
Predicting Project Outcome Leveraging Socio-Technical Network Patterns

Didi Surian∗, Yuan Tian†, David Lo†, Hong Cheng‡ and Ee-Peng Lim†
∗School of Information Technologies

University of Sydney, Australia
Email: dsur5833@uni.sydney.edu.au

†School of Information Systems
Singapore Management University, Singapore

Email: {yuan.tian.2012,davidlo,eplim}@smu.edu.sg
‡Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong, Hong Kong
Email: hcheng@se.cuhk.edu.hk

Abstract—There are many software projects started daily;
some are successful, while others are not. Successful projects
get completed, are used by many people, and bring benefits
to users. Failed projects do not bring similar benefits. In this
work, we are interested in developing an effective machine
learning solution that predicts project outcome (i.e., success or
failures) from developer socio-technical network.

To do so, we investigate successful and failed projects
to find factors that differentiate the two. We analyze the
socio-technical aspect of the software development process by
focusing at the people that contribute to these projects and
the interactions among them. We first form a collaboration
graph for each software project. We then create a training set
consisting of two graph databases corresponding to successful
and failed projects respectively. A new data mining approach
is then employed to extract discriminative rich patterns that
appear frequently on the successful projects but rarely on
the failed projects. We find that these automatically mined
patterns are effective features to predict project outcomes. We
experiment our solution on projects in SourceForge.Net, the
largest open source software development portal, and show that
under 10 fold cross validation, our approach could achieve an
accuracy of more than 90% and an AUC score of 0.86. We
also present and analyze some mined socio-technical patterns.

Keywords-software project; collaboration graph; discrimina-
tive pattern; graph mining

I. INTRODUCTION

Some software projects, either open source or industrial,

are successful. They are completed, used by many people,

and bring benefits to the various stakeholders including

users, developers, and companies. Many others however

remain uncompleted, buggy, or are only used by a few.

Investigating the nature of successful and failed projects

could shed light to reasons or factors why some projects

are successful while others fail. These factors in turn could

be used to build a machine learning model to predict project

outcome. Predicting project outcome is useful for planning,

mitigation, and management reasons.
Due to the advent of Web 2.0, open source code, and

software repositories, much information on past project suc-

cesses and failures could easily be obtained. Features related

to the various software projects could be extracted. This

study aims to leverage these features to find discriminative

patterns that differentiate successful from failed projects.

A pattern is discriminative if it appears frequently in the

successful projects but rarely in the failed projects and vice

versa. Discriminative patterns characterize features closely

associated to successful or failed projects. We use these

patterns as features and build an effective classifier to predict

project outcome.

First, we extract the socio-technical aspects of software

development process by performing a longitudinal study on

various snapshots of a super-repository. A super-repository

contains much information including the people contributing

to various projects and the number of downloads. Various

snapshots of the super-repository could be taken to form

a richly labeled graph that characterizes people involved

in various projects and the nature of the relationships

between them across time. We can characterize project

success or failures based on the number of downloads.

From this information, two sets of graph databases, one for

successful and another for failed projects could be formed.

Each graph in the database corresponds to a project with

nodes corresponding to people involved in the project and

edges corresponding to relationships among them. Various

features, e.g., number of completed projects, number of

collaborations, etc, could be attached as labels to the nodes

and edges.

Next, to analyze these graphs, we extend past studies on

discriminative graph mining that mine for subgraphs that

frequently occur in one set of graphs but rarely in the

opposing set [17], [5]. Past studies on discriminative graph

mining are only able to mine from simple graphs with single
labels on the nodes and edges. We extend their work to mine

from rich graphs containing multiple labels on the nodes

and edges. To realize this, we propose a novel approach to

translate a rich graph into a simple one and adopt an existing

algorithm [5] to mine for discriminative subgraphs from the

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.15

47



translated graphs. The results are then reverse translated to

form rich graphs. We show that our translation is sound and

complete.

Finally, based on the mined patterns, we train a machine

learning model to predict project outcome. Based on a

training data, a set of patterns would be mined, and the

existence or absence of the patterns in each data instance is

used as binary features for classifier construction. The mined

patterns and the classifier are then used to predict instances

on test data whose outcome is to be determined.

We experiment our solution on SourceForge.Net, one of

the most popular and largest sites to download open-source

software. Our experiments demonstrate that we can predict

project outcome with an accuracy of over 90% and an AUC

(Area under ROC) score of 0.86. We also show and analyze

the set of top-20 most discriminative patterns that we mine.

We describe the contributions of this work as follows:

1. We introduce a new problem of predicting project

outcome using socio-technical network patterns.

2. We extend a solution that mines discriminative sim-

ple graph patterns to mine discriminative rich graph

patterns. We do so by proposing a translation process

to map the problem to mining simple graph patterns

and reverse translate the mined simple graph patterns

to rich graph patterns.

3. We prove that our translation is sound and complete.

This means that all mined patterns are discriminative

and all discriminative rich graph patterns can be

mined.

4. We show the scalability of our approach in analyzing

SourceForge.Net dataset. Experiment results show

that our approach can predict project outcome with

high accuracy. We also present and analyze the mined

discriminative patterns.

Section II introduces the concept of rich graph which is

used to represent a software project. Section III outlines our

overall framework. We zoom into the various components of

the framework in the following sections. First, Section IV

elaborates our approach to model the socio-technical aspects

of projects. Next, Section V explains how discriminative

patterns are mined. Finally, Section VI describes our process

of utilizing mined patterns as effective features for project

outcome prediction. Section VII presents our experiments.

We present related work in Section VIII. We conclude and

present future work in Section IX.

II. PRELIMINARIES & NOTATIONS

We introduce the notions of simple graph and rich graph

along with some notations in Definitions 2.1 & 2.2 respec-

tively. The example for a simple graph and rich graph is

shown in Figure 1(a) and 1(b) respectively. We use a rich

graph to represent a software project based on the experience

history of its developers.

Definition 2.1 (Simple Graph): A simple graph is a set

of nodes N , edges E, and labels L. Each node and edge

could be attached with one label from L. Each edge (u,v)

is a pair of nodes in N . Since E is a set, each pair of nodes

could be linked by only one edge. Given a node n we denote

edges incident to it and its label by n.Edges and n.Label
respectively. We denote the label of an edge e by e.Label.
Given an edge e of a node n, we refer to the other node

connected to n by e as e.Target.
Definition 2.2 (Rich Graph): A rich graph is a set of

nodes N , node placeholders NP , edges E, edge placeholders

EP , and labels L. Each node and edge contains multiple
placeholders each of which contains one label from L. Each

edge (u,v) is a pair of nodes in N . Each pair of nodes could

be linked by one edge. Given a placeholder np ∈ {NP
∪ EP}, we denote its labels by np.Label. Given a node

n we denote edges incident to it and labels contained in

its placeholders by n.Edges and n.Labels respectively. We

denote the labels of an edge e contained in its placeholders

by e.Labels. Given an edge e of a node n, we refer to the

other node connected to n by e as e.Target.

�

��
����

(a)

�
���

��������

(b)

Figure 1. Example: (a) Simple Graph (b) Rich Graph

III. OVERALL FRAMEWORK

Our framework has two phases: training and testing (or

deployment). In the training phase, we extract discriminative

features and learn a classifier from a training dataset con-

taining projects with known outcomes (i.e., success or fail).

In the testing phase, based on the existence or absence of

the discriminative features, we apply the learned classifier

to predict the outcome of the projects. Our framework is

illustrated in Figure 2.

���������

�	�
�
�������


��
�������
���

����	���
���

���	���
��

�
��	
�
���
��

�
����	����

�
�
��

�����
�
�	�

�����	���
��

��������

 	�!
��
��

 	�!
���!�

�������

�	�
�
��� ����

����
��� ����


��
�������
���

����	���
���

���	���
��

Figure 2. Overall Framework

During the training phase, we take as input a set of

projects, and developers that work on them. For each

project, we first extract socio-technical information from the

developers working on the project in the form of a rich

graph. Each node corresponds to a developer1 and each edge

1A developer could possibly register himself using several usernames,
however in this study we assume that each developer is identified by a
unique username, which is intuitive for a developer to keep his reputation
record. Studies on developer matching could potentially be applied [6], [8]
but we leave this for future work.

48



corresponds to the relationship between two developers. We

attach multiple labels capturing various information related

to developers and their relationships. Next, we mine discrim-

inative subgraph patterns that appear frequently in successful

projects but rarely in failed projects (or vice versa). We treat

the existence or absence of mined patterns as binary features

(each is assigned either 0 (absence) or 1 (existence) value)

and use them to build a classifier. The classifier and the

patterns are forwarded to the test/deployment phase.

During the testing phase, for each project with unknown

outcome, again we first extract its socio-technical informa-

tion as a graph. We then check the existence or absence

of the discriminative patterns in the graph and form binary

features. The learned classifier is then used to predict the

outcome of the project based on the binary features.

We provide more details on how socio-technical infor-

mation is extracted in Section IV. Additional information

on how discriminative patterns are mined are provided in

Section V. We elaborate classifier construction and output

prediction in Section VI.

IV. MODELING SOCIO-TECHNICAL

ASPECTS OF PROJECTS

Many super-repositories, e.g., SourceForge.Net, provide

information on the collaborations among software develop-

ers and contributors2 over various projects. Each project is

contributed by one or more persons. They could contribute to

the projects either in terms of source code, ideas, planning,

etc. Some of the developers of a particular project might

have worked together before, while others work together for

the first time. Some of the developers might have worked

on one or more successful projects before while others have

not. These socio-technical aspects of software development

process potentially affect the success or failure of a project.

Various measures could be used to identify project success

or failures. In our setting, we consider the number of down-

loads as an indicator of project success or failure. Intuitively,

successful projects are downloaded a large number of times,

while failed/unsuccessful projects are only downloaded a

few number of times by users.

For each project, whether successful or not, we could ex-

tract some features representing the socio-technical aspects

of the developers working on it. We consider 6 different fea-

tures characterizing the co-contributors collaborating on the

project and the socio-technical relationships between them.

Three of them characterize a single developer; the other three

characterize the relationship between two developers.

The first feature is the number of past successful projects

a developer has before he joins the current project. Past suc-

cessful projects potentially enrich a developer’s experience.

Intuitively, a project contributed by one or more experienced

2We use the terms developer and contributor interchangeably in this
paper.

contributors is more likely to be successful than another

with totally inexperienced contributors. We would like to

investigate if this is the case. The first feature is defined in

Definition 4.1.
Definition 4.1 (Past Successful Projects (PSP)): Consi-

der a developer D joining a project P at time t. The

number of past successful projects, denoted as PSP , is the

number of projects with D joining as a contributor before

t, and are successful.
The second feature is the number of past unsuccessful

projects a developer has before he joins the current project.

It is possible that past failures correlate with future failures.

On the other hand, developers could potentially learn from

past failures to eventually contribute to a successful project.

We define the second feature in Definition 4.2.
Definition 4.2 (Past Failed Proj. (PFP)): Consider a

developer D joining a project P at time t. The number

of past failed projects, denoted as PFP , is the number of

projects with D joining as a contributor before t, and are

failed.
The third feature is the length of time a developer has

joined the super-repository at the time he joins a project.

A senior member could be more aware of the demand of

the potential clients and could be more adept in selecting

suitable group members to build a good software together.

This feature is defined in Definition 4.3.
Definition 4.3 (Length of Membership (LOM)): Con-

sider a contributor D registered in the super repository

at time s and joins a project P at time t. The length of

membership, denoted as LOM, is the period of time from

s to t, or mathematically, t - s.
The fourth feature characterizes the relationship between

two developers. We consider the number of past successful

collaborations two developers have before they start to work

together3 in the current project. Intuitively, if two developers

have already had many successful collaborations before, the

current collaboration would more likely be a successful one

too. For such cases, the developers would likely know the

working or coding style of one another well and are able

to work well together thus contributing to project success.

Definition 4.4 defines the fourth feature.
Definition 4.4 (Past Successful Collab. (PSC)): Consi-

der t as the time when a developer D1 starts to collaborate

with a developer D2 in a project P . The number of past

successful collaborations, denoted as PSC, is the number

of projects with D1 and D2 joining as contributors before

t, and are successful.
The fifth feature is the number of past failed projects two

developers have before they start to collaborate in the current

project. Bad experiences could either lower morale or act as

stepping stones towards successful collaborations. We define

this in Definition 4.5.

3We assume that a developer still contributes to a project if he is still
recorded in the repository.

49



Definition 4.5 (Past Failed Collab. (PFC)): Consider t
as the time when a developer D1 starts to collaborate with

another developer D2 in a project P . The number of failed

collaborations, denoted as PFC , is the number of projects

with D1 and D2 joining as contributors before t, and are

failed.

The last feature we consider is the length of time that

has passed, since the first time two developers worked

together, prior to the current project. A long collaboration

history might increase the likelihood of developing a good

project. On the other hand, although two developers have

a long history, if they rarely work together, they might

not collaborate well anymore. We present this feature in

Definition 4.6.

Definition 4.6 (Len. of Collab. History (LCH)): Con-

sider s as the time a developer D1 collaborates with another

developer D2 for the first time. Let t be the the time D1
collaborates with D2 in the current project P . The length of

D1’s and D2’s collaboration history when they collaborate

on P , is the period of time from s to t, or mathematically,

t - s.

For each project, we extract the above socio-technical

features and express them as an undirected graph. Each node

in the graph corresponds to a developer, while each edge

corresponds to a relationship between two developers. We

attach labels to the nodes and edges of the graph to capture

the above six features. Three of them relate to the individual

developers and are thus mapped to node labels. The other

three relate to the relationships between two developers and

are thus mapped to edge labels. Thus, every node is attached

with PSP , PFP , and LOM . Also, every edge is attached

with PSC , PFC , and LCH . We refer to such a graph as a

socio-technical graph. Note that a socio-technical graph is

a rich graph.

We would analyze a set of socio-technical graphs from

many projects, some of which are successful projects while

others are failed projects, to empirically validate whether

any combinations of the above features could discriminate

successful from failed projects and predict project outcome.

V. MINING DISCRIMINATIVE RICH SUB-GRAPH

PATTERNS

In this section, we first describe discriminative sub-graph

mining that could be applied to mine for discriminative

success-failure patterns. We then present our solution that

extends the state-of-the-art work on mining discriminative

simple subgraphs to mine for discriminative rich subgraphs

where each node and edge can contain multiple labels.

A. Discriminative Sub-Graph Mining

Given a set of socio-technical graphs representing a set

of successful projects and another set representing failed

projects, we aim to find discriminative subgraphs that could

distinguish successful projects from failed ones. Intuitively,

a subgraph is discriminative if it occurs frequently in the

socio-technical graphs of the successful projects but rarely

in those of the failed ones (and vice versa). Theoretically,

we could design an objective function F (g) to evaluate the

discriminative score of a subgraph g. Then our goal becomes

finding the optimal subgraph wrt. the objective function F .

Formally, the mining problem is defined as:

Definition 5.1 (Mining Discriminative Subgraph):
Given a set of graphs with class labels D={gi,yi|1<=i<=n},
where gi is a graph representing a project and yi ∈ {−1,+1}
is the class label representing a successful or unsuccessful

project, an objective function F which measures the

discriminative score of a subgraph, find a subgraph g∗ such

that g∗ = argmaxgF (g).
In data mining, discriminative measures such as informa-

tion gain, cross entropy and Fisher score are popularly used

to evaluate the capacity of a feature in distinguishing in-

stances from different classes. In this work, we use informa-

tion gain as the objective function. A subgraph which occurs

frequently in the socio-technical graphs of the successful

projects but rarely in those of the failed ones will have

a very large information gain score. Such a discriminative

graph highlights the structural contrast between successful

and failed projects. If we use c to denote the class label of the

projects, and use g to represent a subgraph, then information

gain of g is defined as:

IG(c|g) = H(c)−H(c|g) (1)

where H(c) = −∑
ci∈{0,1} p(ci) log p(ci) is the entropy

and H(c|g) = −∑
p(g)

∑
ci∈{0,1} p(ci|g) log p(ci|g) is the

conditional entropy given the subgraph g.

To efficiently mine the most discriminative subgraph from

the successful and failed projects, we adopt a recently

proposed graph mining algorithm LEAP [17]. We invoke

the LEAP algorithm k times to mine the top-k discriminative

subgraphs following a similar approach in [5]. The returned

result is a ranked list of k discriminative subgraphs with

decreasing information gain scores. We denote the discrim-

inative subgraph mining operation by DGM.

B. Extending to Rich Sub-Graphs

The algorithms in [5], [17] described in Section V-A

only mine from a set of simple graphs. In this section, we

describe how we extend them to mine for discriminative rich

subgraphs with multiple node and edge labels.

We handle the problem of mining discriminative rich

subgraphs by introducing an equivalent simple graph repre-

sentation of a rich graph. We thus propose a novel mapping

between mining discriminative rich subgraphs to mining

simple discriminative subgraphs. We show that the trans-

lation to simple graphs only increases the size of the rich

subgraphs by a factor linear to the maximum number of

labels per node and the maximum number of node labels per

50



edge. We also prove that all discriminative rich subgraphs

could be mined using the approach in Section V-A from the

corresponding simple graph translations.

Our process proceeds in the following steps:

• Convert the rich graphs to their corresponding simple

graphs representations DB REP .

• Mine discriminative subgraphs from DB REP using

the approach in Section V-A.

• Convert mined simple subgraph patterns to its corre-

sponding rich subgraph patterns.

The next sub-section describes our translation process.

A reverse translation process is presented next. We then

analyze some properties of our translation process.

1) Translation Process: A rich graph can have multiple

node and edge labels. Our translation process converts a rich

graph into a simple graph by performing node and edge

replication operations. Each replica only retains one of the

potentially many labels of the original node or edge that it

replicates.

We first introduce the notions of translated simple graph in

Definitions 5.2. In a translated simple graph, the replicas of

the same rich graph’s node (i.e., its siblings) are connected

together with a special edge.

Definition 5.2 (Translated Simple Graph): A trans-

lated simple graph is a simple graph with a special edge

named sibling-replicated edge (SRE). This edge connects

all replicated nodes that are originating from the same node

in the original rich graph.

Nodes and edges are replicated due to two reasons:

1) There are multiple node labels in a node of a rich

graph. This node would be split into multiple simple

graph nodes each with a single label.

2) There are multiple edge labels attached to an edge

of a rich graph. As a simple graph does not allow

for two edges between two nodes, either of the nodes

connected by it would need to be replicated.

We refer to the replicas created due to the first reason as

NL-Replicas. We refer to the ones created due to the latter

reason as EL-Replicas. Our translation process first creates

NL-Replicas. EL-Replicas are constructed next.

Creating NL-Replicas. To create NL-Replicas from a rich

graph, for each node, we split it according to the number

of labels that it has. The edges of the original node are

transferred to each of its replicas. We also add SRE edges

to connect all the nodes originating from the same rich node.

The original rich nodes are then removed from the original

graph. After all NL-Replicas have been created and rich

nodes removed, all nodes in the graph would each have a

single node label. The introduction of new edges ensures

that the structures expressed in the rich graph are preserved

after the introduction of NL-Replicas.

Figure 3 shows the pseudo-code realizing this4. We over-

lay the NL-Replicas on top of the original graph. We create

the NL-Replicas one by one and eliminate the original nodes

and edges step-by-step. Note that the order of which the

nodes are being processed would not affect the NL-Replicas

introduced. If two rich nodes n1 and n2 are connected,

each of the NL-replicas of n1 is connected to all the NL-

replicas of n2 (and vice versa). We illustrate the NL-Replicas

creation process in Figure 4.

Procedure CreateNLReplicas
Inputs:

G = (N,NP , E,EP , L) : A rich graph with
the set of nodes N ,
node placeholders NP , edges E,
edge placeholders EP , and labels L

Output: G with nodes replaced with NL-Replicas
Method:
1: Let Orig N = Shallow copy of N
2: For each n ∈ Orig N
3: Let NSet[] = Create a node array of size |n.Labels|
4: For every ith node in NSet
5: Let NSet[i].Label = n.Labels[i]
6: For every edge e in n.Edges
7: Add an edge with labels e.Labels from NSet[i]

to e.Target
8: Add SREs that connect nodes in NSet to one another
9: Remove n and all edges connected to it from N and E

respectively
10: For every node nnew in NSet[]
11: Add nnew to N
12: Output (N,NP , E,EP , L)

Figure 3. Creation of NL-Replicas

1,2 c 3,4

1 3

2 4

c
c

c
c

Figure 4. NL-Replicas: Illustration. Edges shown in dashed lines are SREs.

Creating EL-Replicas. To create EL-Replicas from a rich

graph, for each edge with multiple labels, we replicate one of
the two nodes (or at most both nodes) connected by it. Given

a node n, connected to a multi-labeled edge e, we create EL-

Replicas, by duplicating the node according to the number

of labels e has. The original node would be connected with

an edge with one of e’s labels. Each of the newly introduced

EL-Replica nodes would be connected with a new edge with

one of the remaining e’s labels. The newly introduced EL-

Replica nodes are connected to the other replica nodes of the

same original rich node by SREs. After all the EL-Replicas

are created, the resultant graph would be a simple translated

graph composed of NL-Replicas (nodes and edges) and EL-

Replicas (nodes and edges).

4We only handle the case where there is no self-loop, which is not
existent in software socio-technical dataset.

51



Procedure CreateELReplicas
Inputs:

G = (N,NP , E,EP , L) : A graph with NL-Replicas
and rich edges

Output: An equivalent translated simple graph with
NL- & EL-Replicas

Method:
1: Let Orig E = Shallow copy of E
2: For each e ∈ Orig E
3: Let OTR = The node(s) conn. by e to be replicated
4: For every node n of OTR
5: Let NSet = Replicate n, |e.Labels| times

6: For every ith node n′ in NSet
7: Let l be the ith label in e.Labels
8: Add an edge from n′ to e.Target with label l
9: For every node nnew in NSet[]
10: Add nnew to N
11: Remove n and all edges connected to it from N and

E respectively
12: Add SREs that connect nodes in NSet to one another
13: Remove e from E
14: Output (N,E,L)

Figure 5. Creation of EL-Replicas

The remaining ambiguity is which of the two nodes

should be replicated. We use the label of the two nodes to

decide. Due to the creation of NL-Replicas, the nodes would

have single labels. For a multi-labeled edge connecting two

nodes n1 and n2, there are 3 cases5:

1) If n1 .Label < n2 .Label , we would create EL-Replicas

of n1.

2) If n1 .Label > n2 .Label , we would create EL-Replicas

of n2.

3) If n1 .Label = n2 .Label , we would create EL-Replicas

for both n1 and n2.

The above cases are used to ensure that the same EL-

Replicas are introduced no matter which edges are processed

first.

Figure 5 shows the pseudo-code realizing this. We illus-

trate the EL-Replicas creation process in Figure 6.
Given a rich graph g, its translated simple graph is denoted

as TL(g). Also, given a set of rich graphs DB, we denote the

corresponding set of translated simple graphs as TL(DB).

In the implementation, we combine the NL-Replicas and

EL-Replicas creation process so that only one pass through

the nodes in the graph is needed. An end-to-end example of

how a rich graph is translated into a simple translated graph

is shown in Figure 7.

2) Reverse Translation Process: The reverse translation

operation is straightforward. We just need to merge every

nodes connected by SRE together. These nodes map to the

same original rich node. When we merge the nodes we take

the union of their node labels. Due to the merging of the

nodes, two nodes might have more than one edge connecting

them. We would then merge the edges too by again taking

5Any arbitrary total ordering on the labels could be used to decide the
cases.

1 3
a,b c d 

1 3
a 

1
b 

c d 

3 1
a,b c d 

3 1
a 

1

b 

c d

b

b

Case 1 Case 2 

Case 3 

c 
d

a

1

1 1
c d

1
dc 

c a,b 
1 1

d 

Figure 6. EL-Replicas: Illustration.

1

2

3

4

1

2

x 
x 

x 
x 

y 
y 

y 
y 

n1

n1

n2

n2

n1

n1
1,2 3,4

x,y 

All nodes marked with n1 are 
connected via SREs. Similarly 
with nodes marked with n2. 

Figure 7. Translation Process

the union of their edge labels. Note that as the set union

operation is commutative, associative, and distributive, it

does not matter as to which nodes and edges are merged

first. The reverse translation operation is deterministic, given

one input graph, it would always produce one output graph

no matter what nodes and edges are merged first.

We denote the reverse translation operation by RTL.

Given a translated simple graph g, the corresponding rich

graph after the reverse translation operation is performed is

denoted by RTL(g). Also, given a set of translated simple

graphs DB, we denote the corresponding set of rich graphs

after the reverse translation operations are performed as

RTL(DB).

3) Analysis: Theorem 1 assures the correctness of our

translation process. We start by translating rich graphs to

simple graphs, and then perform mining operation, and

finally reverse translate the mined patterns to rich subgraph

patterns. The whole process is sound and complete. It

is sound as all resultant reverse translated rich subgraphs

are discriminative. It is complete as no discriminative rich

subgraphs are missed due to the translation and reverse

translation processes. Due to space limitation, we move

the proof along with its supporting lemmas and the low

level details of the algorithm in an accompanying technical

report [1].

Theorem 1 (Sound & Complete): All reverse translated

subgraphs mined from TL(DBrich) are discriminative.

Also, all discriminative rich subgraphs could be mined from

52



TL(DBrich). In other words, the set of discriminative rich

subgraphs is the set:

RTL(DGM(TL(DBrich)))

Next, let’s analyze the size of the resultant translated

graphs. Consider an arbitrary node n. Let e be the edge with

the most labels in n. For this n, at most n.Labels×e.Labels
new nodes are introduced. Thus, the number of nodes in the

new translated graph grows linearly to the maximum number

of labels per node and the maximum number of labels per

edge.

VI. CLASSIFIER CONSTRUCTION AND OUTCOME

PREDICTION

We consider the existence or absence of the discriminative

patterns mined from the training dataset as binary features.

Each of the training and testing data point (which is a

software project), represented by its corresponding socio-

technical graph, is then mapped to a set of binary features

corresponding to the existence or absence of the patterns.

We use LibSVM [4] to learn our classifier based on training

data. This classifier is then used to assign labels to the test

instances, in effect, classifying the project as successful or

failed. We show the pseudocodes of classifier construction

and outcome prediction in Figures 8 & 9.

Procedure ConstructClassifier
Inputs:
GSet : A set of socio-technical graphs from training data
PSet : A set of mined discriminative patterns from GSet

Output: A classifier learned from GSet based on PSet
Method:
1: Let fvSet = {}
2: For each g ∈ GSet
3: Find patterns in PSet that occur in g
4: Let fv = Binary features corresponding to patterns that

occur/absent in g
5: Add fv to fvSet
6: Let Classifier = Learn a classifier from fvSet
7: Output Classifier

Figure 8. Classifier Construction

Procedure PredictOutput
Inputs:
TSet : A set of socio-technical graphs from test data
PSet : A set of mined discriminative patterns from

training data
Classifier : Classifier learned from training data

Output: Labels of instances in TSet
Method:
1: For each g ∈ TSet
2: Find patterns in PSet that occur in g
3: Let fv = Binary features corresponding to patterns that

occur/absent in g
4: Let label = Predict label of fv using Classifier
5: Output label

Figure 9. Output Prediction

VII. EXPERIMENTS

In this section, we describe our experimental settings,

followed by our results.

A. Experimental Settings

We analyze SourceForge.Net, the largest open source soft-

ware development portal. In particular, we use the database

dumps of SourceForge.Net collected by Madey et al. [2].

From February 2005 onwards, Madey et al. collect Source-

Forge.Net database dumps monthly. We take 64 snapshots

which are the dumps for the period starting from February

2005 until May 2010. Each snapshot has many tables and

we focus on those containing the information on the various

projects hosted in SourceForge.Net and the developers that

work on those projects.

We initiate our experiment by extracting projects that have

at least one developer from May 2010 snapshot. There are

in total 227,922 projects with 289,316 registered developers.

We divide the 227,922 projects into three groups: successful

projects, failed projects, and others. We use the number

of downloads to categorize projects. Projects with more

than 100,000 downloads are considered successful. Projects

with less than 100 downloads are considered failed. Projects

with number of downloads between 100 and 100,000 are

considered as belonging to the others group6. Unfortunately,

SourceForge.net database dumps do not contain any accurate

information on the number of downloads. Thus, we crawl

the SourceForge.Net website to obtain the download history

of each project. We find 2,448 projects (1.07% of all May

2010 projects) are categorized as successful, and 140,796

projects (61.77%) are categorized as failed.

We filter out projects with only one developer. From the

2,448 successful projects, 1,859 projects (75.94% of the

successful projects) have more than one developer. Moreover

from the 140,796 failed projects, 28,802 projects (20.46% of

failed projects) have more than one developer. We also filter

projects that exist on February 2005 as for those projects we

could not ascertain the time the contributors join the project7.

After we exclude those projects, we have 224 successful

projects and 3,826 failed projects.

From these projects, we extract the socio-technical graphs

along with the 6 features described in Section IV. To extract

the features, we need to first determine the time when a

developer joins a project. This information is not directly

available from the dump. Fortunately, we have the monthly

snapshots and by contrasting the reported developers in

two consecutive months, we could find the month when a

developer joins a project. For consistency, for all features,

we use month granularity.

Four features: Past Successful Projects (PSP ), Past Failed

Projects (PFP ), Past Successful Collaborations (PSC),

6We exclude this group from our analysis.
7This information is not recorded in SourceForge.Net dumps.

53



and Past Failed Collaborations (PFC), are obtained by

analyzing the monthly dumps one by one. We need to

compare the month when a developer or a pair of developers

joins a past project with the month when the developer or the

pair of developers joins the current project. If a past project

under comparison is either successful or failed, the counts

of the corresponding features among the four are updated.

Following our definition of Length of Membership

(LOM ), we count the period of time that has passed since

a developer first registered in SourceForge until he joins

the current project. SourceForge database dumps provide the

time when a developer becomes a member of SourceForge.

To compute the feature: Length of Collaboration History

(LCH), we analyze the monthly dumps in chronological

order and for relevant pairs of developers, we find the month

that they first work together in a single project.

At the end of the above process, we have 224 socio-

technical graphs corresponding to successful projects and

3,826 graphs corresponding to failed ones. These socio-

technical graphs are rich graphs with multiple labels in

the nodes and edges. The 224 successful project graphs

have an average size of 3.76 nodes and 5.92 edges. The

maximum number of nodes and edges for the successful

project graphs are 32 nodes and 195 edges respectively. The

3,826 failed project graphs have an average size of 2.86

nodes and 3.98 edges. The maximum number of nodes and

edges for the failed project graphs are 73 nodes and 1,081

edges respectively. We process our graph dataset following

the procedure in Section V and mine rich subgraph patterns

that differentiate successful and failed projects.

We run our translation algorithm on an Intel(R) Xeon(R)

3.17GHz server with 24 GB of RAM running 64-bit Win-

dows Server Standard Edition, Service Pack 2. The algo-

rithm is written in Visual C#.Net. The top-K discriminative

graph mining algorithm (Top-K LEAP) [5] is written in

C++ and is run on a Dell PowerEdge R900 server with

2.67GHz six-core CPU and 8GB main memory running

Linux RedHat.

B. Experimental Results

We first describe the runtime of our approach and the sizes

of the translated graphs. Next, we show the effectiveness of

the mined patterns in predicting project outcome. Finally,

we present our mined patterns.

Runtime & Translated Graph Size. The translation process

for successful projects translates 224 rich graphs in 1.4 s. For

the failed projects, the translation process translates 3,826

rich graphs in 9.7 s. The 224 resultant translated simple

graphs for the successful projects have an average size of

31.54 nodes and 287.25 edges. The 3,826 resultant translated

simple graphs for the failed projects have an average size of

23.93 nodes and 204.68 edges. In terms of the number of

nodes, after translation, the graphs grow by 8.37-8.39 times,

which is less than the number of node labels multiplied by

the number of edge labels (i.e., 3 × 3 = 9). This is in line

with our analysis presented in Section V-B3.

We run Top-K LEAP by Cheng et al. [5] on the translated

simple graphs. It completes within 4 hours to mine 20 most

discriminative graph patterns.

Project Outcome Prediction. We measure the effective-

ness of our approach by classification accuracy and area

under the ROC curve. Classification accuracy, defined as

the percentage of projects correctly classified, is used as one

measure. Due to the skewed class distribution, the measure

AUC which is the area under a ROC curve is also used.

ROC curve shows the trade-off between true positive rate

and false positive rate for a given classifier [7]. A good

classifier would produce a ROC curve as close to the top-left

corner as possible. AUC is a measure of the model accuracy,

in the range of [0, 1.0]. The best possible classifier would

generate an optimal AUC value of 1.0.

We perform 10-fold cross validation, where for each we

keep 1/10 of the data for testing and the other for training.

Under this setting, we are able to predict the labels of

the projects with 94.99% accuracy and 0.86 AUC thus

demonstrating the effectiveness of our proposed approach.

Most Discriminative Patterns. Figure 10 shows the top-20

most discriminative patterns sorted in a descending order of

their discriminative scores. We also show the percentages of

successful and failed projects exhibiting the patterns.

We could note the following from the mined patterns:

1) The most discriminative pattern is the pattern P1:

92.42% of the failed projects follow this pattern,

whereas only 26.34% of the successful projects follow

it. The pattern describes a collaboration including two

contributors where none of them has a successful

project before. The two contributors have also no past

history of successful collaborations. The two develop-

ers are likely to be inexperienced and there is little

positive socio-technical links between the two before

the developers join the current project. Thus, from

the dataset, empirically we observe that the lack of

experience and the weak socio-technical ties between

co-contributors seem to be some factors related to

project failure.

2) More than 40% of the successful projects follow

patterns P2 - P19 (18 patterns) whereas no more than

9% of the failed projects follow them. The patterns

have one thing in common: there is at least 1 developer

with 1 successful past project (PSP ) or there is at

least 1 successful collaboration in the past (PSC).

Fourteen of the patterns (77.78%) specify that there

is at least 1 developer with 1 past successful project

(patterns P4 - P5, P7, and P9 - 19). Moreover, 12

of the 18 patterns (66.67%) show that there is at

54



�� ��������
	
�����

��

�������������

�������

�������������
	����� �� ��������

	
�����

��

�������������

�������

�������������
	�����

��
�

������ ������ 	�	�
�� ���
�

���	
� ����� 	�	�
��

��
�

������ ����� 	�	���� ���
�

�	���� ���	� 	�	�

�

��
�

������ ����� 	�	���� ���
�

������ ��
�� 	�	
���

��
�

�
���� 
���� 	�	���� ���
�


����� 
�
�� 	�	
���


�
�

������ 
��	� 	�	���� �
�
�

������ ��
�� 	�	
���

��
�

���
�� 
��	� 	�	���� ���
�

������ ��
�� 	�	
���

��
�

���	�� 
�
�� 	�	���� ���

�

������ ����� 	�	
���

��
�

�	���� ��	
� 	�	���� ���

�

������ ����� 	�	
���

�� �

�	���� ����� 	�	�
�� ���

�

������ ��
�� 	�	
���

�	� �

�	���� ����� 	�	�
�� �	�

�


��
�� �
���� 	�	
���

� �
�

������ ������

����� �����

�����

������

������
�����������

�����
����������

�����
������ ������

�����
������������

������
����������

������
����������

����� ����������

������
������ ������

������
������ �����

�����
����������

������
������ ������

�����
������������

�����
������������

������

�����
����������

������
������������

�����������������

�����������������

���������	�
����
�������

�����	
����
�������

���������	�
����
����������	
����
�������

�����������
�������	
����������

������

���������	�
����
�������

�����
����
	���
��������

���������	�
����
����������
����
	���
��������

�����������
���
����
	���
�� �
�
	!���� ��

������
�����
��
�"�
�#����	��$����%&��

���������	���
������'����!�$�����

Figure 10. Top-20 Discriminative Patterns Mined

least 1 successful collaboration between the developers

(patterns P2 - P4, P7, P9 - 10, P12 - P15, P17, and

P19). This emphasizes that if developers have already

had past successful collaborations, then the current

collaboration would more likely be successful too.

3) The pattern with the highest proportion of successful

projects exhibiting it is P8. It simply states that there is

a contributor with one past successful project. For this

pattern, the proportion of successful projects following

it is almost 9 times more than that of failed projects. It

highlights that a contributor’s past positive experience

is related with the likelihood of project success.

4) On the other hand, the pattern with the highest pro-

portion of failed projects exhibiting it is P20. It is also

a single node pattern. Opposite to P8, P20 represents

a scenario where there is a developer with zero past

successful projects. This seems to show that having

one inexperienced member could lower the chance

of project success. The decrement is not very much

though as the difference between the proportion of

successful projects exhibiting it is not very far from

that of failed projects.

5) There are 2 patterns, i.e., pattern P12 and P13, that

show collaborations between 3 developers. More than

60% of the successful projects follow pattern P12 and

almost 50% of the successful projects follow pattern

P13. However no more than 5% of failed project

follow any of the two patterns. From these two 3-

developer patterns, there are several things in common:

1) there is at least 1 developer with 1 past successful

project, 2) there exists 1 past successful collaboration

between two contributors, and 3) there is at least 1

developer with zero number of unsuccessful projects.

Also, note that pattern P12 extends pattern P4 with

one node. It extends P4 by adding the rightmost node.

Adding a developer with no past experience of failed

project seems to only slightly increase the likelihood

of project success ( 65.63
5.12 → 60.71

4.40 = 12.82 → 13.78).

6) It is interesting to note that none of top 20 most

discriminative patterns include a concrete value for

LOM (length of membership) and LCH (length of

collaboration history). This result could be due to the

fact that there is a large spread of possible values for

LOM and LCH or that LOM and LCH have less

influence on project success or failure.

Threats to Validity. In this study we have only analyzed

projects in SourceForge.Net. In the future, we could reduce

this threat of external validity by also analyzing projects in

GitHub. In this study, we measure the success of a project

by the number of downloads; other measures of success

could also be employed. We also assume that a developer is

identified by a unique user name and contributes to a project

if he/she is listed in SourceForge.Net as a contributor.

VIII. RELATED WORK

There has been a number of work in software engineering

that leverages social network among developers. One of

55



the early work is the work by Bird et al. that extracts a

social network from developer email communication [3].

They find that the level of email activity strongly correlates

with the level of activity in the source code. Many recent

studies also show the power of analyzing social network to

predict for failures [15], [11]. This work complements past

studies by recovering discriminative developer collaboration

patterns that differentiate successful and failed projects in a

large super-repository of open-source projects, i.e., Source-

Forge.Net, and utilizing them to predict project outcome.

Lungu et al. propose an approach to visualize a super-

repository [9]. A related visualization study is also per-

formed by Sarma et al. [13]. Surian et al. mine for frequent

patterns of collaborations [14]. We extend their study by

mining for discriminative patterns from a super-repository

containing thousands of diversified projects. Furthermore,

we also extend the study by investigating multiple snapshots

of SourceForge.Net instead of only a single snapshot.

Madey et al. show the power law relationship between

the number of nodes in collaboration clusters and their

frequency in a snapshot of SourceForge.Net [10]. Xu et al.
investigate the small-world phenomenon on a snapshot of

SourceForge.Net [16]. Verner et al. interview software de-

velopers in various countries and identify factors that relate

with project success. Cheng et al. [5] extend the approach

by Yan et al. [17] to mine for top-k most discriminative

graph patterns. Procaccino et al. perform a survey to find

how developers view project success [12]. In this work, we

extend the above studies to mine for discriminative patterns

from rich rather than simple graphs. We also consider a

new problem domain by mining discriminative graphs to

find socio-technical collaboration features that relate to and

could be leveraged to predict project outcome.

IX. CONCLUSION

In this work, we perform a longitudinal study of projects

in SourceForge.Net and detect discriminative graph pat-

terns from developer and their collaboration history that

differentiate successful from failed projects. These socio-

technical patterns form effective features that could be

leveraged to predict project outcome. We take 64 snapshots

of SourceForge collected on the period from February 2005

to May 2010. We extract some socio-technical features from

the 64 snapshots and model them in the form of graphs.

Each project is mapped to a graph which is labeled as

either successful or failed depending on the number of

downloads. We propose a new graph mining problem of

extracting the top-k most discriminative rich graph patterns

from a graph database. To address this problem we built

upon an existing top-k most discriminative simple graph

mining algorithm by proposing a novel translation strategy.

We show that the translation could conserve some properties

that allow for all discriminative patterns to be mined. We

apply our mining solution on the socio-technical graphs from

SourceForge. We show that these patterns could classify

project outcome with an accuracy of over 90% and an AUC

score of 0.86. Additionally, we present and analyze the top-

20 most discriminative patterns that we mine. As a future

work, we plan to consider industrial datasets in addition to

SourceForge.Net data.

Acknowledgement. This research is supported by the Singa-

pore National Research Foundation under its International

Research Centre @ Singapore Funding Initiative and admin-

istered by the IDM Programme Office, and the Hong Kong

Research Grants Council (RGC) General Research Fund

(GRF) Project No. CUHK 411310. We would like to thank

Greg Madey for sharing with us the SourceForge.Net dataset.

This work was done while the first author was with School

of Information Systems, Singapore Management University.

REFERENCES

[1] “Mining rich graphs: A graph transformation approach,”
http://www.mysmu.edu/faculty/davidlo/papers/richgraphtr.pdf.

[2] M. Antwerp and G. Madey, “Advancess in the sourceforge research
data archive (SRDA),” in OSS, 2008.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in MSR, 2006.

[4] C.-C. Chang and C.-J. Lin, LIBSVM: a library for
support vector machines, 2001, software available at
http://www.csie.ntu.edu.tw/∼/cjlin/libsvm.

[5] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug
signatures using discriminative graph mining,” in ISSTA, 2009, pp.
141–152.

[6] M. Goeminne and T. Mens, “A comparison of identity merge algo-
rithms for software repositories,” in Science of Computer Program-
ming, 2012.

[7] J. Han and M. Kamber, Data Mining: Concepts and Techniques (2nd
ed.). Morgan Kaufmann, 2006.

[8] E. Kouters, B. Vasilescu, A. Serebrenik, and M. V. D. Brand, “Who’s
who in gnome: using lsa to merge software repository identities,” in
ICSM, 2012.

[9] M. Lungu, M. Lanza, T. Girba, and R. Heeck, “Reverse engineering
super-repositories,” in WCRE, 2007.

[10] G. Madey, V. Freeh, and R. Tynan, “The open source software
development phenomenon: An analysis based on social network
theory,” in AMCIS, 2002.

[11] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer social
networks predict failures?” in FSE, 2008.

[12] J. Procaccino and J. Verner, “Software developers’ views of end-
users and project success,” Commun. ACM, vol. 52, pp. 113–116,
2009.

[13] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in
software development,” in ICSE, 2009.

[14] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from
a large developer network,” in WCRE, 2010.

[15] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
in ICSE, 2009.

[16] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of
the open source software development community,” in HICSS, 2005.

[17] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph
patterns by scalable leap search,” in SIGMOD, 2008, pp. 433–444.

56


