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Abstract Many networks can be modeled as signed graphs. These include social
networks, and relationships/interactions networks. Detecting sub-structures in such
networks helps us understand user behavior, predict links, and recommend products.
In this paper, we detect dense sub-structures from a signed graph, called quasi antag-
onistic communities (QACs). An antagonistic community consists of two groups of
users expressing positive relationships within each group but negative relationships
across groups. Instead of requiring complete set of negative links across its groups, a
QAC allows a small number of inter-group negative links to be missing. We propose
an algorithm, Mascot, to find all maximal quasi antagonistic communities (MQACs).
Mascot consists of two stages: pruning and enumeration stages. Based on the prop-
erties of QAC, we propose four pruning rules to reduce the size of candidate graphs
in the pruning stage. We use an enumeration tree to enumerate all strongly connected
subgraphs in a top–down fashion in the second stage before they are used to construct
MQACs. We have conducted extensive experiments using synthetic signed graphs
and two real networks to demonstrate the efficiency and accuracy of the Mascot
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algorithm. We have also found that detecting MQACs helps us to predict the signs of
links.

Keywords Signed graph · Bi-clique · Quasi antagonistic community ·
Enumeration tree · Power law distribution

1 Introduction

1.1 Motivation

The recent surge of online social networks and social media has radically changed the
way social communities are studied. Traditional social science research defines social
community to be a tightly knitted group of users in a social network of friendship links.
In the last several decades, researchers have introduced several community definitions
each with a distinct criteria for dense connectivities among the community’s members.
For example, community can be defined as a clique or quasi-clique, or a subgraph
that contains much denser internal links than external links (Wasserman and Faust
1994; Palla et al. 2005). With these definitions, a large body of community detection
algorithms have been developed.

In all these above-mentioned research, the common assumption is that there are only
positive links among users in the social networks. Many of today’s social networks are
however signed graphs with positive and negative links. The positive links represent
friendship or trust while the negative links represent foe or distrust. Although the
traditional definitions of community and community detection algorithms are still
applicable to these signed social networks by ignoring the negative links, there are
interesting community structures including negative links that should be studied.

In this paper, we focus on pairs of antagonistic sub-communities such that users of
the same sub-community share many positive relationships with one another, while
users between a pair of antagonistic sub-communities have many negative relation-
ships. A pair of antagonistic sub-communities may represent two political fractions
(e.g., republicans vs democrats), supporters of two rival product brands (e.g., Apple vs
Samsung), or fans of two competing artists (e.g., Justin Bieber vs Conor Maynard1).
In these examples, users within the same sub-community enjoy positive relationships
among themselves, while users from opposing sub-communities are likely to have neg-
ative relationships. Figure 1 depicts an example pair of antagonistic sub-communities,
{u1, u2, u3} and {u4, u5, u6}.

Antagonistic sub-communities in signed networks have not been studied much in
the social science research literature. In the context of signed network, the social
balance theory says that for any three users in triadic relationships, their triad is bal-
anced when either only positive relationships exist among them, or one of them has
negative relationships with the remaining two users who are positively related as
shown in Fig. 2. A complete signed network therefore has exactly two user groups
emerging when all users attempt to reduce cognitive dissonance among themselves by

1 Justin Bieber and Conor Maynard are two teens who enjoy wide success in their singing career.
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Fig. 1 An antagonistic
community

u1

u2

u3

u4

u5

u6

positive link

negative link

Fig. 2 Balanced triads

(a) (b)

+ve

+ve

+ve -ve -ve

+ve

selecting the appropriate signs for their links with other users (Heider 1946; Cartwright
and Harary 1956). Every user of a group will then have a positive link with every
other user in the same group, but a negative link with every user from the other
group. As most social networks are not complete, the above scenario can rarely
be observed. Nevertheless, if the social balance theory is applied to only parts of
a social network, one should find multiple pairs of antagonistic user groups in the
network.

In this paper, we are therefore interested to find the antagonistic sub-communities
as the localized effect of social balance theory. The sub-community level hostility
may prevent the users across sub-communities from good collaboration and friendly
interaction. The interaction among the members from opposing sub-communities may
largely focus on topics that are contentious. The antagonistic user sub-communities
can also have impact to their neighborhoods as more users may decide to join the
antagonism. Given these negative implications, it becomes an important research task
to discover antagonistic sub-communities and to intervene them as early as possible.

Beyond detecting them, one could use antagonistic sub-communities to predict link
polarity, user preferences, and product adoption. In link prediction, the balanced tri-
ads in antagonistic sub-communities can be used to predict the link polarity (Heider
1946; Cartwright and Harary 1956). For user preference and product adoption pre-
diction, antagonistic sub-communities can be used to infer the user preferences as the
intra-community users of antagonistic sub-communities are more likely to share sim-
ilar preferences. For example, Apple and Windows users might be antagonistic to one
another, and thus they have different preferences in the products that they purchase
or adopt. To the best of our knowledge, exploiting antagonistic sub-communities for
predicting polarity, user preferences and product adoption is an entirely unexplored
research territory. The obvious reason here is the lack of prior work on antagonistic
sub-communities.
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Fig. 3 Antagonistic
sub-community as a local
structure

An antagonistic sub-community is a local community structure as opposed to the
global community structure that has been studied in many previous community dis-
covery research (Girvan and Newman 2004; Karrer and Newman 2011; Ball et al.
2011; Ronhovde and Nussinov 2009). A global community structure is an optimal
partition of the whole network, where each vertex belongs to at least one community.
The partition maximizes some global objective functions, rather than local properties.
In contrast, an antagonistic sub-community defines a dense subgraph associated with
some local properties. It is therefore a local structure. For example, Fig. 3 shows a
network where there is an antagonistic sub-community (in dashed red circle) involving
vertices v4, v5, v6, v7 and these vertices belong to two global communities (in solid
blue circle).

The previous works on antagonistic communities can be divided into indi-
rect (Zhang et al. 2010, 2013) and direct (Lo et al. 2011, 2013) antagonistic sub-
communities. The former is applicable to user-rate-item networks where a negative
relationship exists between two users when they have significant disagreements in
their ratings on some common items. A pair of indirect antagonistic sub-communities
involves users of different sub-communities have conflicting ratings on the commonly
rated items. Lo et al. defined direct antagonistic community (DAC) over a signed
network (Lo et al. 2011, 2013). A DAC consists of two sub-communities. Each
sub-community is a strongly connected subgraph w.r.t. positive links, and the two
sub-communities form a bi-clique w.r.t. negative links. Due to the sparsity of social
networks, missing links between users are very common. However, the bi-clique
requirement is overly restrictive as a user from a sub-community may not interact
with every user from the other sub-community. Hence, it is necessary to relax the
condition on inter-community negative links.
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1.2 Research objectives

In this paper, we introduce a new dense local structure called quasi antagonistic com-
munity (QAC) which consists of two connected sub-communities with positive links
and two sub-communities form a quasi-biclique of negative links. With this defini-
tion, our objective is to detect all maximal quasi antagonistic communities (MQACs)
from a given signed network since any QAC must be a subgraph of the correspond-
ing MQACs. We only mine maximal communities to reduce the number of mined
communities. The number of small communities can be exponential to the number
of maximal communities that contain them. Thus if we mine all the small communi-
ties, the number of communities will be too large to enumerate efficiently and output.
Furthermore, many of these small communities would be very similar to one another.

The above problem is challenging as the maximum vertex quasi-biclique problem
is NP-hard (Liu et al. 2008). Hence, computing QACs is also a NP-hard problem
because the number of QACs to be examined grows exponentially with the number of
edges. In addition, existing algorithm for detecting DACs cannot apply to find QACs
as some members of a QAC may not fully connect to all members on the opposing
sub-community.

We address the MQACs detection problem using two main ideas, namely: (a) effi-
cient pruning of search space, and (b) efficient enumeration of MQAC candidates. We
summarize the main research contributions of this work as follows:

– We define QAC, a novel dense local structure, to model antagonistic community in a
signed network. Compared with the earlier antagonistic community definition (Lo
et al. 2011, 2013), QAC is less restrictive as it permits some missing negative links
between its two antagonistic sub-communities. We derive two variants of QACs,
absolute and relative quasi antagonistic communities.

– We develop a novel algorithm called Mascot to detect all MQACs in two stages:
pruning stage and enumeration stage. In the pruning stage, we propose four pruning
rules, namely degree pruning, distance pruning, strongly connected component
pruning and interaction graph pruning, to reduce the size of candidate graphs to
be used for generating MQACs. These rules are all based on the QAC properties.
In the enumeration stage, we enumerate all strongly connected subgraphs of a sub-
community in a top–down manner, construct and verify the associated MQACs.

– We conduct an extensive set of experiments on synthetic graphs and two real
social networks to show the efficiency and effectiveness of our proposed Mascot
algorithm. We also examine a set of example cases of MQACs discovered from
the real signed networks. In addition, we find that detecting MQACs is helpful to
predict signs of links in the signed networks.

1.3 Paper outline

The paper is organized as follows. We describe the related work in Sect. 2. In Sect. 3,
we introduce the essential concepts and define the variants of quasi antagonistic com-
munity (QAC). Section 4 presents the steps of our proposed Mascot algorithm for
finding all MQACs. Sections 5 and 6 elaborate the pruning and enumeration steps
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in Mascot respectively. Subsequently, Sect. 7 presents the algorithm to detect all
MQACs. Sections 8 and 9 cover our experimental studies on synthetic graphs and two
real networks respectively. Finally, we give the concluding remarks in Sect. 10.

2 Related work

2.1 Community detection

Uncovering the community structure is crucial to understand the structure of complex
and large networks. Many techniques have been proposed so far. These works in the
literature can be grouped into two kinds of community structures.

The first kind considers global community structures. Such communities divide the
entire graphs into smaller dense subgraphs. The literature offers many global crite-
ria to identify the global communities. Examples are vertex similarity (Leicht et al.
2006), spectral algorithm (Donetti and Munoz 2004), modularity (Girvan and New-
man 2004; Karrer and Newman 2011; Ball et al. 2011), and Potts model approach
(Ronhovde and Nussinov 2009) etc. Among them, modularity has been frequently
used to evaluate the goodness of community structure of networks. Louvain
method (Blondel et al. 2008) is an efficient approach to detect communities by local
optimal modularity score. Communities detection for a graph with million nodes using
the Louvain method can take only a few minutes.

The second kind involves local community structures. Local community structures
focus on subgraphs that satisfy specific local properties, but neglecting the rest of
the graph. The corresponding structure are mostly maximal subgraphs, which cannot
be enlarged by the addition of new vertices and edges without violating the local
properties. A clique is defined in a very strict sense as subgraphs whose vertices are
all adjacent to one another (Luce and Perry 1949). In the context of bipartite graph,
a bi-clique is a complete subgraph of the bipartite graph (Groshaus and Szwarcfiter
2010). Triangles are the simplest cliques, and are frequent in real networks. But larger
clique less frequent. The similar observation can be obtained for bi-clique.

It is however possible to relax the concept of clique, defining subgraphs which are
still clique-like structures. The first kind of possibility is to use properties related to
the existence of paths between vertices. An n-clique is a maximal subgraph such that
the distance of each pair of its vertices is not larger than n (Alba 1973). Another two
possible alternatives, the n-clan and the n-club are defined by Mokken (1979). An n-
clan is an n-clique whose diameter is not larger than n (Mokken 1979; Luce 1950). An
n-club is a maximal subgraph of diameter n (Mokken 1979; Jamali and Abolhassani
2006). The second kind of possibility is to restrict the adjacency of vertices. The idea
is that a vertex must be adjacent to some minimum number of other vertices in the
subgraph. A k-plex is a maximal subgraph in which each vertex is adjacent to all other
vertices of the subgraph except at most k of them (Everett 1982). Similarly, a k-core
is a maximal subgraph such that each vertex is adjacent to at least k other vertices of
the subgraph (Giatsidis et al. 2011; Alvarez-Hamelin et al. 2008). The third kind of
possibility is to restrict the density of subgraph. Comparing to clique, a quasi clique
is a maximal subgraph in which density of the subgraph is not less than a pre-defined
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threshold (Abello et al. 2002; Liu and Wong 2008). A quasi bi-clique is to relax the
adjacency of its vertices (Li et al. 2008).

2.2 Community structure on signed networks

Community detection on unsigned networks take into account only positively valued
links. However, many actual networks also feature as signed networks with both pos-
itive and negative links. In the context of signed graph, the community structures can
be also categorized into the global community structures and the local community
structures.

For global community structures, Doreian and Mrvar (1996) detects communi-
ties from signed networks by optimizing frustration, where frustration is defined by
the sum of the number of positive inter-community links and the number of neg-
ative intra-community links. Anchuri and Ismail propose a spectral approach that
tries to maximize modularity and minimize frustration (Anchuri et al. 2012). Traag
and Bruggeman further extend Potts model by adapting the concept of modularity to
detect communities in signed networks (Traag and Bruggeman 2009). The paper by
Mucha and Porter (2010) and Mucha et al. (2010) proposed an approach to detect
community from arbitrary multi-slice networks, where each slice can be any kind of
network. A signed network is treated as a two-slice network: positive slice and neg-
ative slice. Correlation clustering is to partition a complete signed network such that
maximizes the number of positive links with clusters, plus the number of negative
links between clusters (Bansal et al. 2004). But complete signed networks is very rare
in real applications.

The global community structures of a network ignore the local structure of its
vertices. The community is significantly different from local community structures,
which this paper focuses. The closest to our work are our previous work (Zhang et al.
2010, 2013; Lo et al. 2011, 2013). Zhang et al. (2010, 2013) proposed an approach
to mine antagonistic communities from rating networks. The work focuses on detect-
ing conflicting ratings on some commonly rated objects and determining antagonistic
communities from them. Lo et. al proposed an approach to mine antagonistic commu-
nities from explicit trust networks (Lo et al. 2011, 2013). The definition of antagonistic
community is however very restrictive and does not work well when some links are
missing or noisy. In this paper, we therefore define quasi antagonistic community by
relaxing requirement of negative inter-sub-communities links.

3 Preliminary

Our quasi antagonistic community consists of a pair of sub-communities such that each
sub-community is a strongly connected subgraph using positive links, and a quasi-
biclique of negative links exist between the two sub-communities. In this section, we
first introduce the concepts related to antagonistic community. We then formally define
our problem.
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Definition] 1 An undirected signed graph G is a triple (V, E+, E−), where V is a
vertex set, E+ and E− represent positive edge set and negative edge set respectively.

Definition] 2 A strongly connected subgraph (SCS) of G is a subgraph G ′ such that
there exists a series of edges in G ′ connecting every pair of vertices in G ′.

Definition] 3 A strongly connected component (SCC) of G is a strongly connected
subgraph that is maximal in size.

Definition] 4 The positive neighborhood of a vertex v in a signed graph G =
(V, E+, E−), denoted as Γ +(v), is defined as

Γ +(v) = {u|(v, u) ∈ E+};

We define the projection of positive neighborhood of the vertex v to a set of vertices
U ⊂ V w.r.t. positive links as

Γ +
U (v) = {u|(v, u) ∈ E+ ∧ u ∈ U };

The positive neighborhood of a vertex set S in a signed graph G = (V, E+, E−),
denoted as Γ +(S), is defined as

Γ +(S) = {u|(v, u) ∈ E+ ∧ v ∈ S}.

The definitions of negative neighborhood and projection of negative neighborhood of
vertex v, and negative neighborhood of a vertex set S are defined in a similar manner.

We define an antagonistic community as a subgraph with two vertex sets densely
linked with each other by negative links. Such a subgraph is also known as a quasi-
biclique (QB) (Li et al. 2008). There are the absolute and relative versions of QB.

Definition] 5 Let V1 and V2 be two disjoint vertex sets and E be a set of edges between
V1 and V2. H = 〈V1, V2, E〉 is a μ-tolerant absolute QB if for each v ∈ Vi , i ∈ {1, 2},
1. v is disconnected from at most μ vertices in Vj , and
2. v is adjacent to at least μ vertices in Vj

2;

where j �= i .

μ-tolerant absolute QB does not always look like a densely connected QB. Fig-
ure 4a depicts a μ-tolerant absolute QB with μ = 1. Note that the members of each
sub-community are not connected and the subgraph does not look like a community.
We therefore propose (ε, min_si ze) absolute QB where ε and min_si ze are mini-
mum threshold of missing links and minimum sub-community size respectively and
min_si ze > 2ε.

2 Another version of absolute QB that does not include condition (2) was proposed in a subsequent
work (Sim et al. 2006).
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Definition] 6 Let V1 and V2 be two disjoint vertex sets (or sub-communities), E
be a set of edges between V1 and V2, and min_si ze > 2ε. H = 〈V1, V2, E〉 is a
(ε, min_si ze) absolute QB if for each i ∈ {1, 2},
1. |Vi | ≥ min_si ze;
2. |Vj − ΓVj (v)| ≤ ε, for each v ∈ Vi and j �= i .

(ε, min_si ze) absolute QB requires each vertex in one vertex set of the biclique
to be disconnected to at most ε vertices from another vertex set, and the condition
min_si ze > 2ε ensures that the biclique is connected. The proof of (ε, min_si ze)
absolute QB is connected will be shown in Sect. 5.2. For example, Fig. 4a is not a
(1,2) absolute QB because min_si ze ≯ 2ε. Figure 4b depicts a (1,3) absolute QB.

Note that Fig. 4b is also a 1-tolerant absolute QB. It turns out that (ε, min_si ze)
absolute QB is a special class of μ-tolerant absolute QB where ε = μ. According
to definition of (ε, min_si ze) absolute QB, every vertex in a vertex set, say Vi , is
connected to at least |Vj | − ε vertices in another vertex set Vj . Obviously, |Vj | − ε ≥
min_si ze−ε > ε because min_si ze > 2ε. Hence, a (ε, min_si ze) absolute QB must
be a μ−tolerant absolute QB when μ = ε. As ε is an absolute value, it may not work
well for large size antagonistic communities. We now introduce the relative versions
of QB.

Definition] 7 Let δ be a small value between 0 and 1, V1 and V2 be two disjoint vertex
sets (or sub-communities) and E be a set of edges between V1 and V2. H = 〈V1, V2, E〉
is a δ-tolerance relative QB if for each v ∈ Vi , i ∈ {1, 2}, v is disconnected from at
most δ · |Vj | vertices in Vj where j �= i (Li et al. 2008).

Similar to the μ-tolerant absolute QB definition, δ-tolerant relative QB could be
disconnected when δ ≥ 1

2 . For example, Fig. 4a depicts a disconnected 1
2 -tolerant QB.

To allow only connected QB’s, we introduce the (δ, min_si ze) relative QB.

Definition] 8 Let V1 and V2 be two disjoint vertex sets, E be a set of edges between
V1 and V2, and δ < 1

2 . H = 〈V1, V2, E〉 is a (δ, min_si ze) relative QB if for each
i ∈ {1, 2},
1. |Vi | ≥ min_si ze, i = 1, 2;
2. |Vj − ΓVj (v)| ≤ δ · |Vj |, for each v ∈ Vi and j �= i .

We require δ < 1
2 so as to ensure that a vertex is connected to most vertices from

another vertex set and the graph stays connected. For example, Fig. 4b depicts a
( 1

3 , 3
)
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relative QB. By definition, a (δ, min_si ze) relative QB must be a δ-tolerant relative
QB.

According to Definitions 6 and 8, (ε, min_si ze) absolute QB is also a (δ, min_si ze)
relative QB when δ ≥ ε

min_si ze . This is due to the fact that

ε ≤ δ · min_si ze ≤ δ · |Vj |; (1)

|ΓVj (v)| > |Vj | − ε ≥ |Vj | − δ · |Vj | ≥ (1 − δ)|Vj |. (2)

On the other hand, a (δ, min_si ze) relative QB may not be a (ε, min_si ze) absolute
QB when δ ≥ ε

min_si ze . For example, Fig. 4c depicts a ( 1
3 , 3) relative QB which is not

a (1,3) absolute QB. Moreover, if a vertex set has fewer than 3 vertices, then ε and
δ · min_si ze must be equal to 0.

In our example, the
( 1

3 , 3
)

relative QB in Fig. 4b can also be found in another larger( 1
3 , 3

)
relative QB in Fig. 4c. Instead of finding all combinations of

( 1
3 , 3

)
relative QB,

we introduce maximal QB in Definition 9.

Definition] 9 H = 〈V1, V2, E〉 is a maximal QB if there is no other QB H ′ =
〈V ′

1, V ′
2, E ′〉 such that H �= H ′ and V1 ⊆ V ′

1, V2 ⊆ V ′
2 and E ⊆ E ′.

For example, the graph in Fig. 4b is not a maximal 1-tolerant absolute QB because
its supergraph is also 1-tolerant absolute QB. The graph in Fig. 4c is a maximal

( 1
3 , 3

)

relative QB if there is not supergraph that is a
( 1

3 , 3
)

relative QB.
Based on the definitions of QB, we now define quasi-antagonistic community for

a signed graph in Definition 10.

Definition] 10 A QB = 〈L , R, E〉 is a quasi-antagonistic community (QAC) if L and
R are strongly connected subgraphs (SCSs) involving positive edges only.

In this paper, we consider two versions of QAC, namely the absolute quasi antag-
onistic community (aQAC) if we use (ε, min_si ze) absolute QB, and relative quasi-
antagonistic community (rQAC) if we use (δ, min_si ze) relative QB.

Figure 4d depicts an aQAC with (1,3) absolute QB for the negative edges, or a
rQAC with

( 1
3 , 3

)
relative QB for the negative edges. The vertices in each vertex set

(or sub-community) form a strongly connected subgraph by positive links.
The above QAC definition relaxes the direct antagonistic community (DAC) in

our earlier paper (Lo et al. 2011) which requires the negative links between sub-
communities to form a complete biclique.

As a QAC may be a subgraph of another larger QAC, we now define the maximal
quasi antagonistic community.

Definition] 11 H = 〈L , R, E〉 is a maximal quasi antagonistic community (MQAC)
if there is no other QAC H ′ = 〈L ′, R′, , E ′〉 such that H �= H ′ and L ⊆ L ′, R ⊆ R′,
and E ⊆ E ′.

For example, the graph in Fig. 4d is a maximal aQAC with min_si ze = 3 and
ε = 1 or a maximal rQAC with min_si ze = 3 and δ = 1

3 because: (1) two sets of
vertices are SCSs w.r.t. positive links only; (2) two sets of vertices form a maximal
(1, 3) absolute QB and a maximal

( 1
3 , 3

)
relative QB w.r.t. negative links.
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Unless otherwise specified, MQAC denotes that maximal aQAC or maximal rQAC
in this paper. We also use 〈L , R〉 to represent a QB 〈L , R, E〉 or a quasi-antagonistic
community (QAC) 〈L , R, E〉 in the remainder of the paper to simplify the notations.

We now define the research problem of our work to be finding all MQACs in a given
signed graph. Solving this problem is challenging because the number of MQACs can
grow exponentially with the graph size. In this paper, we therefore aim to design
an algorithm to find all maximal aQACs and rQACs efficiently. We will present our
proposed solution framework in Sect. 4.

4 MASCOT: a proposed framework for detecting MQACs

Given an input signed graph, a naive method to return all MQACs is to enumerate and
test all subgraphs. The obvious disadvantage of this method is a very large number
of candidate MQACs which are costly to generate and test. We therefore propose a
framework called Mascot that incorporates three processing steps grouped under
pruning and enumeration stages as shown in Fig. 5.

There are four pruning rules that can be used to reduce the search space. The
framework performs Step 1 that reduces an input signed graph according to degree
pruning rule (Rule 1). The main idea is to remove vertices that do not satisfy some
degree requirements. Given that the removal of a set of vertices may change the degree
of other vertices, this pruning can be repeated till there are no more vertices that can be
removed by the rule. Since each MQAC must be the subgraph of an induced graph as
shown in Property 3 in Sect. 5, detecting MQACs of a given signed graph is converted
into detecting MQACs from its induced graphs. For each vertex in the pruned input
graph, we construct an induced graph which consists of a pair of left and right vertex
sets. The induced graphs are further pruned using a combined set of pruning rules in
Step 2 (combined pruning) before they are used as candidate graphs for computing

Pruning
(Rule 1)

Degree
Pruning

Combined
Pruning

Pruning
(Rules 1 to 3)

Pruning
(Rule 4)

Pruning
(Rules 1 to 3)

Enumeration
Input
Graph

Induced
Vertex

Set

Candidate
Graphs

MQACs

Construct
Induced Graph

For Each Induced Vertex

Pruning
(Rules 1 to 3)

Right Sub-
community

Enumeration

QAC Checking

Left Sub-community
Enumeration

For Each Candidate Graph

Maximal QAC
CheckingPruning Rules

Rule 1: Degree Pruning
Rule 2: SCC Pruning
Rule 3: Distance Pruning
Rule 4: Interaction Graph Pruning

Pruning Stage Enumeration Stage

Fig. 5 Mascot framework
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MQACs in Step 3 (enumeration). These rules will be elaborated in Sect. 5. As we will
show later, every MQAC is a subgraph of some pruned induced graphs (see Sect. 5.2).

In Step 3 (enumeration), we want to efficiently enumerate all QACs in each can-
didate graph. The naive approach is to list all subgraphs of a candidate graph and
verify if they are MQACs. Even when candidate graphs are smaller, this approach is
not efficient because the number of subgraphs in a candidate graph can still be large.
Since each sub-community of a QAC forms a SCS w.r.t. positive edges, we therefore
enumerate all connected subgraphs of each vertex set in a candidate graph. We first
enumerates all the SCSs of the left vertex set of the candidate graph. After applying
the pruning rules possibly repeatedly, we obtain new subgraphs with SCSs in both
left and right vertex sets. These subgraphs are verified to demonstrate the MQAC’s
properties before they are returned as the final results.

5 Pruning rules

In this section, we present the pruning rules used in Step 1 (degree pruning) and Step
2 (combined pruning) of the Mascot framework. The four pruning rules used are:
(i) degree pruning, (ii) strongly connected component (SCC) pruning, (iii) distance
pruning, and (iv) interaction graph pruning. In the following, we elaborate each of
these rules.

5.1 Input graph pruning

We first reduce the input graph by removing vertices and edges that are not required
in finding QACs. If a vertex v is contained in a QAC, it must have some neighbors
connected by positive links and negative links.

Property 1 Every vertex v in a QAC with min_si ze > 1 must have deg+(v) ≥ 1,
where deg+(v) denotes the positive degree of vertex v.

As each sub-community of a QAC is a SCS, there is a path with positive links
between any two vertices in the same sub-community. Thus, the positive degree of a
vertex cannot be 0.

Property 2 1. If v is a vertex in an aQAC, then deg−(v) ≥ min_si ze − ε;
2. If v is a vertex in a rQAC, then deg−(v) ≥ min_si ze(1 − δ);

where deg−(v) denotes the negative degree of vertex v.

The above properties define the lower bounds of the negative and positive degrees in
a QAC. Due to the nature of scale-free networks, both the positive and negative degrees
follow power law distribution (Dandekar 2010; Beyene et al. 2008). In other words, a
large number of vertices could be removed as they do not satisfy Properties 1 and 2.
Based on these properties, we propose the degree pruning rule in Pruning Rule 1.

Pruning Rule 1 (Degree pruning rule) Given a signed graph G(V, E+, E−), we
remove a vertex v and its edges if
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Fig. 6 Example of applying pruning rules

– For aQAC:
1. deg+(v) = 0; or
2. deg−(v) < min_si ze − ε.

– For rQAC:
1. deg+(v) = 0; or
2. deg−(v) < min_si ze(1 − δ).

Proof According to Properties 1 and 2, the correctness of this pruning rule can be
derived easily. �


For example, Fig. 6a is an input signed graph and we want to find aQACs with
min_si ze = 3 and ε = 1. Using Pruning Rule 1, vertex 13 is removed since its
negative degree is smaller than min_si ze − ε = 3 − 1 = 2 as shown in Fig. 6b. The
removal of vertex 13 will cause vertex 7 to be removed as its negative degree is now
smaller than min_si ze − ε.

5.2 Induced graph pruning

Every vertex may be a member of a QAC after the above pruning step. Hence, all
QACs can be obtained from combining the QACs involving different vertices. For
each vertex, we induce a candidate graph and compute all QACs involving the vertex
within the candidate graph. We want to keep the candidate graphs small for efficient
computation.

5.2.1 Induced graph

We first define for each vertex v ∈ V in a signed graph G = (V, E+, E−) three
k−th hop negative vertex neighbor sets S1(v), S2(v) and S3(v) based on the negative
distance from v as follows:

S1(v) = Γ −(v) \ {v}, (3)

S2(v) = Γ −(S1(v)), (4)

S3(v) = Γ −(S2(v)) \ {v}. (5)
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From the above three vertex sets, we define the candidate graph for computing QACs
as an induced graph as follows.

Definition] 12 Given a vertex v of a signed graph G = (V, E+, E−), the induced
graph of v is a signed graph I nd(v, G) = (

⋃3
i=1 Si (v), E+′

(v), E−′
(v)), where

E+′
(v) = {(u1, u2)|(u1, u2) ∈ E+, u1, u2 ∈ S1(v) ∪ S3(v)}

∪{(u1, u2)|(u1, u2) ∈ E+, u1, u2 ∈ S2(v)}, (6)

E−′
(v) = {(u1, u2)|(u1, u2) ∈ E−, u1, u2 ∈

3⋃

i=1

Si (v)}. (7)

For simplicity, we may represent I nd(v, G) by its two vertex sets S2(v) and S1(v)∪
S3(v), i.e., I nd(v, G) = 〈S2(v), S1(v) ∪ S3(v)〉. Formula 6 says that positive edges
exist in each vertex set, not across the two vertex sets. Meanwhile, Formula 7 says
that negative links exist between any pair of vertices. For the example in Fig. 6a, the
induced graph I nd(1, G) is shown in Fig. 6c and the left and right vertex sets of
I nd(1, G) are:

S2(1) = {1, 2, 3, 4, 5, 6}
S1(1) ∪ S3(1) = {8, 10} ∪ {8, 9, 10, 11, 12}

The interesting property of the induced graph is that every QAC is a subgraph of some
induced graphs. Before we formally introduce this in Property 3, we first present the
following Lemmas 1 and 2.

Lemma 1 If vertices vi and v j come from the same vertex set of a QAC, then they are
adjacent to at least one common vertex in the other vertex set w.r.t. negative links.

Proof Firstly, we consider the aQAC 〈L , R〉. Without loss of generality, suppose
that vi , v j ∈ L . Both Γ −

R (vi ) and Γ −
R (v j ) have size no smaller than |R| − ε. Since

|R| ≥ min_si ze > 2ε, we have

|Γ −
R (vi )| + |Γ −

R (v j )| ≥ 2|R| − 2ε > |R|; (8)

Thus, Γ −
R (vi ) and Γ −

R (v j ) share at least one common vertex.
For rQAC with δ < 1

2 , we can also obtain a similar property as shown in Eq. 9.

|Γ −
R (vi )| + |Γ −

R (v j )| ≥ 2(1 − δ)|R| > |R|; (9)

Lemma 2 (Constraint on Negative Distance) Suppose a signed graph G(V, E+, E−)

be a QAC. For any pair of vertices vi , v j ∈ V , the following constraint holds

dist−(vi , v j ) =
{

1 or 3, if vi and v j come from different vertex sets;
2, if vi and v j come from the same vertex set.

where dist−(vi , v j ) denotes the length of shortest negative paths between vi and v j .
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Fig. 7 Induced graph with common vertices

Proof Assume vi and v j are from the same vertex set, and without any loss of general-
ity, suppose vi , v j ∈ L . According to the Lemma 1, there is at least one vertex v0 ∈ R,
which is adjacent to vertices vi and v j in L . Hence, we have dist−(vi , v j ) = 2.

Assume vi and v j are from different vertex sets, and suppose vi ∈ L , and v j ∈
R. The negative distance between vi and v j is 1 if they are connected. Otherwise,
according to definition of QB, there is at least one vertex v0 in L , which is adjacent to
vertex v j ∈ R. Furthermore, according to Lemma 1, v0 ∈ R and vi ∈ R should have
at least one common neighbor in L . Thus, we have a shortest path from vertex vi to
vertex v j with negative distance = 3. �


We can therefore conclude that any pair of vertices in a QAC are connected w.r.t.
negative links.3 Next, we shall state Property 3 as follows:

Property 3 For each vertex v ∈ V of a signed graph G, if it is contained in a QAC,
then the QAC must be a subgraph of Ind(v,G).

Proof Let q = 〈L , R〉 be a (ε, min_si ze) absolute or (δ, min_si ze) relative QB and
vertex v be in the QB. Without loss of generality, let v ∈ L . For any other vertex
vl ∈ L , we have dist−(v, vl) = 2. Thus vl ∈ S2(v).

According to Lemma 2, for each vertex vr ∈ R, we have vr ∈ S1(v) or vr ∈ S3(v).
That is to say, vr ∈ S1(v) ∪ S3(v). Thus, the QAC containing vertex v must be a
subgraph of I nd(v, G).

Based on Property 3, a QAC only involves 3-hop vertices of the induced vertex. Given
an induced vertex, k-hop (k > 3) vertices can be removed from the input graph for
finding all QACs involving the induced vertex.

In addition, there may be vertices duplicated in both left and right vertex sets. This
occurs when an unbalanced triangle appears in an induced graph. For example, in
Fig. 7, vertices 1, 2 and 3 form an unbalanced triangle. Hence, the vertices 2 and 3 are
duplicated in the induced graph of vertex 0.

5.2.2 Degree pruning

Comparing to the input signed graph, an induced graph may remove the vertices that
are far away from the induced vertex w.r.t. negative links. We can therefore apply

3 Connectivity of any pair of vertices in a (ε, min_si ze) absolute QB or (δ, min_si ze) relative QB can be
proven in a similar manner.
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degree pruning rule to prune the induced graph since removal of a vertex affects the
degrees of the others. A vertex can be removed from an induced graph if its degrees
are smaller than the lower bounds of the positive and negative degrees of a QAC. For
example, Fig. 6c depicts Ind(1, G), where G is a signed graph shown in Fig. 6a. Vertex
6 can be removed since its positive degree is 0.

5.2.3 SCC pruning

Each vertex set of a QAC must belong to the same SCC involving positive links only.
We can therefore use the property to further reduce a candidate graph. This is achieved
by the Pruning Rule 2 (SCC pruning) below.

Pruning Rule 2 (SCC pruning). Let the induced graph of a vertex v Ind(v,G) be
H = 〈L , R〉. All vertices of a SCC can be removed from H if:

1. The SCC overlaps within vertex set L and it does not contain v; or
2. The size of the SCC is less than min_si ze.

As we wants to extract from I nd(v, G) only the QACs containing the induced
vertex v. According to Definition 12, v is contained in the vertex set L . Therefore,
only the SCC containing v should be retained. In addition, the vertex set of a QAC
must be a subset of a SCC. As the definition of QAC requires each sub-community to
have no less than min_si ze vertices, a SCC can be removed if its size is smaller than
min_si ze.

The first condition of the rule guarantees that every candidate graph generated from
an induced graph contains the induced vertex. The second condition says that the SCCs
in L or R must have at least min_si ze vertices. Suppose min_si ze = 3, and ε = 1.
Consider the induced graph of the induced vertex 1 in Fig. 6c, vertex 6 can be removed
by both conditions because: (i) SCC {6} does not contain the induced vertex 1; and
(ii) size of SCC {6} is smaller than min_si ze.

In addition, we can partition an induced graph I nd(v, G) = 〈L , R〉 into multiple
candidate graphs {〈Cl , Ci

r 〉}k
i=1 if there are k SCCs ({Ci

r }k
i=1) in R with sizes no less

than min_si ze, v ∈ Cl ⊂ L and Cl is a SCC with size no less than min_si ze. In
the remainder of this paper, the SCC pruning rule consists of Pruning Rule 2 and this
reduction operation.

5.2.4 Distance pruning

Distance pruning is inspired by the maximum distance between the two vertices in a
QAC using negative links. According to Lemma 2, vertices v and u cannot belong to
the same QAC if the negative distance between v and u is larger than 3. The latter
situation may occur in an induced graph when some of its vertices are removed from
the graph due to degree pruning and SCC pruning. Hence, we derive the distance
pruning rule in Pruning Rule 3.

Pruning Rule 3 (Distance pruning) Let G
′
I be subgraph of I nd(v, G) after degree

and SCC pruning. A vertex u can be removed from G
′
I if dist−(v, u) in G

′
I is larger

than 3.
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For example, Fig. 6a depicts a subgraph of ind(1, G) after some pruning. According
to Pruning Rule 3, vertex 7 is removed from the graph since the negative distance
between vertex 7 and vertex 1 is larger than 3. Similarly, vertex 13 is removed from
the graph.

5.2.5 Interaction graph pruning

There are further room for pruning even with Pruning Rules 1 to 3. Consider the
input signed graph induced by vertex 1 in Fig. 6a, min_si ze = 3 and ε = 1. We
can get a candidate graph in Fig. 9a after pruning after applying degree pruning, SCC
pruning and distance pruning. From this candidate graph, we can find only a QAC
〈{1, 2, 3}, {8, 9, 10}〉. There are therefore several vertices that can be removed from
the candidate graph. For example, the negative distance between two vertices 8 and
11 in Fig. 9a is larger than 3, i.e., the two vertices cannot be in the same QAC. Based
on this observation, we propose a new pruning rule based on the notion of interaction
graph which is defined in terms of the distance w.r.t. negative links between any two
vertices from a candidate graph. Before we define the interaction graph, we define the
surviving induced graph in Definition 13.

Definition] 13 The surviving induced graph of vertex v, s I nd(v, G) =
(V

′
, E+′

, E−′
), is a subgraph of I nd(v, G), if v ∈ V

′
and no vertex in V

′
can be

pruned away using degree, SCC and distance pruning rules.

We can easily infer that s I nd(v, G) is a super-graph of all QACs involving vertex
v. Based on s I nd(v, G), we define the interaction graph in Definition 14.

Definition] 14 Let G = (V, E+, E−) be a signed graph. The interaction graph of
G, denoted by I nter(V, G), is a graph (VI , EI ) where VI = V , and

EI = {(u, v)|v ∈ s I nd(u, G) ∧ u ∈ s I nd(v, G) ∧ u �= v}, (10)

We call EI the set of interaction links. Specifically, for any vertex set S ⊂ V ,
I nter(S, G) = (S, E

′
I ) is defined as a subgraph of I nter(V, G) if

E
′
I = {(u, v)|u, v ∈ S ∧ v ∈ s I nd(u, G) ∧ u ∈ s I nd(v, G) ∧ u �= v}. (11)

Intuitively, two vertices are connected by an interaction link in the interaction graph
if the distance between them w.r.t. negative links of a signed graph is no larger than
3 and they cannot be removed by another pruning rules. For example, consider the
signed graph shown in Fig. 8a. The graph forms an aQAC with min_si ze = 3 and
ε = 1 (or a rQAC with min_si ze = 3 and δ = 1

3 ). The interaction graph of G is a
clique as shown in Fig. 8b as every vertex u can be found in s I nd(v, G). We prove
this property of interaction graph of a QAC.

Property 4 Let H = 〈L , R〉 be a QAC. Both I nter(L , H) and I nter(R, H) are
cliques of size |L| and |R| respectively.
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Fig. 8 Example of interaction graph

Proof Without loss of generality, assume any two vertices u, v ∈ L . Accord-
ing to Lemma 2 and Property 3, we have dist (u, v) = 2, v ∈ s I nd(u, H) and
u ∈ s I nd(v, H) (Note that I nd(v, H) = s I nd(v, H)). (v, u) therefore is an inter-
action link in I nter(L , H). Hence, I nter(L , H) is a clique of size |L|. For the same
reason, I nter(R, H) is a clique of size |R|. �


With Property 4, all vertices of a QAC in the interaction graph should form a clique
of size |L| + |R|. In addition, L and R form a biclique. For a candidate graph induced
by vertex v, we can remove a vertex u if all cliques or bicliques involving u do not
contain v or their sizes cannot satisfy the min_si ze requirement. Note that finding
all cliques and bicliques of I nter(V, G) is more costly than finding all cliques of
I nter(L , G) or I nter(R, G). In our next Pruning Rule 4, we find all maximal cliques
of I nter(L , H) and I nter(R, H) to prune vertices.

Pruning Rule 4 (Interaction graph pruning) Let signed graph H = 〈L , R〉 be a
subgraph of Ind(v,G) and L contain induced vertex v. A vertex u can be removed from
H if:

1. Its degree in I nter(L , H) (I nter(R, H)) is smaller than min_si ze − 1 if u ∈ L
(u ∈ R).

2. Every maximal clique involving vertex u in I nter(L , H) does not contain the
induced vertex v or the clique size is less than min_si ze; or

3. The size of every maximal clique involving vertex u in I nter(R, H) is less than
min_si ze.

Proof Note that the induced vertex v is in I nter(L , H). For the vertex u of
I nter(L , H), if every maximal clique involving vertex u in I nter(L , H) does not
contain the induced vertex v, then vertices v and u are disconnected in I nter(L , H),
i.e., vertices v and u do not exist in the same QAC which satisfies min_si ze.
Therefore, vertex u can be removed from finding all QACs contained the induced
vertex v.

According to Definition 14 and Property 4, only vertices appearing in a maximal
clique of I nter(L , H) or I nter(R, H) may be contained in the same QAC. If the
size of every maximal clique of I nter(L , H) or I nter(R, H) involving a vertex u is
less than min_si ze, then every QAC contained vertex u does not satisfy the min_si ze
requirement. Therefore, vertex u can be removed from H .
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Fig. 9 Example of interaction graph pruning

Vertex u is not contained in any cliques with sizes no less than min_si ze if its
degree is smaller than min_si ze − 1. Therefore, vertex u can be also removed from
H . �


This pruning rule says that vertex set of a maximal clique of I nter(L , H)

or I nter(R, H) becomes a candidate vertex set of a QAC if its size is no less
than min_si ze. Vertices of I nter(L , H) are therefore discarded if their degrees in
I nter(L , H) are smaller than min_si ze − 1. The same criteria can be applied to the
vertices of I nter(R, H). In addition, the maximal clique contains the induced vertex if
the former is found in I nter(L , H). Furthermore, a signed graph may decompose into
multiple candidate graphs if multiple maximal cliques in I nter(L , H) or I nter(R, H)

survive after this pruning rule. Formally, let {C L
i }kl

i=1 ({C R
j }kr

j=1) denote the set of maxi-
mal cliques of I nter(L , H) (I nter(R, H)) after interaction graph pruning. Every pair
of vertex sets C L

i and C R
j forms a candidate graph 〈C L

i , C R
j 〉. We obtain kl ×kr candi-

date graphs. In the remainder of this paper, the Interaction graph pruning rule consists
of Pruning Rule 4 and this reduction operation.

Algorithm 1: Function combinedPruning(v, Ind(v,G),min si ze
Input: Induced graph Ind(v,G), induced vertex v, parameters min size and ;
Output: candGraphSet : candidate graph set (initialized to be ∅);

1 graphSet1 ← repeated Pruning(v, Ind(v,G),min size //integrate Pruning Rules 1-3;
2 graphSet2 ← interactionPruning(v, graphSet1,min size //interaction graph pruning;
3 for each candidate graph cand ∈ graphSet2 do
4 graphSet3 ← repeated Pruning(v, cand,min size ;
5 candGraphSet ← candGraphSet ∪ graphSet3;
6 end
7 return candGraphSet
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For example, the signed graph H = 〈L , R〉 induced by vertex 1 in Fig. 9a has
5 vertices in both L and R. We show the induced graphs of every vertex of H in
Fig. 9b–e. It is easy to check that the induced graphs for vertices 4, 5, 11 and 12
do not survive after degree pruning, SCC pruning and distance pruning. Only the
graphs in Fig. 9f and g remain. There is no interaction link between vertices 1 and
4 because 1 �∈ s I nd(4, H) after pruning. From these pruned induced graphs, we
construct I nter(L , H) and I nter(R, H) as shown in Fig. 9i and j.

According to Property 4, only the vertex sets {1, 2, 3} and {8, 9, 10} may form a
QAC with min_si ze = 3 and ε = 1. Hence, we obtain a candidate graph as shown in
Fig. 9k.

5.3 Combined pruning rules for an induced graph

Algorithm 2: Function repeatedPruning(v,G,min si ze
Input: Induced graph G , induced vertex v, parameters min size and ;
Output: graphSet : set of candidate graphs (initialized to be ∅);

1 insert G into a queue Q;
2 while Q is not empty do
3 g ← remove the top graph from Q;
4 prunedGraph ← degreePruning(g, min size //degree pruning;
5 prunedGraphSet ← sccPruning(prunedGraph, min size) // SCC pruning;
6 for each graph g ∈ prunedGraphSet do
7 prunedGraph ← distancePruning(v, g ,min size) //distance pruning;
8 if prunedGraph = g // no vertex in g can be pruned by three pruning rules then
9 graphSet ← graphSet ∪ {g} //graph g survives after three pruning rules;
10 end
11 else insert graph prunedGraph into the queue Q;
12 ;
13 end
14 end
15 return graphSet

In this section, we combine four pruning rules to iteratively reduce the size of an
induced graph as much as possible. combined Pruning(v, I nd(v, G), min_si ze, ε)
is the combined pruning operation shown in Algorithm 1, which takes a graph
I nd(v, G) induced by vertex v with parameter settings min_si ze and ε.

The function repeated Pruning(v, G, min_si ze, ε) at Lines 2 and 5 com-
bines degree, SCC and distance pruning rules together to reduce the size of
G. Note that during repeated pruning, the function may generate many signed
graphs of smaller sizes. The function terminates when every signed graph can-
not be reduced further. In the combined pruning operation, interaction graph prun-
ing interaction Pruning(v, temp, min_si ze, ε) is performed only once at Line 3
because the pruning rule employs Bron Kerbosch Algorithm to find all maximal
cliques (Coen and Joep 1973). The algorithm dominates the major cost of pruning
stage.

The function repeated Pruning(v, G, min_si ze, ε) is shown in Algorithm 2. This
algorithm takes a signed graph G induced by vertex v and adds it to a queue Q at
Line 1. The algorithm reduces the size of the first graph of Q by degree pruning, SCC
pruning and distance pruning at Lines 4, 5 and 7, respectively. Note that an induced
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Table 1 Complexity analysis in the pruning stage

Component Input Time complexity

Compute induced graph (V
′
, E+′

, E−′
) O(|E−′ |)

Pruning Rule 1 (V
′
, E+′

, E−′
) O(|V ′ | + |E+| + |E−|)

Pruning Rule 2 (V
′
, E+′

, E−′
) O(|V ′ | + |E+′ |) (Tarjan 1972)

Pruning Rule 3 (V
′
, E+′

, E−′
) O(|E−′ |)

Interaction graph construction (V
′
, E+′

, E−′
) O(|V ′ | × |E−|)

Pruning Rule 4 (V
′
, E+′

, E−′
) O(3|V ′ |/3) (Moon and Moser 1965)

graph may break up into smaller graphs after SCC pruning since SCC pruning keeps
one SCC of left side and all SCCs of right side with size no less than min_si ze. In
the implementation, we employ the Tarjan’s Algorithm (Tarjan 1972) to find all SCCs
of a vertex set. A signed graph g is added into the candidate graph set graphSet if
it cannot be pruned further at Line 9. Otherwise, the signed graph is added into the
queue Q at Line 11. Algorithm 2 runs until no signed graph can be pruned further by
the three pruning rules.

5.4 Complexity analysis

Let (V
′
, E+′

, E−′
) ⊂ G be the input graph on which pruning rules are to be applied.

The complexities of them are shown in Table 1. Given an induced vertex, computing
the induced graph and the Pruning Rule 3 searches 3-hop negative neighbors of the
induced vertex, and its complexity is O(|E−′ |). Next, the complexities of computing
both positive and negative degrees in Pruning Rule 1 are O(|V ′ |+|E+′ |) and O(|V ′ |+
|E−′ |). The complexity of further checking degree of every vertex is O(|V |). The
overall complexity of Pruning Rule 1 is therefore O(|V ′ |+ |E+|+ |E−|). We employ
Tarjan’s algorithm to find all SCSs of a vertex set in the Pruning Rule 2. Its complexity
is therefore O(|V ′ | + |E+′ |) (Tarjan 1972). To sum up, the complexity of repeated
pruning is O(|V ′ | + |E+| + |E−|).

To construct an interaction graph, we need to compute |V ′ | induced graphs. Hence,
the complexity of computing the interaction graph is therefore O(|V ′ | × |E−|).
According to Moon and Moser (1965), a graph can have at most 3|V ′ |/3 maximal
cliques. The Bron–Kerbosch algorithm can be shown to have worst-case running time

O(3|V ′ |/3) (Moon and Moser 1965).
We will further present efficiency of our pruning rules and the whole algorithm using

synthetic and real data in Sects. 8 and 9. Even though the complexity of Pruning Rule
4 is exponential to the graph size, it does not take too much time complete in practice
due to the earlier steps. Astute readers may question why we propose this pruning
rule. We will leave the answer to the next section that elaborates on the enumeration
stage.

In addition, these pruning rules are not ad-hoc. Except for SCC pruning, the degree
pruning, distance pruning and interaction graph pruning can be used to speed up
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detecting bicliques (Groshaus and Szwarcfiter 2010) and quasi-bicliques in Defini-
tions 6 and 8 ((ε, min_si ze) absolute QB and (δ, min_si ze) relative QB) from a
bipartite graph since these pruning rules only involve the edges between different sub-
communities. Furthermore, all pruning rules can be used to detect DAC (Zhang et al.
2010, 2013; Lo et al. 2011, 2013).

6 Enumeration of maximal quasi-antagonistic communities

We now describe an efficient enumeration of all MQACs within a candidate graph. We
propose a data structure, called top–down enumeration tree, to list all SCSs of each
vertex set of a candidate graph. We then verify each enumerated graph if it satisfies
the criteria of a QAC.

6.1 Enumeration tree

Enumeration tree is a data structure that has been used to list all subgraphs of a given
graph (Johnson et al. 1988). For example, Fig. 10 shows a traditional enumeration tree
of a graph with vertex set {v1, v2, v3, v4}. Each node in the enumeration tree denotes
a subgraph induced by a subset of vertices. The root node is an empty graph and
every child node has one more vertex than its parent node. Hence, the i th level of an
enumeration tree has

(4
i

)
nodes, i = 0, 1, . . . , 4. The total number of nodes in the

enumeration tree is
∑4

i=0

(4
i

) = 24 = 16.
Assume that there is an input graph of n vertices with labels from 1 to n. To avoid

duplicates in the enumeration tree, vertices in each node of the enumeration tree are

{v1,v2,v3,v4}

{v1,v3}

{v1,v2,v3} {v1,v3,v4}{v1,v2,v4} {v2,v3,v4}

{v1}

{v3,v4}{v2,v4}{v2,v3}{v1,v4}{v1,v2}

{v3} {v4}{v2}

empty graphlevel 0
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level 3
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v4

v4

v4

v3v3v2

v4v3v2

v3

v4

v4

v4

v4

enum eration tree in a bottom -up m anner

bottom

up

Fig. 10 Enumeration tree in bottom–up manner
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Fig. 11 Enumeration tree in top–down manner

sorted by their labels. Each a node wi in the tree represents a subgraph with im vertices,
denoted by {vi1, vi2 , . . . , vim }. Each child of node wi extends the set of vertices of wi

with one additional vertex from im + 1, . . . , n. For example, the subgraph of the
child node corresponding to {v2, v3} in the second level has the vertex set {v2, v3, v4}.
A node has no child if it contains vertex v4. Building an enumeration tree is time-
and space-consuming since both the time and space complexities of constructing an
enumeration tree for a graph of n vertices are O(2n).

Enumeration tree can also be used to enumerate a signed graph. The naive approach
for finding all MQACs is to enumerate all subgraphs of the signed graph. This is
however not a scalable approach because the number of possible subgraphs grows
exponentially even when no MQAC exists with an input graph.

In our proposed approach, we build two enumeration trees, one for each vertex
set of a candidate graph. For example, consider the candidate graph in Fig. 11b. We
enumerate all subsets of vertex set {v1, v2, v3, v4} in a bottom–up manner as shown
in Fig. 10 assuming that min_si ze = 2 and ε = 0. Such a bottom up approach has
several drawbacks, namely: (1) there are nodes (e.g., at levels 0 and 1) that do not meet
min_si ze requirement; and (2) some subgraphs of the vertex subsets are not SCSs,
eg. {v1, v2} and {v2, v4}. We unfortunately cannot remove them from the enumeration
tree as their descendant nodes may be SCSs meeting the min_si ze requirement.

6.2 Enumerating vertex set

To overcome the above drawbacks, we adopt a top–down exploration of the enumera-
tion tree to list all SCSs of a vertex set. For example, consider the same candidate graph
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{v1, v2, v3, v4} in Fig. 11b, a top–down enumeration tree is shown in Fig. 11a. The
root node is the whole vertex set and every child node is a subgraph of its parent node,
which has one more vertex than its child. For example, the subgraph with {v1, v3, v4}
has a child node with vertices {v3, v4} after removing the vertex v1.

We employ the depth-first search (DFS) to traverse the top–down enumeration tree.
The DFS starts from the root and explores as far as possible along each branch before
backtracking. Formally, DFS explores by extending the first child node of the tree
and further going deeper and deeper until it arrives a node that has no child. Note
that the first child node always removes the last vertex from its parent node. Then the
exploration backtracks, and returns to the most recent node which has not finished
exploring. During the exploration, we do not explore child nodes which are children
of an already explored node. For example, node {v1, v2, v4} may have three children:
{v1, v2}, {v1, v4} and {v2, v4}. However, {v1, v2} is not child of node {v1, v2, v4} in
the top–down enumeration tree since {v1, v2} has already been child of {v1, v2, v3}.

In the depth first exploration strategy, that a vertex set is a leaf-node if it does
not contain vertex v1. We can construct a counter example to prove this. Suppose
a node i has m vertices, denoted as {vi1 , vi2 , . . . , vim }, and it does not contain ver-
tex v1. Consider a child node is obtained by dropping vi j , and the child node has
vertices {vi1, . . . , vi j−1 , vi j+1 , . . . , vim }. The child node is clearly also a child of
{v1, vi1 , . . . , vi j−1 , vi j+1 , . . . , vim }. In this case, we should not explore the same child
node again.

Let min_si ze be 2. Our first observation from Fig. 11a is that all nodes below level
2 have sizes less than min_si ze. Thus, we can eliminate these nodes as shown in
Fig. 11c. This is a significant advantage over bottom–up enumeration tree.

Moreover, in the top–down enumeration tree, we avoid generating non-connected
subgraphs. For example, consider the vertex set in Fig. 11b, nodes {v1, v2}, {v2, v4},
{v3, v4}, {v1, v2, v4} and {v2, v3, v4} in Fig. 11a are non-connected graphs. Except for
node {v1, v2, v4}, they and their children in the tree can be eliminated directly since
they do not have a child, which is a SCS meeting the min_si ze requirement.

However, node {v1, v2, v4} has a SCS child {v1, v4} that satisfies the min_si ze
requirement. To minimize the size of the enumeration tree, the current non-connected
node is replaced by its child, which is a connected subgraph that satisfies the min_si ze
requirement. Hence, we replace the node {v1, v2, v4} by {v1, v4}. Finally, we can obtain
the enumeration tree shown in Fig. 11d.

We now illustrate the process of creating the enumeration tree as shown in Fig. 11d
using min_si ze = 2. In the beginning, we check the first candidate child of the root
node: {v1, v2, v3} by removing the last vertex v4 from the root node. Node {v1, v2, v3}
is a child of root node since: (1) the number of its vertices satisfies the min_si ze
requirement; and (2) it corresponds to subgraphs that is connected. We next explore
the node {v1, v2, v3}. The first candidate child of {v1, v2, v3} is {v1, v2} corresponding
to a non-connected subgraph with size 2. Therefore, {v1, v2} and its children are
dropped away from the tree. We backtrack to node {v1, v2, v3}. The second candidate
child of node {v1, v2, v3} is {v1, v3} corresponding to a connected subgraph with size
2. Then {v1, v3} becomes a child of {v1, v2, v3}. However, all subgraphs of {v1, v3}
do not satisfy the min_si ze requirement. We therefore backtrack to node {v1, v2, v3}
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Fig. 12 Example of enumerating a candidate graph

again. In a similar way, the exploration of the enumeration tree continue until all nodes
are explored or removed.

In the enumeration process, the left vertex set is treated differently from the right one
since we expect the induced vertex to be part of a candidate graph. Hence, subgraphs
not containing the induced vertex are eliminated when enumerating the left vertex set.
In the end, we only obtain six nodes in the enumeration tree in Fig. 11d, rather than
sixteen nodes shown in Fig. 11a.

6.3 Enumerating all QACs of a candidate graph

Based on the enumeration tree, we presents an efficient way to find all QACs of a
candidate graph. The main idea is to enumerate the left and right vertex sets separately.

Algorithm 3 consists of three key steps, where enumerating two vertex sets
are separated by repeated pruning. At first, the algorithm employs enumerateSet
(L , min_si ze, “le f t ′′) to construct the enumeration tree, cand Le f t , for the left ver-
tex set at Line 1 such that: (i) each node of cand Le f t is corresponding to a SCS w.r.t.
positive links; (ii) there is not negative link for any pair of vertices in the SCS; (iii) the
size of SCS is no less than min_si ze; (iv) each SCS must contain the induced vertex
v. For example, consider the candidate graph 〈L , R〉 induced by vertex 1 in Fig. 12a,
and suppose min_si ze = 2 and ε = 0. The vertex set L has three SCSs ls1, ls2 and
ls3. The algorithm generates an enumeration tree cand Le f t containing two SCSs ls1
and ls2 as shown in Fig. 12b, where ls3 is not a valid node since it does not contain
induced vertex 1.

The second step is to reduce the size of subgraph by using repeated pruning. For
each connected subgraph ls ∈ cand Le f t , we can get a signed graph 〈ls, R〉. Then we
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obtain a set of signed graphs by degree, SCC and distance pruning rules at Line 3 of
Algorithm 3 and store them in cand. Any signed graph 〈l, r〉 in cand can be discarded if
|l| < |ls| since l being a connected subgraph exists in the enumeration tree cand Le f t
and 〈l, r〉 can be obtained after pruning 〈l, R〉. In Fig. 12b, the algorithm constructs
two graphs 〈ls1, R〉 and 〈ls2, R〉. The graph 〈ls2, R〉 is discarded at repeated pruning.
Only the graph 〈ls1, R〉 remains after repeated pruning.

The final step is to enumerate the right vertex set of a subgraph, which remains after
the second step. The algorithm calls the function enumerateSet (r, min_si ze,“right”)
to construct the enumeration tree cand Right at Line 6 such that: (i) each node rs is
corresponding to a SCS w.r.t. positive links; (ii) there is not negative link between
any pair vertices of rs; (iii) the size of rs is no less than min_si ze; (iv) there is not
common vertex between ls and rs. Following previous example, we enumerate R in
〈ls1, R〉, and obtain three SCSs for R as shown in Fig. 12c. Finally, we construct three
signed graphs 〈ls1, rs1〉, 〈ls1, rs2〉 and 〈ls1, rs3〉.
Algorithm 3: Function f indQAC(v, L , R ,min si ze
Input: candidate graph L , R induced by vertex v with parameters min size and ;
Output: Q: all maximal minsize) aQACs within L , R ;

1 candLe f t ← enumerateSet (L , min size, ”le f t”)//enumerating left vertex set;
2 for each node ls ∈ candLe f t do
3 cand ← repeated Pruning(v, ls, R ,min size ;
4 for each l, r cand do
5 if |ls| = |l| then
6 candRight ← enumerateSet (r, min size, ”right”)//enumerating right vertex set;
7 for each node rs ∈ candRight do
8 if checkQAC( ls, rs ) then
9 Q ← Q ls, rs ;
10 end
11 end
12 end
13 end
14 end
15 return Q

6.4 Verifying QAC

In the verification stage, for each signed graph 〈ls, rs〉, the function check Q AC
(〈ls, rs〉) in Algorithm 3 verifies whether the signed graph 〈ls, rs〉 is a QAC or not
at Line 8. The function check Q AC(〈ls, rs〉) returns true if vertices from both sides
satisfy the criteria of QAC. For example in Fig. 12, as none of the three signed graphs
〈ls1, rs1〉, 〈ls1, rs2〉 and 〈ls1, rs3〉 is a QAC with min_si ze = 2 and ε = 0, the
algorithm returns an empty QAC set.

6.5 Complexity analysis

Enumerating a sub-community involves generating all SCSs in the sub-community
w.r.t. positive links. Let V be the vertex set of the sub-community. The number of
SCSs involving the clique will be of the O(2|V |). In the worst case, the complexity of
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enumerating a sub-community is O(2|V |). Fortunately, sub-communities are usually
small (see distribution of graph size after Pruning Rule 4 in Fig. 17). In addition, the
probability of forming a clique of large size is very small. Let 〈L , R〉 be a candidate
QAC. The complexity of verifying 〈L , R〉 is a QAC is O(|L| × |R|).

Based on the complexity analysis of the enumeration stage, we can better understand
the importance and effectiveness of Pruning Rule 4. Note that enumerating a sub-
community involves only the positive links of a candidate graph and Pruning Rule
4 involves negative links. Pruning Rule 4 is essential because: (1) the proportion of
negative links is small in a signed graph; and (2) the large proportion of positive links
in a signed graph affects the number of SCSs generated. Further empirical results
showing the effectiveness of Pruning Rule 4 will be shown in Figs. 16, 17 and 21d.

7 MASCOT algorithm

In this section, we pull all steps of the Mascot framework together in Fig. 5, and pro-
pose the Mascot algorithm in Algorithm 4. We also derive other variants of Mascot
algorithm which are later used in our experiments.

7.1 Outline of algorithm

The Mascot algorithm requires parameters min_si ze and ε. Note that, unless oth-
erwise specified, we just find the all the maximal aQACs as the algorithm maximal
rQACs can be obtained by a minor change to degree pruning rule in the pruning stage
and the criteria to verify rQACs in the enumeration stage.

Algorithm 4 consists of two stages: pruning stage (from Lines 2 to 9, where Line 2
is degree pruning for input graph and Line 4 is the combined pruning for each induced
graph) and enumeration stage (from Lines 10 to 18, where Line 11 enumerates all
QACs involving the vertex v and Lines 12 to 17 verify if a QAC forms a MQAC).

In the pruning stage, we get the induced vertex set contained in graph G
′

after
applying degree pruning rule at Line 2. For each candidate vertex v ∈ G

′
, we apply

the four pruning rules on the induced graph of v at Line 4. To eliminate duplicates
of candidate subgraph, we remove vertex v from G

′
after pruning operation on all

candidate graphs which contain the vertex v, and update a graph G
′

in the Line 8.
In the enumeration stage, for each candidate graph v_cand_graph that is induced

by vertex v, the algorithm finds all QACs involving the induced vertex v, denoted as
v_Q AC_set , at Line 11.

For each QAC q ∈ v_Q AC_set , we add it into Q at Line 14 if its supergraph does
not exist in both the result set Q and v_Q AC_set . Furthermore, each existing QAC
in Q, q1, is removed from Q at Line 15 if q1 is also induced by vertex v and is a
subgraph of q. Note that q1 cannot become a subgraph of q if q1 and q have different
induced vertices because the induced vertex of q1 would have been removed before
we generate the candidate graph v_cand_graph at Line 8.

For example, suppose we have the input signed graph in Fig. 13a. Let min_si ze = 2
and ε = 0. After iterative degree pruning at Line 2 of Algorithm 4, Mascot com-
putes the induced vertex set contained in graph G

′
with 11 vertices shown as in
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Fig. 13 Example of Mascot

Algorithm 4: Mascot Algorithm
Input: A signed graph G , parameters min size and ;
Output: Q: theMQACs set (initialized to be ∅);

1 cand graph queue ← ∅;Q ← ∅;
2 G ← degreePruning(G, min size // G = (V, E+, E−);
3 for each node v ∈ V and |V | ≥ 2 ∗ min size do
4 v cand graph set ← combinedPruning(v, G ,min size ;
5 if v cand graph set then
6 add elements of v cand graph set into cand graph queue;
7 end
8 V ← V \ {v} and remove edges involving v from E+ and E−;
9 end
10 for each element v cand graph ∈ cand graph queue do
11 v QAC set ← f indQAC(v cand graph,min size ;
12 for each q ∈ v QAC set do
13 if q does not have supergraph in both v QAC set and Q then
14 Q ← Q ∪ {q};
15 for each q1 ∈ Q is induced by vertex v and is a subgraph of q then remove q1 from Q;
16 end
17 end
18 end
19 return Q

Fig. 13b. For the first induced vertex 1, integrating four pruning rules to pruning
I nd(1, G

′
) at Line 4, Mascot gets one candidate graph shown in Fig. 13c. After

getting candidate graph induced by vertex 1, Mascot removes vertex 1 from G
′

and
updates the signed graph G

′
at Line 8. It is easy to determine that I nd(2, G

′
) and

I nd(3, G
′
) can be pruned by combining pruning at Line 4. After removing vertices
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1, 2 and 3 at Line 8, we get I nd(4, G
′
) = 〈{4, 5, 6}, {10, 11, 12}〉. After pruning ver-

tices from I nd(4, G
′
), we get the second candidate graph shown in Fig. 13d. There

is not any induced graph that can survive after removing vertices 1, 2, 3 and 4 at
Line 8.

Mascot performs enumeration stage from Lines 10 to 18. It enumerates two can-
didate graphs in Fig. 13c and d. For the first candidate graph, the enumeration step at
Line 11 had already been illustrated in Fig. 12. There is no candidate graph that can
form a QAC with min_si ze = 2 and ε = 0. For the second candidate graph shown
in Fig. 13d, Mascot enumerates the left and right vertex sets by enumeration trees at
Line 11, and finds three QACs 〈ls, rs1〉, 〈ls, rs2〉 and 〈ls, rs3〉 with min_si ze = 2 and
ε = 0. QACs 〈ls, rs2〉 and 〈ls, rs3〉 cannot become MQACs since they are subgraph
of 〈ls, rs1〉 at Line 13. Hence, Mascot outputs 〈ls, rs1〉 as a MQAC at Line 19 as
shown in Fig. 13e.

The complexities of the degree pruning rule, the combined pruning and finding
QACs have been analyzed in previous two sections. Assume that the number of QACs
of an original signed graph is N and the maximum size of QACs is M . Then the
complexity of verifying MQACs from Lines 12 to 17 in Algorithm 4 is O(M N 2) in
the worst case when all QACs share the same induced vertex.

7.2 Variants of Mascot

To the best of our knowledge, there is not the other algorithm which finds all MQACs
from signed networks. To illustrate the performance of Mascot and our proposed
pruning rules, we therefore propose four variants of Mascot as baselines.

From Mascot, we create four proposed variant algorithms as baselines. Each
variant disables one particular pruning rule P R in Algorithm 4, and is denoted by
MascotP R .

In particular, we have Mascotdeg , MascotSCC , Mascotdis and Mascotint dis-
abling the degree pruning, SCC pruning, distance pruning and interaction graph prun-
ing rules, respectively. Note that algorithm Mascotdeg disables the degree pruning
rule in both steps in Lines 2 and 4 of Algorithm 4.

8 Experiments on synthetic graph

In this section, we evaluate both the efficiency and accuracy of our proposed Mas-
cot algorithm on synthetic signed graphs. Given that there are no existed algorithms
detecting MQACs, we compare the elapsed time of Mascot against its variants. All
programs were implemented in Java, and were conducted on a dual core 64-Bit proces-
sor with 3.06 and 3.06 GHz CPUs, respectively, and 128 GB of RAM.

8.1 Graph generation

We first describe our synthetic signed graph generation algorithm as shown in Fig.
14. Based on a graph generation algorithm proposed by Palmer and Steffan (2000),
our algorithm starts with vertex generation, and is followed by edge generation. From
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the generated undirected graph, we derive a signed graph by assigning sign labels to
edges randomly. To evaluate accuracy, we inject QACs into the signed graph in the
last step of the generation.

We use Syn_N to denote a synthetic signed graph with N vertices. The generator
outputs a synthetic graph as shown in Algorithm 5, which consists of two parts with
eight input parameters as shown in Table 2. Note that minDegree is degree threshold
for selecting vertices to inject QACs. The first part is to generate a signed graph (at
Lines 1–26). In the part, the algorithm initializes a graph with N vertices and empty
adjacency list. To obtain a scale-free network, it assigns a degree k to each vertex
v with probability Pr [deg(v) = k] ≈ k−α . Note that the sum of vertex degree
total Deg should be even. The steps from Lines 7 to 9 guarantee this. Next, we assign
the neighbors of each vertex after sorting vertices by degree in decreasing order. The
final step of this part is to assign positive and negative labels to edges from Lines 22
to 26. Parameter θ controls the required proportion of negative links.

The second part of graph generation is to inject β × N number of QACs into the
signed graph (at Lines 27–47). Before we inject QACs into the synthetic graph, a
set of vertices topV ertex Set with both positive and negative degrees ≥ minDegree
(default value is 15) is selected at Lines 28–30. These vertices are selected to construct
QACs since vertices in topV ertex Set have many positive and negative neighbors.
Lines 31–46 of Algorithm 5 inject QACs into the synthetic graph. The injection con-
trols: (1) the number of vertices of each sub-community; (2) the edges within and
across sub-communities.

Assume that Qac = 〈L , R〉 be an injected QAC. |L| and |R| are two numbers
sampled from a uniform distribution U [min, max] at Line 34. L and R are selected
from vertex set Γ +(cand) or Γ −(cand) randomly at Line 35, i.e., L ⊂ Γ +(cand)

and R ⊂ Γ −(cand) (Note that max < minDegree). To ensure that L and R form a
QAC, the algorithm removes all edges between any pair of vertices in L ∪ R at Line
36. A chain of positive links is formed in L and R separately at Line 37 so that each of
them is now a SCS. Finally, 〈L , R〉 forms a (ε, min) absolute QB from Lines 39 to 46.
According to the definition of (ε, min) absolute QB, epsilonL(v), epsilon R(v) ≤ ε,
where epsilonL(v) (epsilon R(v)) denotes the number of disconnected vertices of v.
In the algorithm, Line 40 guarantees the negative degree requirement of vertices from
L , and Lines 42 to 44 guarantee the same requirement for R vertices. All negative
neighbors of a vertex are assigned at Line 45.

Figure 15 shows the distributions of positive, negative and total degrees of a syn-
thetic signed graph generated with N = 500K , β = 0.001, θ = 0.1, α = 2.5,
min = 3, ε = 1, max = 8 and minDegree = 15, denoted as Syn_500K . We observe
that degree distributions follow power law as expected. Unless otherwise specified, the
default parameter settings for the generator are listed highlighted as bold in Table 2.
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Algorithm 5: Synthetic Undirected Signed Graph Generation
Input: N, θ, α, β, [min,max] , minDegree(>= max);
Output: G: a signed graph injected with some QACs;

1 vertexSet ← a vertex set with N vertices;
2 edgeSet ← ∅; totalDeg ← 0; // initialized sum of degrees;
3 for each vertex x ∈ vertexSet //Step 1: Vertex generation do
4 deg(x) ← sample an integer value from the power law distribution with parameter α;
5 totalDeg ← totalDeg + deg(x);
6 end
7 if numEdge is odd then
8 deg(x1) ← deg(x1) + 1; totalDeg ← totalDeg + 1;
9 end
10 sort vertices in vertexSet by descending order of deg(·);
11 V ← vertexSet ;
12 for each vertex x ∈ vertexSet //Step 2: Edge generation do
13 randomly select a vertex set Y from V s.t. |Y | = deg(x) and x Y ;
14 for each vertex y ∈ Y do
15 edgeSet ← edgeSet ∪ {(x, y)}; deg(y) ← deg(y) − 1;
16 if deg(y) == 0 then V ← V − {y};
17 ;
18 end
19 V ← V − {x};
20 end
21 for each edge e ∈ edgeSet //Step 3: Label assignment do
22 random ∼ U [0, 1];
23 if random ≤ θ then sign(e) ← − ;
24 ;
25 else sign(e) ← + ;
26 ;
27 end
28 topVertexSet ← ∅;
29 for each vertex x ∈ vertexSet do
30 if min{deg+(x), deg−(x)} ≥ minDegree then topV ertexSet ← topV ertexSet ∪ {x};
31 ;
32 end
33 numQAC ← β × N ;
34 for i = 1 to numQAC //Step 4: QACs injection do
35 select a vertex cand from topVertexSet at random;
36 construct vertex sets L and R s.t. cand ∈ L , (L\{cand}) ⊂ +(cand), R ⊂ −(cand) and |L|,

|R| follow uniform distribution U [min,max];
37 remove all links between any pair of vertices of L ∪ R;
38 for each vertex set, construct a chain connected by ’+’ edges s.t. each vertex is randomly

assigned its successor;
39 R ← R; for each vertex r ∈ R, epsilonR(r) ← 0;
40 for each vertex l ∈ L do
41 epsilonL(l) ∼ U [0, min{ |R |}];
42 missV ertex(l) ← randomly select epsilonL(l) vertices from R ;
43 for each r ∈ missVertex(l) do
44 epsilonR(r) ← epsilonR(r) + 1; remove r from R if epsilonR(r) = ;
45 end
46 l links all vertices in R − missVertex(l) by using undirected ’-’ edges;
47 end
48 end
49 return G
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Table 2 Synthetic graph generation parameter settings

Parameter Meaning Value

ε The absolute parameter for aQAC 1

N # Vertices in a synthetic graph [100K , 200K , . . . , 500K]
β # QACs per vertex [1.0 × 10−3, . . . 1.5 × 10−3]
θ Proportion of negative links [0.1, 0.12, . . . , 0.2]
α The power law distribution parameter [2.1,2.3,2.5,2.7,2.9]

[min, max] Minimum and maximum vertex set size constraint [3,8]

minDegree Degree threshold for selecting vertices to inject QAC 15
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Fig. 15 Degree distributions of Syn_500K . a Positive degree distribution. b Negative degree distribution.
c Total degree distribution

8.2 Performance results

We create two sets of synthetic graphs, one for evaluating the absolute version of
Mascot finding aQACs, and the other for rQACs. We denote the absolute and relative
versions as aMascot and rMascot respectively.
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8.2.1 Measures of performance

We adopt two performance measures: (i) the elapsed time and; (ii) recall, that measure
the efficiency and accuracy of the algorithms respectively.

We measure the elapsed time in seconds, and it consists of the elapsed time of
pruning rules and the elapsed time of enumerating candidate graphs. Recall is derived
from the number of MQACs found by Mascot. Every MQAC found by an algorithm
may belong to one of three categories below.

– Type I: It is one of the injected QACs.
– Type II: It is a supergraph of any injected QAC.
– Type III: It is not a supergraph of any injected QAC.

An injected QAC is considered found if it is among the found QACs (i.e., Type I), or
is a subgraph of some found QACs (i.e., Type II). Therefore, we can define two recalls
for Types I and II as

recallI = # injectedQ ACs that are found based on Type I criteria

# injectedQ ACs
;

recallI I = # injectedQ ACs that are found based on Type II criteria

# injectedQ ACs
.

We then define total recall to be recall = recallI + recallI I .

8.2.2 Performance by varying graph size N

We evaluate Mascot algorithm on synthetic graphs of size from 100 to 500 K. We
record the elapsed time of aMascot on synthetic graphs injected with aQACs, that of
rMascot injected with rQACs, and baselines. Note that we show the elapsed times of
Mascot and baselines in Fig. 16a and b if the elapsed time is not longer than 8 h, i.e.,
Mascotdeg takes more than 8 h to find all MQACs when N ≥ 300K . As shown in
Fig. 16a and b, aMascot and rMascot outperform all baselines and requires less than
60 seconds when N = 500K .

We observe that without using specific pruning rules, the baselines may take much
longer time. In terms of performance of baselines, interaction graph pruning also
appears to play a significant part reducing the elapsed time.

From Fig. 16a and b, we also observe the elapsed time for both aMascot and rMascot
increases as the input graph size increases.

To analyze the elapsed time furthermore, we show some descriptive statistics for
input graphs with different graph sizes (N ) in Table 3.

The statistic Q ACper V ertex is defined by

Q ACper V ertex = # injectedQ ACs

|topV ertex Set | . (12)

A larger value for Q ACper V ertex implies higher chance for two injected QACs
to share the same vertex.
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Fig. 16 Performance by varying graph size (N ) (min_si ze = 3, ε = 1, δ = 1
3 , β = 0.001, θ = 0.1, α =

2.5). a Elapsed time for absolute version, b elapsed time for relative version, c recall and d # QACs found

Table 3 Descriptive statistics over synthetic graphs

N 100 K 200 K 300 K 400 K 500 K

# Injected QACs 100 200 300 400 500

|topV ertex Set | 161 326 495 645 823

QACperVertex 0.62 0.61 0.60 0.62 0.60

# Candidate graphs after pruning stage 274 813 1519 2644 4109

As shown in Table 3, Q ACper V ertex does not vary much with N . Table 3 also
shows that Mascot gets more candidate graphs after the pruning stage. This explains
more elapsed time for larger N .

To better understand interaction graph pruning, Fig. 17 shows the distributions
of graph size after repeated pruning and applying Pruning Rule 4 on Syn_500K . We
observe that: (1) the graph sizes are quite small after repeated pruning; and (2) Pruning
Rule 4 further reduces the large graphs to small ones. It indicates the effectiveness of
Pruning Rules 1 to 4. To sum up these results, both aMascot and rMascot run fast on
our synthetic graphs and their pruning rules are very effective in reducing the search
space.

Figure 16c shows the recalls of aMascot and rMascot. We observe the recalls of
aMascot and rMascot are 100 % for different N with more 50 % of injected QACs
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Fig. 17 Distributions of graph
sizes after repeated pruning and
Pruning Rule 4
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recovered in their original forms. For the remaining injected QACs, some of the found
MQACs are their supergraphs. We therefore conclude that Mascot has high recall on
the synthetic graphs.

Figure 16d shows the actual numbers of MQACs found by aMascot and rMascot.
For each N , The left bar shows the number of injected aQACs or rQACs. The middle
and right bars show the composition of aQACs or rQACs found matching against the
injected QACs on the synthetic graphs.

From Fig. 16d, we observe that only small proportion of MQACs found belong to
Type III.

That is, most MQACs are either the injected QACs or their supergraphs.

8.2.3 Performance by varying the proportion of injected QACs β

Figure 18a and b show the elapsed times of Mascot and baselines by varying β.
Please note that Mascotdeg takes more than 8 h to find all MQACs.

It is easy to find that Mascot outperforms all baselines. From Fig. 18a and b, we
also observe that the elapsed time increases with β. This is due to more candidate
graphs remain after pruning rules, and more injected QACs share common vertices as
β increases.

Figure 18c shows that the total recall is still 100 % suggesting that Mascot returns
all injected QACs in original or supergraph form. As shown in Fig. 18d, smaller
proportions of Type I MQACs are found since the injected QACs share more vertices.

8.2.4 Performance by varying proportion of negative links θ

Figure 19a and b show the elapsed times of Mascot and baselines when increasing
the proportion of negative links in a synthetic graph.

Note that Mascotdeg takes more than 8 h to find all MQACs with different values
of θ .

Mascot also outperforms all baselines. The figures show the elapsed time increases
with θ .

As the proportion of negative links becomes larger, Mascot has larger induced
graphs, thus requiring more elapsed time.
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Fig. 18 Performance by varying proportion of injected QACs (β)(N = 500K , min_si ze = 3, ε = 1, δ =
1
3 , θ = 0.1, α = 2.5). a Elapsed time for absolute version, b elapsed time for relative version, c recall and
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Despite that, Fig. 19c shows that Mascot still achieves very high recall. From
Fig. 19d, we observe smaller proportions of MQACs found belong to Type I since the
injected QACs are likely to larger when more negative links are in the signed graph.

8.2.5 Performance by varying min_si ze

Figure 20a and b illustrate the performance of aMascot on Syn_500K injected with
aQACs by varying min_si ze from 3 to 8.

We can observe that the elapsed time for aMascot decreases as min_si ze increases,
so is the number of aMQACs.

This shows that Mascot is able to reduce the elapsed time and search space using
min_si ze.

As we use larger ε, the elapsed time increases. A larger ε increases the number of
QACs to be found, hence increasing the time required.

In Fig. 21c and d, we observe the similar performance trends for rMascot.
In addition, we also compare Mascot with the algorithm for detecting DACs (Lo

et al. 2013, 2011) when ε = 0 or δ = 0. Under these conditions, the inter-community
negative links of a QAC form a biclique, which is fully connected by negative links;
thus, the QAC will also be a DAC. We show the results of our experiments in Fig. 20a–
d. From Fig. 20a and c, when min_si ze is large, both aMascot and rMascot are more
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Fig. 21 Pruning efficiency by varying min_si ze (N = 500K , β = 0.001, θ = 0.1, α = 2.5). a Pruning
ratio of degree pruning (aMascot). b Average size of induced graphs (aMascot). c Pruning ratio of combined
pruning (aMascot). d Average size of candidate graphs (aMascot)

efficient than the algorithm that mines DACs. From Fig. 20b and d, we observe that
aQAC and rQAC help us to find more antagonistic communities due to their relaxed
conditions. Note that the elapsed time for detecting DACs is not affected by min_si ze
since the algorithm for detecting DACs generates all maximal bi-cliques from some
subgraphs.

To understand the effectiveness of pruning, we measure the pruning efficiency of
our pruning rules. Our pruning aims to reduce the number of candidate graphs and
their sizes. We therefore introduce two pruning efficiency measures: (i) average graph
size after pruning and; (ii) pruning ratio of each pruning rule. Average graph size is
defined by summing the number of vertices of induced or candidate graphs divided
by the number of such graphs after applying the pruning rule. The pruning ratio of
degree pruning rule and combined pruning (i.e., degree, SCC and distance pruning)
are defined as

P Rdeg = 1 − # induced vertices

# vertices in an input graph
;

P Rcom = 1 − # candidate graphs

# induced graphs
.

P Rdeg and P Rcom range from 0 to 1. The larger the pruning ratio, the more effective
is pruning.
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Figure 21 shows the pruning efficiency of aMascot by varying min_si ze and ε on
Syn_500K . The derived pruning ratio P Rdeg exceeds 99 % which suggests many
vertices are pruned away. The average induced graph size after degree pruning rule
has around 4K vertices when min_si ze = 3 and ε = 1. While this number is small
compared with 500K vertices in Syn_500K , it is still computationally expensive to
enumerate a subgraph with thousands of vertices.

Figure 21c shows that combined pruning further reduces the number of candidate
graphs with pruning ratio P Rcom above 70 %. Figure 21d further shows that the
average candidate graph size is smaller than 20. We therefore conclude that our pruning
techniques achieve good pruning efficiency. The same conclusion can be made for
rMascot.

9 Experiments on real networks

In this section, we report the results and analysis of Mascot for finding all MQACs
in two real social networks: myGamma and Epinions.

9.1 Description of datasets

myGamma: myGamma is an online social networking site, which can be accessed
through mobile phone with an Internet connection. On that network, friendships are
considered positive links, and a negative link is defined between two users when one
of them blocks the others. In our experiment, we select myGamma users from eight
countries in five continents. Some descriptive statistics of this network is given in
Table 4. The statistic ratio− denotes the proportion of negative links. We remove
both positive and negative self-loop edges and directed edges between two vertices
that have conflicting polarities. We ignore directions of both positive and negative
links. Finally, we combine users from these eight countries into an undirected signed
graph, denoted as myGamma.

Epinions: Epinions is a product review web site. Users can write subjective reviews
about many different types of items, such as software, movies and music videos, etc. A

Table 4 Descriptive statistics on myGamma networks grouped by country

CountryID Country # Users # Edges ratio− Density

au Australia 2325 7895 0.0610 2.9e−3

cn China 8285 10,184 0.0212 2.9e−4

fr France 211 167 0.0538 7.5e−3

gh Ghana 5648 26,697 0.0124 1.7e−3

ir Iran 2100 6615 0.1339 3.0e−3

py Paraguay 2091 8900 0.0368 4.1e−3

sg Singapore 25,523 131,298 0.0474 4.0e−4

us United States 22,392 75,794 0.0805 3.0e−4
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Fig. 22 Degree distribution of myGamma network. a Positive degree distribution, b negative degree dis-
tribution and c total degree distribution

Table 5 Descriptive statistics
for myGamma and Epinions
networks

Data # Users # Edges ratio− Density

myGamma 68,575 293,328 0.0552 1.2e−4

Epinions 131,828 253,772 0.0185 2.9e−5

trust network is defined among these Epinion users (Leskovec et al. 2010). We down-
load the network from the Stanford Large Network Dataset Collection.4 We perform
the same pre-processing similar to myGamma and we obtain another undirected trust
network, denoted as Epinions.

The descriptive statistics of the two real networks are shown in Table 5. myGamma
consists of 68,575 vertices and 293,327 links of which 5.5 % are negative. Epinions
consists of 131,828 vertices and 253,772 links of which about 1.8 % are negative. To
save space, Fig. 22 only shows various power-law degree distributions of myGamma
network. The Epinions network follow similar property. Unless otherwise specified,
the default parameter settings are min_si ze = 3, ε = 1 and δ = 1

3 .

4 http://snap.stanford.edu/data/soc-sign-epinions.html
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Fig. 23 Performance by varying countries. a Elapsed time and b # QACs found

9.2 Performance results

9.2.1 Performance by varying countries

We apply both aMascot and rMascot on the country specific networks to determine
the elapsed time and the numbers of MQACs for each network.

Figure 23a illustrates the elapsed time for each country specific network. Among
them, Singapore network requires the longest elapsed time, 1000 and 6000 s for aQACs
and rQACs, respectively. This can be attributed to the large number of edges in the
Singapore network (see Table 4). This results in more candidate graphs generated
by the pruning stage. In the pruning stage, Mascot therefore finds more candidate
graphs. It takes longer time to process these candidate graphs in the enumeration stage.
The Iran network has few edges but a high proportion of negative links. It therefore
requires more elapsed time.

Figure 23b shows the number of MQACs found. Iran has the largest numbers of
aQACs and rQACs. Again, this is due to the high proportion of negative links. This
result is consistent with the earlier result shown in Fig. 19.

9.2.2 Performance by varying min_si ze on myGamma

We apply both aMascot and rMascot on myGamma network by varying the parameters
min_si ze, ε and δ. Figure 24a and c show the elapsed time of them. The elapsed time
generally decreases with larger min_si ze and small ε (or δ). Nevertheless, the elapsed
time is much longer for these larger real networks. This is consistent with our earlier
results on the synthetic graphs. Figure 24b and d show the number of MQACs found.
In summary, aMascot and rMascot take several hours to finish for min_si ze = 3, but
much less time when min_si ze > 3.

In addition, we also compare Mascot with the algorithm for detecting DACs (Lo
et al. 2013, 2011) on myGamma when ε = 0 or δ = 0. Under these conditions, the
QAC will also be a DAC. We show the results of our experiments in Fig. 24a–d. From
Fig. 24a and c, when min_si ze is large, both aMascot and rMascot are more efficient
than the algorithm that mines DACs. Figure 24b and d indicate that aQAC and rQAC
help us to find more antagonistic communities due to their relaxed conditions. The
results are consistent to our earlier results on the synthetic graph.
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Fig. 24 Performance by varying min_si ze on myGamma. a Elapsed time (absolute), b # QACs found
(absolute), c elapsed time (relative) and d # QACs found (relative)

9.2.3 Performance by varying min_si ze on Epinions

Figure 25a and c show the elapsed time by varying the parameters min_si ze, ε and δ

on Epinions. Figure 25b and d show the number of MQACs found. The observation is
consistent with our earlier results on both the synthetic graphs and myGamma network.
In summary, aMascot and rMascot take about a hour to finish for min_si ze = 3, but
much less time when min_si ze > 3.

Meanwhile, we compare Mascot with the algorithm for detecting DACs (Lo et al.
2011, 2013) on Epinions when ε = 0 or δ = 0. We also show the results of our experi-
ments in Fig. 25a–d. From Fig. 25a and c, when min_si ze is large, aMascot and rMas-
cot are more efficient than the algorithm that detects DACs. From Fig. 25b and d, we
find that aQAC and rQAC help us to find more antagonistic communities. The results
are also consistent to our earlier results on the synthetic and myGamma networks.

9.3 Example cases

To gain a better understanding of the effectiveness of Mascot. We now examine the
actual QACs found in myGamma networks.

9.3.1 Difference between aQAC and rQAC

Figure 26a shows one of the largest aQAC found with min_si ze = 3 and ε = 1.
We apply rMascot with the same min_si ze and δ = 1

3 . Figure 26b shows the corre-
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Fig. 25 Performance by varying min_si ze on Epinions. a Elapsed time (absolute), b # QACs found
(absolute), c elapsed time (relative) and d # QACs found (relative)
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Fig. 26 Absolute and relative QACs. a Absolute definition and b relative definition

sponding rQAC, which shares the most number of vertices with the above aQAC. The
two QACs are very similar except that v0 is missing in the aQAC. This shows that the
absolute and relation versions of Mascot produce similar antagonistic communities.

9.3.2 Cross-countries community

Most users link to the other users from the same country. We however would like to
examine if any QACs exist between users from different countries. So as to obtain cross
country network for finding MQACs, we therefore combine users from Singapore,
USA and Iran in various ways. As shown in Table 6, we cannot find any new absolute
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Table 6 Statistics for detecting
cross-countries MQACs

Countries Absolute Relative

# MQACs Time (s) # MQACs Time (s)

sg 156 1387.7 190 6681.1

us 18 742.9 18 1182.6

ir 178 597.9 399 930.5

sg+ir 334 1594 589 7089.3

sg+ir+us 355 2318.3 610 8271.8

v0(SG)

v6(US)

v5(US)

v3(US)

v2(US)

v1(US) v0(SG)

v7(US)

v3(US)

v4(US)

v2(US)

v9(US)
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(c)(b)(a)
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Fig. 27 QACs formed by users from different countries

MQACs by combining Singapore users with Iran users. When combining the users
from the 3 countries, we found three additional absolute MQACs (355 − 156 − 178
− 18 = 3) whose members are from different countries. These three absolute MQACs
are induced by the same Singapore user v0 as shown in Fig. 27. The same observation
can be found for relative MQACs.

Based on the empirical results in Table 6, we can hypothesize that the elapsed time
of a network consisting of users from different countries does not necessarily increase
exponentially with the number of users. This is because the interactions between users
from different countries are rare comparing to users from the same country. This also
helps to keep Mascot scalable.

9.4 Predicting polarity of links

We now want to determine if detecting QAC is helpful to predict the sign of an
individual edge. We employ supervised machine learning approach to classify if an
individual edge inside a detected QAC is positive or negative.

9.4.1 Features

To build the classifier, we group a collection of features of edges from a QAC into three
categories. Suppose that we are interested in predicting the sign of the edge from u to
v. The first group of features is related to the degrees of u and v. Specifically, we use
deg+(u), deg+(v), deg−(u), deg−(v), deg(u) and deg(v) to denote the number of
positive neighbors of u to v, the number of negative neighbors of u to v, and the total
number of neighbors of u to v. The second group is the triad feature which is the set
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Table 7 Accuracy for predicting signs of edges on myGamma and Epinions

Data Approach Precision Recall F-Measure

C_Q C_M N-C C_Q C_M N-C C_Q C_M N-C

myGamma NaiveBayes .978 .816 .653 .979 .901 .823 .978 .853 .728

ADTree .992 .927 .861 .986 .916 .845 .989 .921 .853

J48 .987 .926 .864 .994 .936 .878 .990 .931 .871

SMO .996 .922 .848 .995 .940 .885 .995 .931 .866

Logistic .998 .918 .838 .997 .933 .868 .997 .925 .853

Epinions NaiveBayes .962 .838 .713 .971 .862 .753 .966 .849 .732

ADTree .971 .898 .824 .976 .894 .812 .973 .896 .818

J48 .979 .920 .861 .977 .910 .843 .978 .915 .852

SMO .982 .909 .836 .980 .913 .846 .981 .911 .841

Logistic .991 .924 .856 .987 .918 .849 .989 .921 .852

Best results are highlighted in bold

of count of triads involving edge (u, v). We use tr i+(u, v), tr i−(u, v) and tr i±(u, v)

to denote the number of common positive neighbors, the number of common negative
neighbors and the number of users who have different kinds of relationship to u to v.
The final type of feature is a community feature which is a binary feature. It is 1 if u
to v come from the same sub-community of a QAC or the same community detected
by maximizing modularity (following the algorithm described in Mucha et al. 2010),
otherwise 0.

9.4.2 Learning methodology and results

We build three sets of classifiers. One set is built based on degree feature and triad
feature, except for the community feature, denoted as N-C. The second one is built
based on degree feature, triad feature and QAC-based community feature, denoted as
C_Q. The final one is built based on degree feature, triad feature and modularity-based
community feature, denoted as C_M. Each set of classifiers consists of five classifiers:
Naive Bayes, AD-tree, J48, Weka SVM and logistic regression.

We randomly select 600 edges from our found MQACs, which consist of 317 pos-
itive edges and 283 negative edges, on both myGamma and Epinions networks. We
employ 10-fold cross validation to evaluate the results. Table 7 illustrates precision,
recall, and F-measure of the learning results on both myGamma and Epinions net-
works, where F-measure is computed as 2×precision×recall

precision+recall . We observe that the pre-
dicted results with the community feature outperform those without the community
feature. Also, our QAC-based community feature outperforms the modularity-based
community feature in predicting the polarities of links.

9.5 Discussion: coverage and applicability

The goal of our work is to identify strong local communities that fight among one
another. In a typical network, nodes involved in these antagonistic communities are
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expected to be small in number—since otherwise there would be too much fights
and the network might even crumble into multiple networks. Thus, by design, our
antagonistic communities will not have high coverage. Most of the nodes in a typical
network would not be part of any antagonistic community.

However, despite low coverage, antagonistic community mining still have a number
of applications. Detecting antagonistic communities would help a network adminis-
trator to detect unwanted antagonism early and prevent it to spread too much in the
network. By detecting antagonistic communities, one can also study factors that lead
to antagonism in a large network which will enrich existing studies in social science
that have typically only analyzed small datasets. Antagonistic communities can also
be helpful to predict link polarity, user preferences, product adoption, etc. Of course,
the low coverage of antagonistic communities might limit their utility in these applica-
tions; however, for nodes that are covered by these antagonistic communities (which
could still be a large number, e.g., thousands of nodes), the detected communities can
help in these tasks—as shown in Sect. 9.4.

10 Conclusion

The importance of local structures in a graph has been recognized in many application
areas, such as understanding user behavior and predicting links between users.

In this paper, we present a comprehensive study of finding maximal quasi antag-
onistic communities (MQACs). We define both the absolute and relative versions of
QAC and propose two-stage Mascot algorithm to find all MQACs: pruning and enu-
meration stages.

In the pruning stage, we introduce four pruning rules to reduce the number and size
of candidate graphs. The experimental results tell us that our pruning rules have high
pruning efficiency.

In the enumeration stage, we propose an enumeration tree in a top–down manner
to enumerate all SCCs of each vertex set of a candidate graph.

We conduct an extensive set of experiments on both synthetic graphs and two real
networks.

Our results show that Mascot can efficiently handle an input signed graph with
hundreds of thousands of vertices and millions of edges.

We also demonstrate that Mascot achieves good recall, returning the QACs injected
into synthetic graphs.

And in the myGamma social network, a real world network, we observe that most
QACs are among users from the same country.

Finally, we find that detecting QACs is helpful to predict the sign of an individual
edge from both myGamma and Epinions networks.
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