
Adoption of Software Testing in Open Source Projects
A Preliminary Study on 50,000 Projects

Pavneet Singh Kochhar1, Tegawendé F. Bissyandé2, David Lo1, and Lingxiao Jiang1

1Singapore Management University, Singapore
2LaBRI, University of Bordeaux, France

kochharps.2012@phdis.smu.edu.sg, bissyand@labri.fr, davidlo@smu.edu.sg, lxjiang@smu.edu.sg

Abstract—In software engineering, testing is a crucial activ-
ity that is designed to ensure the quality of program code. For
this activity, development teams spend substantial resources
constructing test cases to thoroughly assess the correctness of
software functionality. What is however the proportion of open
source projects that include test cases? What kind of projects
are more likely to include test cases?

In this study, we explore 50,000 projects and investigate
the correlation between the presence of test cases and various
project development characteristics, including the lines of code
and the size of development teams.

Keywords-Empirical study, Software testing, Adequacy, Test
cases

I. INTRODUCTION

Project development tasks have benefited from numerous

advancements in software engineering over the decades.

Despite the widespread use of various strategies and tools

to ensure the production of high-quality code, most software

are shipped with substantial amounts of bugs. For example,

in 2006, a Mozilla developer has admitted that ”everyday,

almost 300 bugs appear” in the project’s bug tracking

system [2]. Such situations are explained by various reasons,

most notably by deficiencies in software testing. Ten years

ago, the National Institute of Standards and Technology had

conducted a study where it was reported that inadequate soft-

ware testing costs the U.S economy $59.5 billions annually,

i.e., about 0.6% of its GDP [11]. This alone suggests that

software testing is an important task that must be integrated

in the process of project development.

Software testing assesses the functionalities of a program

or system and investigates whether the tested entity produces

the expected results based on a set of inputs and execution

contexts. Therefore, an important aim of software testing

is to detect bugs. Unfortunately, since the complexity of

software is intractable, software bugs are prominent and

detecting all of them is practically impossible.It is commonly

accepted that performing a complete testing is often infeasi-

ble. Although a large body of research about software testing

has been built [3], [4], [5], [6], software programs continue

to suffer from numerous defects. However, is software

testing really popular in development projects? What kind

of projects are more likely to include tests? These are some

of the questions whose answers could shed light into the

opportunity of software testing and its impact on software

evolution. Our goal in this paper is indeed to fill a research

gap in the importance of software testing through a large-

scale empirical evaluation.

In this study, we investigate 50,000 open source projects

from the GitHub hosting site. GitHub provides various

developer-friendly features which makes it an important

development platform for millions of software projects,

including major successes such as Linux and Ruby on Rails.

The contributions of this paper are as follows:

1) We conduct a large scale study on thousands of soft-

ware projects. We believe it is the largest study con-

ducted on test cases.

2) We examine the popularity of test cases in different

projects and different characteristics which can affect

presence of test cases.

3) We discuss our findings and show correlations between

the number of test cases and various characteristics of

software projects.

The structure of this paper is as follows. We elaborate

our empirical study methodology in Section II. Next, we

explain the statistical analysis we performed on the data

in Section III, along with a number of research questions.

Section IV describes the related work. We conclude and

mention future work in Section V.

II. METHODOLOGY

For our empirical study, we downloaded thousands of

projects using the GitHub API and selected 50,000 projects.

The projects downloaded from GitHub do not have a distinct

ordering scheme which varies with every request. To ensure

that most of the projects are non toy projects in our dataset,

we examined the dataset and found famous projects like

jQuery and Ruby on Rails framework. We count the number

of lines of code (LOC) in each project. We observe that

over 38% of our projects have more than 500 LOC. Around

28% of the projects include more than 1,000 LOC, while

more than 12% of the projects have more than 5,000 lines of

code. Also, over 1,000 projects have more than 100,000 LOC

which shows that our dataset includes projects of substantial

sizes.

A. Collecting the dataset

a) Lines of code: We cloned the actual git repositories

of the projects in the dataset and counted the number of

lines of code (LOC) in each project. Since GitHub uses

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.48

353

the git software configuration management system (SCM)

to store software revisions, we used the latest revision of

the project, ignoring code comments and blank lines and

used the SLOCCount1 utility to compute the actual lines of

code.

b) Test Cases: Test cases define a sequence of steps to

test the behavior of functionality of an application. For each

project, we collect the files whose name contains ”test”

and count the number of such files. Then, we examine the

different characteristics of the projects with respect to the

number of test cases.

c) Developer contributions: We find the contributions of

developers for all the projects in our dataset i.e., we find the

number of developers for each project. Git records stores

the contributors name and email address for each revision of

the project. Git SCM can help distinguish between revision

authors, who are end contributors of code and committers,

who have access to main repository and who forward the

code contributions from revision authors.

B. Research questions

We investigate in this work a number of research questions

to explore and assess the prevalence of software testing

in software development projects. Given the extent of our

datasets and the variety of artifacts that software develop-

ment projects produce, we investigate various dimensions

to characterize the relationship between a project and the

test cases produced in that project. We are thus interested in

analyzing the following research questions:

RQ1:How many projects have test cases? For this re-

search question, we examine the popularity of test cases in

open source projects. We also investigate the characteristics

of projects containing test cases and their corresponding

lines of code (LOC).

RQ2: Does the number of developers affect the number
of test cases present in a project? Here, we wish to study

the relationship between number of developers and number

of test cases in a project.

III. EMPIRICAL EVALUATION

In this section, we examine the research questions and

report the results of our empirical study.

A. RQ1: Popularity of Test Cases

In the first research question we investigate the distribu-

tion of test cases across projects. Since we are investigating

open source projects, different people can contribute either

by creating the test cases or by running them and reporting

bugs. Table 1 details the distribution of test cases.

We collected 50,000 projects for our experiment out

of which 28,672 projects do not contain test cases. This

represents 57.34% of the total projects. Remaining 42.66%

of the projects contain one or more test cases.

1http://dwheeler.com/sloccount

Table I
TEST CASES DISTRIBUTION

Projects # of Projects % of Projects
Without Test Cases 28,672 57.34%
With Test Cases 21,328 42.66%

Table II details the prevalence of test cases: 90% of the

projects have less than 100 test cases, while only 2.57% of

the projects have more than 500 test cases. More than 7%

of the projects have between 100 and 500 test cases, while

only 17 projects have more than 10,000 test cases.

Table II
PREVALENCE OF TEST CASES

of Test Cases # of Projects % of Projects with Test Cases
1-9 12,117 56.81%

10-49 5,840 27.38%
50-99 1,262 5.91%

100-249 1,138 5.33%
250-499 417 1.95%
500-999 300 1.40%

1000-4999 211 0.98%
5000-9999 26 0.12%
> 10000 17 0.07%

We examine how presence/absence of test cases correlate

with the lines of code. We wish to examine whether an

increase in the number of LOC leads to an increase in the

number of test cases. We believe that with increasing code

sizes we need more test cases to sufficiently test the code

and to produce reliable software.

Figure 1. Test Cases and Lines of Code

Figure 1 shows distribution of LOCs for projects

with/without test cases. On average, projects without test

cases have 1,548 LOC (median=244), while projects with

test cases have 59,893 LOC (median=701). We performed

Mann-Whitney-Wilcoxon (MWW) test to compare the set

of LOC of projects with test cases and those without test

cases and found that the difference between these two sets

is statistically significant with p-value < 2.2 e−16 2. Thus,

2Here, lines of code is the dependent variable whereas project
with/without test cases is an independent variable. Null hypothesis states
that there is no difference in the size of projects that have test cases and the
projects without test cases. Alternative hypothesis is that projects with test
cases are bigger in size than projects without test cases. Given significance
level α=0.001, if p-value< α the test rejects null hypothesis.

354

we can conclude that projects without test cases are smaller

than projects with test cases.

Figure 2. Correlation between Test Cases and Lines of Code

Figure 2 depicts the correlation between the number of

lines of code and the number of test cases. We can observe

from the graph that there is positive relationship between

LOC and number of test cases. We also compute Spearman’s

rho which gave value 0.335 and p-value < 2.2 e−16 3,

suggesting that there is weak correlation between the number

of test cases and the number of lines of code.

Figure 3. Correlation between Test Cases per LOC and Lines of Code

We further examine the correlation between the number

of lines of code and the number of test cases per LOC. We

only consider the projects with test cases. For each project,

we divide the number of test cases by the number of LOC.

We observe an interesting thing from Figure 3 that as the

project size increases, i.e., increase in number of lines of

code (LOC), we see a decrease in the number of tests per

LOC. Spearman’s rho for the distribution is -0.686 with

p-value < 2.2 e−16, which shows that there is a negative

correlation between the lines of code and the number of test

cases per LOC.

90% of the projects have less than 100 test cases. Projects
with test cases are bigger in size than projects without test
cases. For the projects with test cases, the number of test
cases per LOC decreases with increasing LOC.

3Null hypothesis (rho is zero) is rejected

B. RQ2: Developers and Test Cases

We discuss the relationship between the numbers of

developers and the numbers of test cases for the projects in

our dataset. Based on developer names, we have identified

2,967,146 developers who have contributed to the code bases

of the projects in our dataset of 50,000 projects. In total, for

projects with test cases (21,328 projects), we have identified

2,864,179 developers who may/may not have contributed

test cases. On the other hand, projects without test cases have

102,967 developers and constitutes 3.4% of the total number

of developers. We can observe from the statistics that

projects with test cases have higher numbers of developers.

Figure 4 shows that projects with/without test cases have

approximately equal median number of developers. Using

MWW test between the set of numbers of developers of

projects with test cases and those for projects without test

cases, we found p-value < 2.2e−16 e−16 4 which shows that

difference between these two sets is statistically significant.

Figure 4. Number of Developers in Projects with/without Test Cases

Figure 5. Test Cases and Number of Developers

Further, we investigate whether the number of developers

has an effect on the presence of test cases. Figure 5 depicts

the scatter plot of the numbers of developers and the

numbers of test cases from the projects in our dataset. The

4Here, number of developers is a dependent variable whereas project
with/without test cases is an independent variable. Null hypothesis states
that there is no difference in the number of developers between projects
without test cases and the projects with test cases. Alternative hypothesis
is that projects with test cases have more number of developers. Given
significance level α=0.001, if p-value< α the test rejects null hypothesis.

355

Spearman’s rho for the distribution is 0.207 with p-value <
2.2 e−16 suggesting that there is weak correlation between

numbers of developers and test cases.

We proceed to investigate correlation between the num-

bers of test cases per developer and the numbers of de-

velopers in the project. Figure 6 shows the scatter plot

between the two data variables. Here, we consider only the

projects with non-zero test cases. We observe a decrease in

the number of test cases per developer with an increase in

the number of developers. The Spearman’s rho for the two

distributions is -0.446 (p-value < 2.2 e−16). We observe

that the relationship between the number of developers and

the number of test cases per developer is negative. Thus, we

can conclude that test count per developer decreases with an

increase in the number of developers as only some of the

developers contribute the test cases.

Figure 6. Correlation between # of Test Cases per Developer and # of
Developers

Although the number of test cases increases with an increase
in the number of developers, number of test cases per devel-
oper decreases with this increase.

Threats to Validity. We use SLOCCount1 utility to count

the number of lines of code. This tool covers 27 program-

ming languages. It is possible that we miss some lines of

code that are not written in one of these languages. We use

heuristics to detect test files, i.e., we consider the files whose

name contains test. This might not identify all test files

whose name does not have word test and conversely, detect

some files whose name contain the word test but actually

are not test files. In order to scale to 50,000 projects, we

need to take these heuristics.

IV. RELATED WORK

There is a large research community, which uses empirical

methods to study several aspects of software engineering.

Ajila and Wu perform an empirical study on the adoption

of open source software development [1]. Glynn et al. inves-

tigate the adoption of open source software in commercial

applications [7]. Greiler et al. conduct a qualitative study of

test practices followed by a community of people working on

plug-in based applications [8]. Previously, there have been

several large scale studies on software projects. Gruska et

al. evaluates a lightweight anomaly detection technique on

a collection of 6,000 projects [9]. Surian et al. analyze a

snapshot of projects in SourceForge.Net [10]. In this work,

we conduct a large scale empirical study using 50,000

projects from a developer-oriented platform, namely GitHub.

V. CONCLUSION AND FUTURE WORK

Test cases are important artefacts in any software project

which allow developers test their code and produce reliable

software. We conduct a large scale study to examine the

presence/absence of test cases with respect to other charac-

teristics of a project such as lines of code and number of

developers. We plot graphs between test cases and these

characteristics and use statistical analysis to examine the

correlation between them. Our analysis shows the following

results

1) Projects having test cases are bigger in size than

projects without test cases. However, as projects get

larger the number of tests per LOC decreases.

2) Projects having bigger team size have higher number

of test cases whereas the number of test cases per

developer decreases with an increase in the size of the

development team.

In this paper, we have limited our study to projects

collected in June 2012. In future, we can expand our studies

and include more projects and consider other characteristics

such as number of bugs and programming languages which

can affect presence of test cases.

REFERENCES
[1] S. Ajila and D. Wu, “Empirical study of the effects of

open source adoption on software development economics,”
Journal of Systems and Software, 2007.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in ICSE, 2006.

[3] V. Basili and R. Selby, “Comparing the effectiveness of soft-
ware testing strategies,” Software Engineering, IEEE Trans-
actions on, 1987.

[4] L. Briand and Y. Labiche, “Empirical studies of software
testing techniques: Challenges, practical strategies, and future
research,” ACM SIGSOFT Software Engineering Notes, 2004.

[5] P. Frankl and O. Iakounenko, “Further empirical studies of
test effectiveness,” in ACM SIGSOFT Software Engineering
Notes, 1998.

[6] P. Frankl and S. Weiss, “An experimental comparison of
the effectiveness of branch testing and data flow testing,”
Software Engineering, IEEE Transactions on, 1993.

[7] E. Glynn, B. Fitzgerald, and C. Exton, “Commercial adoption
of open source software: an empirical study,” in ISESE, 2005.

[8] M. Greiler, A. van Deursen, and M.-A. D. Storey, “Test
confessions: A study of testing practices for plug-in systems,”
in ICSE, 2012.

[9] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from
6, 000 projects: lightweight cross-project anomaly detection,”
in ISSTA, 2010.

[10] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration
patterns from a large developer network,” in WCRE, 2010.

[11] G. Tassey, “The economic impacts of inadequate infrastruc-
ture for software testing,” National Institute of Standards and
Technology, RTI Project, 2002.

356

