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Abstract—Bug fixing is a time-consuming and costly job which
is performed in the whole life cycle of software development
and maintenance. For many systems, bugs are managed in bug
management systems such as Bugzilla. Generally, the status of
a typical bug report in Bugzilla changes from new to assigned,
verified and closed. However, some bugs have to be reopened.
Reopened bugs increase the software development and mainte-
nance cost, increase the workload of bug fixers, and might even
delay the future delivery of a software.

Only a few studies investigate the phenomenon of reopened
bug reports. In this paper, we evaluate the effectiveness of various
supervised learning algorithms to predict if a bug report would
be reopened. We choose 7 state-of-the-art classical supervised
learning algorithm in machine learning literature, i.e., kNN,
SVM, SimpleLogistic, Bayesian Network, Decision Table, CART
and LWL, and 3 ensemble learning algorithms, i.e., AdaBoost,
Bagging and Random Forest, and evaluate their performance in
predicting reopened bug reports. The experiment results show
that among the 10 algorithms, Bagging and Decision Table
(IDTM) achieve the best performance. They achieve accuracy
scores of 92.91% and 92.80%, respectively, and reopened bug
reports F-Measure scores of 0.735 and 0.732, respectively. These
results improve the reopened bug reports F-Measure of the state-
of-the-art approaches proposed by Shihab et al. by up to 23.53%.

Index Terms—bug reports; reopened reports; classification;
supervised learning algorithms; comparative study

I. INTRODUCTION

In software development and maintenance process, bug

fixing is one of the key activities. Most of the open source

software communities and commercial companies have their

own bug tracking systems, such as Bugzilla. Various research

studies have proposed automated techniques to manage bug

repositories, such as bug triaging [1], duplicate bug report

detection [2], etc. Generally speaking, a typical bug fixing

process can be summarized as the following 4 steps (we take

Bugzilla as an example):

1) The tester detected a bug in the software, and published

a bug report to describe the bug in Bugzilla. The current

bug status is “new”;

2) The bug triager assigned this bug to the most appropriate

developer. The current bug status is “assigned”;

1The work was done while the author was visiting Singapore Management
University.

3) The developer read the bug report, and verified whether

it is a bug, and tried to fix it. The current bug status is

“verified”;

4) Finally, after the developer had fixed the bug or verified

that it is not a bug, the bug triager closed this bug. The

current bug status is “closed”;

However, in some cases, a bug has to be reopened. There are

various reasons for reopening a bug report [3]; for example, the

tester did not provide sufficient information for the bug, the

developer misunderstood the root cause of the bug, the bug

reappeared in the current version of system although it was

fixed in the previous system (i.e., a regression bug). Reopened

bugs take much longer time to resolve, and the developers

need to re-understand the context of the bugs description and

discussion, which increases the work for these already-busy

developers [5]. Detecting these reopened bug reports early can

reduce maintenance cost and improve reliability of systems.
To our best knowledge, there are a few studies that inves-

tigate reopened bug reports; the most related studies are [4],

[5], and [3]. Shihab et al. propose the problem of predicting

reopened bug reports [4], [5]. Zimmermann et al. comprehen-

sively investigate factors that cause bug reports to be reopened

in Microsoft [3]. In this paper, we comprehensively investigate

the effectiveness of many supervised learning algorithms for

the task of predicting reopened bugs.
In this study, we categorize the supervised learning algo-

rithms into two families: traditional supervised learning algo-

rithms and ensemble supervised learning algorithms. Ensemble

learning algorithms combined multiple instances of traditional

supervised learning algorithms. For traditional supervised

learning algorithms, we evaluate kNN, SVM, SimpleLogistic,

Bayesian Network, Decision Table, CART, and LWL; for en-

semble supervised learning algorithms, we evaluate AdaBoost,

Bagging, and Random Forest.
The main contributions of this paper are as follows:

1) We investigate the effectiveness of 10 state-of-the-art

supervised learning algorithms in machine learning lit-

erature in predicting reopened bug reports;

2) We demonstrate that Decision Table and Bagging

achieve the best performance compared to all other

algorithms. The best performing algorithms outperform

the result achieved by the algorithm used in [4], [5].

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.43

331



Fig. 1. Proposed Reopened Bug Prediction Framework
TABLE I

FEATURES EXTRACTED FROM BUG REPORTS

Types Features Description

TIME

Time Hour the bug is closed

Weekday Day of the week the bug is closed

Month day Day of the month the bug is closed

Month Month the bug is closed

BF
Time days Time to solve the bug

Last status Last status of the bug

No. of source files Number of source code files related to the bug

HUMAN

Reporter Name The bug reporter name

Fixer Name The bug fixer name

Reporter Experience Number of bug reports reported by this reporter

Fixer Experience Number of bug reports fixed by this fixer

BR

Component Component affected by the bug

Platform Platform affected by the bug

Severity Severity of the bug report

Priority Priority of the bug report

CC list Number Number of people in CC list

Description size Number of words in description text

Description text Description text content

No. of comments Number of comments

Comment size Number of words in comment text

Comment text Comment text content

Priority changed Whether the priority was changed

The remainder of the paper is organized as follows: In

Section II, we present a high-level view of how to use

learning algorithms to predict reopened bug reports, what

features can be extracted to discriminate bug reports that are

reopened from those that are not, and what algorithms we

investigate to predict re-opened bugs. In Section III, we report

the results of our experiment which compares those algorithms

for predicting reopened bugs; In Section IV, we present related

studies; In Section V, we conclude and mention future work.

II. OVERALL FRAMEWORK

Figure 1 shows our reopened bug report prediction frame-

work. The whole framework includes two phases: training

phase and prediction phase. In the training phase, our goal

is to build a classifier from the historical bug reports which

have known status (i.e., reopened or not). In the prediction

phase, this classifier would be used to predict if an unknown

bug report would be reopened or not.

Our framework first extracts features from the set of training

bug reports (i.e., bug reports with known status) (Step 1).

Features are various quantifiable characteristics of bug reports

that could potentially differentiate reports that are reopened

from those that are not. In this paper, we consider 4 types

of features as described in [4]: time related (TIME), bug fix

related (BF), human related (HUMAN) and bug report related

(BR) features. These features are briefly described in Table I.

Next, our framework constructs a classifier based on features

of the training bug reports (Step 2). A classifier is a machine

learning model which assigns labels (in our case: reopened

or not) to a data point (in our case: a bug report) based on

TABLE II
PARAMETER SETTING FOR DIFFERENT SUPERVISED LEARNING

ALGORITHMS

Algorithm Parameter Setting
kNN Set number of neighbors (i.e., k) as 5, use Euclidean distance

SVM Use sequential minimal optimization algorithm (SMO), set the kernel as normalized

polynomial kernel

SLR Use the algorithm proposed in [12]

BN Use TAN algorithm [13] to generate the learning Bayesian network

IDTM Set the search strategy as BestFirst

CART Use CART-pruned strategy

LWL Consider all neighbors, use C4.5 as base classifier

AdaBoost Use C4.5 as base classifier, set number of iterations as 10, use re-sample strategy

Bagging Use C4.5 as base classifier, set number of iterations as 10

RF Set number of trees to 10, use C4.5 as the base decision tree algorithm

its features. The classifier construction phase would compare

and contrast the features of bug reports that are reopened, and

those of bug reports that are not. Various thresholds or rules

would then be learned, and these are stored in the constructed

classifier.

There are various supervised learning algorithms that could

be used for this step. The goal of our study is to inves-

tigate the effectiveness of various algorithms to predict if

bug reports get reopened. The algorithms grouped into two

families: traditional and ensemble algorithms, respectively.

The traditional classification algorithms include K-Nearest

Neighbor (kNN) [6], Support Vector Machine (SVM) [6], Sim-

pleLogistic (SLR) [7], Bayesian Network (BN) [6], Decision

Table (IDTM) [6], CART [6], and Locally-Weighted Learning

algorithm (LWL) [8]. The ensemble classification algorithms

include Adaptive Boosting (AdaBoost) [9], Bootstrap Aggre-

gating (Bagging) [10], and Random Forest [11].

In the prediction phase it is then used to predict whether a

bug report with unknown label would be reopened or not. For

each such bug report, we first extract features from it (Step

3). We then input the features to the classifier in the classifier

application step (Step 4). This step would output the prediction

result which is one of the following labels: reopened or not

reopened.

III. EXPERIMENTS AND RESULTS

In this section, we evaluate the 10 supervised learning al-

gorithms to predict if reopened bug reports. The experimental

environment is an Intel(R) Core(TM) i5 3.20 GHz CPU, 4GB

RAM desktop running Windows 7 (32-bit).

A. Experiment Setup

We use the dataset collected by Shihab et al. [4], [5]. The

whole dataset contains 1,530 bug reports, and 246 bug reports

were reopened, while 1,284 were not. We use this dataset to

evaluate the effectiveness of the algorithms.

Ten times stratified 10-fold cross validation is used to

evaluate the supervised learning algorithms [5], i.e., we repeat

10-fold cross validation 10 times. For each stratified 10-

fold cross validation, we randomly divide the dataset into

10 folds, and 9 folds are use to train the classifier, while

the remaining 1 fold is used to evaluate the performance,

and the class distribution in training and test set is the same

as the original dataset to simulate the actual usage of the

algorithm. For the evaluation metric, we choose the 7 metrics

following the study by Shihab et al. [4], [5]: accuracy, re-

opened precision (Precision(re)), reopened recall (Recall(re)),
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reopened F-Measure ((F-Measure(re)), not reopened precision

(Precision(nre)), not reopened recall (Recall(nre)), and not

reopened F-measure (F-Measure(nre)). Accuracy corresponds

to the proportion of bug reports that are correctly labeled.

Reopened (not reopened) precision refers to the proportion

of bug reports that are correctly labeled among those labeled

as reopened (not reopened). Reopened (not reopened) recall

refers to the proportion of reopened (not reopened) bug reports

that are correctly labeled. F-Measure is the harmonic mean of

precision and recall. It could be viewed as a summary measure

that combines both precision and recall – it evaluates if an

increase in precision (recall) outweighs a reduction in recall

(precision).

We use the implementation of the 10 learning algorithms

in Weka [14]. Each of the 10 algorithms might take one or

more parameters. Table III-A presents the parameter setting

for the 10 learning algorithms. For ensemble learning algo-

rithms, such as AdaBoost and Bagging, they combine multiple

instances of a supervised learning algorithm. In this paper,

unless otherwise stated, we just use C4.5 as the base classifier

for AdaBoost and Bagging, although other algorithms can also

be used.

We would like to answer the following research questions:

1) What are the performance of the different supervised

learning algorithms to predict reopened bug reports?

2) Do ensemble learning methods show better performance

than the non ensemble learning methods?

The first research question is the most important one. The

answer would shed light on the effectiveness of different

supervised learning algorithms to predict reopened bug reports.

B. RQ1: Performance of Different Algorithms

Table III presents the experimental results for different

supervised learning algorithms in predicting reopened bug re-

ports. Since reopened bug reports are the minority (c.f., [15]),

and the goal of the work is to predict re-opened bugs in the

dataset, we focus more on the performance of the algorithms in

predicting reopened bug reports, i.e., precision(re), recall(re),

and F-measure(re).

Among the 10 algorithms, we notice LWL and kNN have

the worst performance – their accuracy scores are 89.90%

and 90.52% respectively, and F-Measure(re) scores are 0.673

and 0.600 respectively. Moreover, Random Forest does not

show good performance either, its F-Measure for reopened

bug reports is only 0.628, which is the second lowest among

the 10 algorithms.

On the other hand, Bagging and Decision Table (IDTM)

show the best performance, their accuracy scores are 92.91%

and 92.80% respectively, and F-Measure scores for reopened

bug reports are 0.735 and 0.732 respectively. After Bagging

and IDTM, SLR also shows good results, its accuracy score

is 92.21%, and F-Measure score for reopened bug reports is

0.714.

Table IV presents the experiments results of the algorithms

proposed by Shihab et al. [5]. Four algorithms: Zero, Naive

Bayes (NB), Logistic Regression (LR), and C4.5 are extended

(by adding a re-sampling/re-weighting strategy) and used. We

re-implemented their approach. We notice that the experiment

results are little different that what are reported in [5]. This

is the case as the ten times 10-folds considered in our exper-

iments when doing multiple cross-validations are randomly

created and might be different from the ten 10-folds used in

Shihab et al.’s experiments. We use the same ten 10-folds

for all the algorithms (Shihab et al.’s and the 10 additional

algorithms considered in this paper). It is interesting to notice

that our proposed supervised learning algorithms show much

better performance. The best F-Measure for re-opened bug

prediction in Table III is 0.735, while the best F-Measure is

only 0.595 in Table IV (23.53% improvement).

C. RQ2: Performance of Ensemble Learning Algorithms

In the previous sub-section, we choose C4.5 as the base

classifier for AdaBoost and Bagging. In this section, we would

choose more base classifier for AdaBoost and Bagging to eval-

uate the performance of those ensemble learning algorithms

for predicting reopened bug reports. We choose Naive Bayes,

Bayesian Network, C4.5 and Decision Tree (IDTM) as the

base classifier for AdaBoost and Bagging. Table V presents the

experimental result for AdaBoost and Bagging with different

base classifiers.

Considering Table III and V, we notice that the AdaBoost

does not achieve better performance than its base classifier for

the reopened bug reports, and Bagging slightly improves its

base classifier except IDTM.

IV. RELATED WORK

To our best knowledge, there are only three papers analyzing

reopened bug reports [4], [3], [5]. Shihab et al. propose the

problem of identifying reopened bug reports using machine

learning algorithms [4], [5]. In this work, we extend the

work of Shihab et al. by evaluating the effectiveness of many

supervised learning algorithms for predicting reopened bug

reports. Our best algorithms outperform the result reported by

Shihab et al. on the same dataset that they used in their paper.

We also show that ensemble approach could gain additional

performance as compared to the base supervised learning

algorithm.

Zimmermann et al. analyze Microsoft Windows operating

system project to characterize when bug reports would be

reopened [3]. Their analysis follows a mixed-method ap-

proach. After they have completed a survey of 358 Microsoft

employees, they categorized the primary reasons for reopened

bug reports. Then they reinforce the survey result with a large-

scale study of Windows bug reports. Finally, logistic regression

was used to analyze the relationships of various metrics on bug

reports getting reopened. Considering the framework described

in Section II, Zimmermann et al. analyze the effectiveness of

various feature extractor component (Step 2). On the other

hand, in this work, we investigate the effectiveness of various

classifier construction techniques (Step 3). We do not use the

features proposed by Zimmermann et al. as many of them are
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TABLE III
EXPERIMENT RESULTS FOR DIFFERENT SUPERVISED LEARNING ALGORITHMS. PREC = PRECISION. BEST RESULTS IN BOLD.

Algorithm Accuracy Prec(re) Recall(re) F-Measure(re) Prec(nre) Recall(nre) F-Measure(nre)
kNN 90.52% 0.932 0.443 0.600 0.903 0.994 0.946

SVM 91.26% 0.814 0.591 0.685 0.926 0.974 0.949

SLR 92.21% 0.871 0.606 0.714 0.929 0.983 0.955

BN 91.50% 0.785 0.650 0.711 0.935 0.966 0.950

IDTM 92.80% 0.911 0.611 0.732 0.930 0.989 0.958

CART 92.15% 0.890 0.584 0.705 0.921 0.986 0.954

LWL 89.90% 0.702 0.647 0.673 0.933 0.947 0.940

AdaBoost 91.61% 0.822 0.612 0.701 0.929 0.974 0.951

Bagging 92.91% 0.922 0.611 0.735 0.930 0.990 0.959

RF 91.10% 0.882 0.515 0.650 0.914 0.987 0.949

TABLE IV
EXPERIMENT RESULTS OF APPROACHES PROPOSED BY SHIHAB ET AL. [5]. PREC = PRECISION.

Algorithm Accuracy Prec(re) Recall(re) F-Measure(re) Prec(nre) Recall(nre) F-Measure(nre)
ZeroR 83.92% 0 0 0 0.839 1 0.913

NB 83.90% 0.499 0.735 0.595 0.944 0.859 0.899

LR 82.00% 0.458 0.668 0.543 0.932 0.849 0.888

C4.5 83.80% 0.499 0.700 0.582 0.937 0.865 0.900

TABLE V
EXPERIMENT RESULTS FOR ADABOOST AND BAGGING WITH DIFFERENT BASE CLASSIFIERS. PREC = PRECISION.

Algorithm Accuracy Prec(re) Recall(re) F-Measure(re) Prec(nre) Recall(nre) F-Measure(nre)
AdaBoost+NB 86.32% 0.570 0.610 0.589 0.924 0.912 0.918

AdaBoost+BN 90.48% 0.756 0.603 0.671 0.927 0.963 0.944

AdaBoost+C4.5 91.61% 0.822 0.612 0.701 0.929 0.974 0.951

AdaBoost+IDTM 91.77% 0.819 0.627 0.710 0.931 0.973 0.952

Bagging+NB 87.59% 0.600 0.687 0.640 0.938 0.912 0.925

Bagging+BN 91.75% 0.807 0.639 0.714 0.934 0.971 0.952

Bagging+C4.5 92.91% 0.922 0.611 0.735 0.930 0.990 0.959

Bagging+IDTM 92.90% 0.914 0.617 0.736 0.931 0.989 0.958

only available within Microsoft – they are not computed or

stored in many Bugzillas of open source programs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the effectiveness of 10 super-

vised learning algorithms in predicting reopened bug reports.

The algorithms could be divided into 2 families: traditional

algorithms and ensemble algorithms. Experimental results

show that among 10 algorithms, Bagging and Decision Table

(IDTM) achieve the best performance; Their accuracy scores

are 92.91% and 92.80% respectively, and F-measure scores for

reopened bug reports are 0.735 and 0.732, respectively. These

scores outperform the best result known so far as reported

by Shihab et al. [4], [5] by a relative improvement of up to

23.53%. We also show that Bagging, an ensemble algorithm,

could improve the performance of its base line traditional

learning algorithm when C4.5, Naive Bayes, Bayesian Net-

work are used as base line algorithms.

In this paper, we investigate the performance of supervised

learning algorithms using one parameter setting. In the future,

we plan to investigate the performance of supervised learning

algorithms with various parameter settings and evaluate the

performance of more supervised learning algorithms with

more reopened bug reports. We also plan to improve reopened

bug report prediction further, in particular, to increase the F-

Measure(re) score. Moreover, we would also explore other

evaluation metrics such as AUC-ROC and P-Opt [16].
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