicting effectiveness of ER5a using various classifiers

Tool Precision Recall F-Measure

SVMExt 42.5 % 100 % 59.65 %

SVM 0.00 % 0.00 % 0.00 %

J48 66.67 % 27.45 % 38.89 %

KStar 54.17 % 50.98 % 52.53 %

IBk 54.17 % 50.98 % 52.53 %
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Table 24 Precision, recall, and F-measure in predicting effectiveness of ER5b using various classifiers

Tool Precision Recall F-Measure

SVMExt 42.5 % 100 % 59.65 %

SVM 0.00 % 0.00 % 0.00 %

J48 66.67 % 27.45 % 38.89 %

KStar 55.32 % 50.98 % 53.06 %

IBk 48.08 % 49.02 % 48.54 %

6.5 Threats to Validity

We consider three kinds of threats to validity: internal, external, and constructing validity.
Threats to internal validity corresponds to experimenter bias. In our experiments, we use the
programs that are manually instrumented by Lucia et al. (2010). Due to the manual instru-
mentation process, there might be some basic blocks that are missed (i.e., no instrumentation
code is added for them). Threats to external validity corresponds to the generalizability of
our findings. In this study, we have analyzed 10 different programs. These programs are
widely studied in past fault localization studies and thus collectively they can be used as a
benchmark. We have also analyzed programs written in two programming languages: C and
Java. Still, more programs can be analyzed to reduce the threat further. We plan to do this in
a future work. Threats to construct validity corresponds to the suitability of our metrics. We
use standard metrics of precision, recall, and F-measure. These are well known metrics in
data mining, machine learning, and information retrieval and have been used in many past
studies in software engineering, e.g., Huang et al. (2011), Maiga et al. (2012), and Anvik
et al. (2006). Thus with respect to these metrics, we believe there is little threat to construct
validity. Another threat to construct validity is our definition of effective fault localization
instance. In this preliminary study, we consider an instance is effective if at least one of the
root cause is in the top-10 most suspicious program elements. Other definitions of effective
fault localization could be considered, e.g., the root cause must be in the top-1 most suspi-
cious program elements for an instance to be effective, etc. We leave the consideration of
other definitions of effective fault localization for future work.

7 Related Work

In this section, we highlight a number of studies in spectrum-based fault localization
which analyze program traces or their abstractions which capture the runtime behaviors of
program.

Table 25 Precision, recall, and F-measure in predicting effectiveness of ER5c using various classifiers

Tool Precision Recall F-Measure

SVMExt 42.5 % 100 % 59.65 %

SVM 0.00 % 0.00 % 0.00 %

J48 66.67 % 27.45 % 38.89 %

KStar 55.56 % 49.02 % 52.08 %

IBk 52.94 % 52.94 % 52.94 %
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Table 26 Precision, recall, and F-measure in predicting effectiveness of DStar using various classifiers

Tool Precision Recall F-Measure

SVMExt 66.23 % 94.44 % 77.86 %

SVM 65.38 % 94.44 % 77.27 %

J48 71.55 % 76.85 % 74.11 %

KStar 73.39 % 74.07 % 73.73 %

IBk 76.85 % 76.85 % 76.85 %

Many spectrum-based fault localizations studies analyze two sets of program spectra: one
set corresponding to correct executions, and another set corresponding to faulty executions
(Jones and Harrold 2005; Abreu et al. 2007; Zeller 2002; Liblit et al. 2003; Liu et al. 2005;
Santelices et al. 2009; Cheng et al. 2009; Lo et al. 2011; Gong et al. 2012; 2012; Lucia
et al. 2010; Artzi et al. 2010). Based on these inputs, these studies would typically compute
likelihood of different program elements to be the root cause of the faulty executions (aka.
failures). Jones and Harrold propose Tarantula that computes the suspiciousness scores of
various program elements by following this intuition: program elements that are executed
more frequently by faulty executions rather than correct executions are deemed to be more
suspicious (Jones and Harrold 2005). Abreu et al. propose a different formula to compute
suspiciousness scores (Abreu et al. 2007). They show that their proposed formula named
Ochiai is able to outperform Tarantula. Zeller proposes Delta Debugging which compares
a faulty execution and a correct execution and find the minimum state differences (Zeller
2002). Liblit et al. compute predicates whose true evaluation correlates with failures (Liblit
et al. 2003). This work is extended by Chao et al. which propose a work, named SOBER,
that considers the repeated outcomes of predicate evaluations in a program run (Liu et al.
2005). Santelices et al. use multiple program spectra to localize faults (Santelices et al.
2009). Cheng et al. propose an approach to mine a graph-based signatures, referred to as bug
signatures, that differentiates correct from faulty executions (Cheng et al. 2009). Lo et al.
extend the work of Cheng et al. by minimizing signatures and fusing minimized signatures
to capture the context of program errors better (Lo et al. 2011). Gong et al. after that propose
a test case prioritization technique to reduce the number of test cases with known oracles for
fault localization (Gong et al. 2012). Gong et al. propose interactive fault localization where

Table 27 Precision, recall, and F-measure of our approach in predicting effectiveness of various fault
localization tools for multi-bugs setting

Tool Precision Recall F-Measure

Tarantula 70.09 % 80.39 % 74.89 %

Ochiai 78.72 % 63.25 % 70.14 %

Information Gain 84.95 % 65.29 % 73.83 %

ER1a 68.81 % 80.65 % 74.26 %

ER1b 68.52 % 77.08 % 72.55 %

ER5a 77.11 % 92.75 % 84.21 %

ER5b 77.11 % 92.75 % 84.21 %

ER5c 77.11 % 94.12 % 84.77 %

DStar 73.15 % 73.15 % 73.15 %
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a fault localization tool iteratively updates its recommendation as it receives feedback from
end users (Gong et al. 2012). Lucia et al. investigate many association measures and adapt
them for fault localization (Lucia et al. 2010). They find that Information Gain performs the
best. Wang et al. employ search-based algorithms to combine various association measures
and existing fault localization algorithms (Wang et al. 2011). Artzi et al. use test generation
for fault localization (Artzi et al. 2010). Wong et al. propose an approach that applies radial
basis function (RBF) networks for fault localization (Wong et al. 2012a). In another study,
Wong et al. propose a crosstab-based statistical approach for fault localization (Wong et al.
2012b). Recently, Wong et al. propose DStar (D*) formula to localize faults and show that
DStar outperforms 38 other formulas (Wong et al. 2014).

Other spectrum-based fault localizations analyze only one set of program spectra, i.e.,
faulty executions (Zhang et al. 2006; Gupta et al. 2005; Jeffrey et al. 2008). These tech-
niques typically modify program runtime states systematically to localize faulty program
elements. In this work, we focus on fault localization tools that compare correct and faulty
executions.

8 Conclusion and Future Work

In this study, to address the unreliability of fault localization tools, we build an oracle that
can predict the effectiveness of a fault localization tool on a set of execution traces. We
propose 50 features that can capture interesting dimensions that potentially differentiate
effective from ineffective fault localization instances. Values of these features from a train-
ing set of faulty localization instances can be used to build a discriminative model using
machine learning. This model is then used to predict if unknown instances are effective or
not. We have evaluated our solution on 200 faulty versions from NanoXML, XML-Security,
Space, and the 7 programs in the Siemens test suite. Our solution can achieve a precision,
recall, and F-measure of up to 74.38 %, 90.00 % and 81.45 %, respectively (for ER1a and
ER1b). We have also tested different aspects of our solution including its ability to han-
dle cross-program setting and multi-bugs setting and the results are promising. Our study
is the first study in this line of work (i.e., predicting the effectiveness of a fault localization
technique). Future research can be done to reduce the number of cases where our approach
is less effective. Overall, for most of the fault localization techniques studied in this work,
the F-measures of our approach are above 70 %. F-measure of 70 % or higher is often
considered reasonable in the literature.

As future work, we plan to improve the F-measure of our proposed approach in the
following ways: We plan to perform an in-depth analysis of cases where our proposed
approach is less effective and design appropriate extension to the approach. We would also
like to evaluate our approach’s ability to predict the effectiveness of additional fault local-
ization techniques, e.g., Cheng et al. (2009), Wang et al. (2011), Santelices et al. (2009), and
Chilimbi et al. (2009). It is also interesting to leverage other information aside from execu-
tion traces; some failures come with textual descriptions (Zhou et al. 2012), and it would be
interesting to employ advanced text mining solutions (Blei et al. 2003; Wang et al. 2009) to
identify whether fault localization tools would be effective on such failures.
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Maiga A, Ali N, Bhattacharya N, Sabane A, Guéhéneuc YG, Antoniol G, Aı̈meur E (2012) Support vector

machines for anti-pattern detection. In: ASE
Parnin C, Orso A (2011) Are automated debugging techniques actually helping programmers? In: Dwyer

MB, Tip F (eds) ISSTA. ACM, pp 199–209
Quinlan R (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo
Renieris M, Reiss S (2003) Fault localization with nearest neighbor queries. In: ASE, pp 141–154



1274 Empir Software Eng (2015) 20:1237–1274

Reps T, Ball T, Das M, Larus J (1997) The use of program profiling for software maintenance with
applications to the year 2000 problem. In: ESEC/FSE

Salton G, McGill M (1983) Introduction to Modern Information Retrieval. McGraw-Hill
Santelices R, Jones J, Yu Y, Harrold M (2009) Lightweight fault-localization using multiple coverage types.

In: ICSE
Seo H, Kim S (2012) Predicting recurring crash stacks. In: ASE, pp 180–189
Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, ichi Matsumoto K (2010)

Predicting re-opened bugs: A case study on the eclipse project. In: WCRE, pp 249–258
Shihab E, Ihara A, Kamei Y, Ibrahim W, Ohira M, Adams B, Hassan AE, Matsumoto K (2012) Studying

re-opened bugs in open source software. Empirical Software Engineering
Sun C, Lo D, Wang X, Jiang J, Khoo SC (2010) A discriminative model approach for accurate duplicate bug

report retrieval. In: ICSE (1)
Tassey G (2002) The economic impacts of inadequate infrastructure for software testing. National Institute

of Standards and Technology Planning Report:02–32002
Thung F, Lo D, Jiang L (2012) Automatic defect categorization. In: WCRE
Tian Y, Sun C, Lo D (2012) Improved duplicate bug report identification. In: CSMR, pp 385–390
Vapnik V (2000) The Nature of Statistical Learning Theory, 2nd edn. Springer-Verlag
Wang S, Lo D, Jiang L (2011) Search-based fault localization. In: ASE
Wang X, Lo D, Jiang J, Zhang L, Mei H (2009) Extracting paraphrases of technical terms from noisy parallel

software corpora. In: ACL/IJCNLP
Wong WE, Debroy V, Golden R, Xu X, Thuraisingham BM (2012a) Effective software fault localization

using an rbf neural network. IEEE Trans Reliab 61(1):149–169
Wong WE, Debroy V, Xu D (2012b) Towards better fault localization: A crosstab-based statistical approach.

IEEE Trans Syst Man Cybern Part C 42(3):378–396
Wong WE, Debroy V, Gao R, Li Y (2014) The dstar method for effective software fault localization. IEEE

Trans Reliab 63(1):290–308
Xie X, Chen T, Kuo FC, Xu B (2013) A theoretical analysis of the risk evaluation formulas for spectrum-

based fault localization. TOSEM
Zeller A (2002) Isolating cause-effect chains from computer programs. In: FSE, pp 1–10
Zhang X, Gupta N, Gupta R (2006) Locating faults through automated predicate switching. In: ICSE
Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate information retrieval-based

bug localization based on bug reports. In: ICSE
Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large

scale experiment on data vs. domain vs. process. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM, pp 91–100


	Should I follow this fault localization tool's output?
	Abstract
	Introduction
	Scenario 1 - Without Oracle:
	Scenario 2 - With Oracle:


	Preliminaries & Problem Definition
	Fault Localization
	Effectiveness Prediction

	Overall Framework
	Feature Extraction
	Model Learning & Effectiveness Prediction
	Model Learning
	Off-the-Shelf SVM
	SVMExt

	Effectiveness Prediction

	Experiments
	Dataset
	Evaluation Metrics & Experiment Settings
	Research Questions
	Results
	RQ1: Overall Accuracy
	RQ2: Different Fault Localization Tools
	RQ3: SVMExt vs. SVM
	RQ4: SVMExt vs. SVMus
	RQ5: Important Features
	RQ6: Different Amount of Training Data
	RQ7: Cross-program Setting
	RQ8: Effectiveness of Different Classifiers
	RQ9: Multi-bugs Setting

	Threats to Validity

	Related Work
	Conclusion and Future Work
	References


