
Network Structure of Social Coding in GitHub

Ferdian Thung1, Tegawendé F. Bissyandé2, David Lo1, and Lingxiao Jiang1

1Singapore Management University, Singapore
2Laboratoire Bordelais de Recherche en Informatique, France
{ferdianthung,davidlo,lxjiang}@smu.edu.sg, bissyand@labri.fr

Abstract—Social coding enables a different experience of
software development as the activities and interests of one
developer are easily advertized to other developers. Developers
can thus track the activities relevant to various projects in
one umbrella site. Such a major change in collaborative
software development makes an investigation of networkings
on social coding sites valuable. Furthermore, project hosting
platforms promoting this development paradigm have been
thriving, among which GitHub has arguably gained the most
momentum.

In this paper, we contribute to the body of knowledge
on social coding by investigating the network structure of
social coding in GitHub. We collect 100,000 projects and
30,000 developers from GitHub, construct developer-developer
and project-project relationship graphs, and compute various
characteristics of the graphs. We then identify influential
developers and projects on this subnetwork of GitHub by using
PageRank. Understanding how developers and projects are
actually related to each other on a social coding site is the first
step towards building tool supports to aid social programmers
in performing their tasks more efficiently.

I. INTRODUCTION

Recently, developers have witnessed the emergence of

platforms for social coding, such as GitHub1 and Altassian

BitBucket2. These platforms offer unique experiences to

developers: they can broadcast their activities and/or listen to

the activities of others; they can also investigate and leverage

activities occurring in a variety of projects in one umbrella

site.
The current momentum of social coding sites provides

an opportunity for research on the impact of programmer

networking in software projects. Recently, Dabbish et al.
have investigated, through a series of interviews, the impact

of transparency in GitHub [5]. Such studies are important

as they help us to better understand the phenomenon of

social coding. A good understanding of the characteristics

of GitHub can indeed help researchers and practitioners

to gain more of the insights that are needed to design

better tools for supporting social coders. Furthermore, a

thorough understanding of developer behaviors on GitHub

will yield new ways for inciting more collaborations among

developers.
In this study, we investigate GitHub, which is arguably

the largest social coding site, containing more than 3 mil-

lion repositories. We aim to extend the limited body of

1 http://github.com 2 https://bitbucket.org

knowledge about social coding by constructing the network

structure of projects and developers on GitHub and analyz-

ing various characteristics of these networks. We intend to

answer the following research questions:
RQ1 How strong are the relationships among

projects?

RQ2 How strong are the relationships among the

developers?

RQ3 Which projects are the most influential?

RQ4 Which developers are the most influential?
The remainder of this paper is structured as follows. In

Section II, we present preliminary information on GitHub. In

Section III, we introduce the various network statistics that

we use as well as the PageRank algorithm. In Section IV,

we present our research questions and their answers. We

discuss related work in Section V. We conclude with future

work in Section VI.

II. GITHUB: A SOCIAL CODING SITE

GitHub is a social coding site that uses Git3 as its

distributed revision control and source code management

system. It implements a social network where developers are

enabled to broadcast their activities to others who are inter-

ested and have subscribed to them. GitHub currently hosts

over three million projects maintained by over one million

registered developers. A given developer can participate in

multiple projects and each project may have more than one

developer. The GitHub social coding site is a developer-

friendly environment integrating many functionalities, in-

cluding wiki, issue tracking, and code review.

Within GitHub, there are pages for developers and pages

for projects. An example of a GitHub page4 related to the

user kemitche (Keith Mitchell).This page includes informa-

tion on kemitche’s repositories (i.e., projects) and his recent

public activities, such as committing code to a repository,

opening an issue report, etc., which are seldom easily visible

in other development environments. The page also shows

several statistics that are often used on social networking

sites, such as the number of other developers following him,

the number of projects he is watching, etc. Such transparency

is an interesting feature of GitHub and other social coding

sites.

3 http://git-scm.com/ 4 https://github.com/kemitche

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.41

323

III. METHODOLOGY

In this section we describe our methodology for con-

structing a sample network from GitHub. We also introduce

the statistics and the PageRank algorithm that we use for

analyzing the network.

A. Network Construction

We construct two kinds of networks from GitHub data: a

project-project network, and a developer-developer network.

The project-project network is a graph of projects. This

graph represents a network in which each node is a project,

and where two nodes are connected if the corresponding

projects have at least one common developer. We further-

more associate a weight to each edge of the graph; this

weight corresponds to the number of developers that work

together on both projects.

To construct this project-project network,a trivial solution

is to check one project with every other project and look for

the number of common developers. However this would be

costly. To alleviate this computation issue, we perform the

steps described in Algorithm 1. For each project, we first get

the developers that work for it, we then find all the projects

that the developers work for. This set of projects is typically

of a small size. We then just compare the input project with

all projects in the set.

Algorithm 1 Selecting Efficiently
Input: Projects // set of projects

Network ← ∅ // Project-project network
foreach project Pa in Projects do

Developers ← listDevelopersInvolved(Pa)
foreach developer Da in Developers do

smallSetProjects ← listProjects(Da)
foreach project Pb in smallSetProjects do

link ← countCommonDevelopers(Pa, Pb)
Network ← {Network, link}

return Network

In a developer-developer network, each node represents

a given developer in our dataset. The corresponding graph

contains an edge between two vertices when the corre-

sponding developers work together in at least one common

project. Thus the developer-developer network is built based

on collaborations among developers, where collaboration is

simply defined as working together towards the same goal

or purpose, i.e., completing a software project. Similarly to

the project-project graph, we associate a weight to each edge

taking into account the number of projects where the two

relevant developers work together. To build the developer-

developer network, we proceed with the same methodology

as for the project-project network.

B. Network Statistics

Various statistics can be computed to characterize a net-

work. In this study, we primarily use a common metric,

node degree, which, for a given node, considers the number

of distinct nodes that are directly connected to it. We also

rely on other common measurements, namely the network
diameter and the average shortest path. The diameter of

a network is the longest shortest path between all pairs of

nodes in a network, while the average shortest path is the

average of all shortest paths.

To estimate the diameter and the average shortest path, we

randomly sampled 1000 nodes from the graph and calculate

shortest paths for all possible pairings of the 1000 nodes

following [9].

C. PageRank

Introduced by Brin and Page, the PageRank algorithm for

weighting web pages importance based on their links has

gained popularity driven by its use in the Google search

engine [3]. PageRank works in many iterations. In the initial

iteration, the algorithm assigns the same PageRank score

to all web pages. Then subsequent iterations update these

scores: the score of a page p is distributed to the pages that

p links to; each linked page receive 1
|Lp| of the score, where

Lp is the set of pages that p links to. The PageRank score of

a web page p at iteration i can be computed by the following

equation:

PR(p, i) =
1− r

T
+ r

∑

q∈Kp

PR(q, i− 1)

|Lq|

In this equation, r represents the probability that a web

surfer would continue to surf (a.k.a. the damping factor), T
is the number of web pages in the database of the search

engine, Kp is the set of web pages that link to p, and Lq is

the set of web pages that q links to.

IV. EMPIRICAL EVALUATION

We describe our dataset and experiment results that an-

swer the research questions presented in Section I.

A. Dataset

There are more than one million people hosting about 3

million private and public projects in GitHub. We analyze

the first 100,000 projects that are returned by GitHub API5.

This set of projects appears to vary randomly. We again

randomly sample 30,000 developers from the developers of

the 100,000 projects.

B. Project-Project Relationship

To answer the first research question, we proceed in two

steps: first, we compute the number of edges in the project-

project graph. We have found 1,161,522 edges, meaning

that 1,161,522 pairs of projects share at least one common

developer. Second, we compute the degree of each node, i.e.,

the number of edges incident to this node in the project-

project network. Figure 1 shows the degree distribution

324

1

10

100

1000

10000

100000

1 10 100 1000 10000

Fr
eq

ue
nc

y
(lo

g-
sc

al
e)

Degree (log-scale)

Figure 1. Project Degree Distribution: y-axis shows the number of projects
having given edge degrees.

across the 100,000 projects of our dataset. We find that the

degree distribution follows a long tail distribution [1].

Finally, we measure the diameter of the largest connected

component and the average shortest path between sampled

project nodes. By following [9] and [7], the shortest part

between two nodes is computed by ignoring the weights of

the edges in the graph. The length of a path between two

nodes is simply the length of the series of nodes between the

two nodes. The diameter is 9 and the average shortest path,

3.7. These numbers are lower than the findings reported for

many real networks [7], implying that project networks are

actually more interconnected than human networks. Project

networks, as defined in Section III, indeed, only require one

common developer to establish a connection between two

projects.

Project networks are more interconnected than human net-
works.

C. Developer-developer Relationship

To answer the second research question, we proceed with

the same steps as in the first question. The number of edges

computed in the developer-developer network is 23,678,445,

revealing that many pairs of developers share at least one

common project. Note that this number is significantly larger

than the number of edges in the project-project graph.

Figure 2 illustrates the degree distribution in the

developer-developer network. This distribution does not

form a long tail, as some projects involve an excessively

large number of developers. Thus, each developer in such

projects will share a connection with all other developers

in the same project, resulting in both a high degree and a

high frequency. Nonetheless, we still notice that, overall,

some developers share a project with many other developers

while the majority of developers share projects with a few

developers.

The diameter of the largest connected component is 5 and

the average shortest path is 2.47. We compare these values

to findings in studies on two networks, namely Facebook

and Sourceforge. In their study on the Sourceforge project

hosting platform, Surian et al. have shown that the average

shortest-path among project developers is 6.55 [9], following

the popular assumption of “six-degree-of-separation” [11].

5 http://developer.github.com

1

10

100

1000

10000

1 10 100 1000 10000 100000

Fr
eq

ue
nc

y
 (l

og
-s

ca
le

)

Degree (log-scale)

Figure 2. Developer Degree Distribution: y-axis corresponds to the number
of developers having a given degree.

The average shortest path in Github is significantly lower,

which suggests that the social coding concept actually

enables more collaborations among developers. Besides,

GitHub uses Git, a distributed version control system, while

SourceForge uses subversion (SVN) which is centralized.

The appeal of distributed version control to developers may

have also contributed to the shorter shortest paths on GitHub.

A recent study of the Facebook social graph has concluded

that individuals on Facebook have potentially tremendous

reach with an average shortest path of 4.7 [13]. The Github

developer social network allows for even better reach as

developer-developer relationships are less tight than human-
human relationships in daily life social networks. Indeed,

hundreds of developers may collaborate in a single project

without even knowing each other.

Social coding enables substantially more collaborations
among developers.

D. Influential Projects

To identify influential projects, we run the PageRank

algorithm described in Section III on the project-project

network. Since a collaboration relation is bidirectional and

standard PageRank works on directional graph, we convert

every undirected edge in our network into two unidirectional

edges. Asides from its established effectiveness in measuring

the importance of network nodes, as implemented in the

Google search engine, PageRank is also known to be faster

than many other importance score algorithms, including

Betweenness centrality [6]. This property is indeed essential

since the computation for thousands of nodes can be time

consuming.

Project url PageRank
https://github.com/mxcl/homebrew 0.0009862
https://github.com/rails/rails 0.0006378
https://github.com/lifo/docrails 0.0006370
https://github.com/joyent/node 0.0002161
https://github.com/rubinius/rubinius 0.0001678

Table I
TOP 5 MOST INFLUENTIAL PROJECTS

We detail in Table I the top-5 PageRank scores that the

algorithm has produced after it was run for each project in

the network. These influential projects provide libraries, pro-

grammer utilities and scripts and language implementations.

The top-1 project is homebrew entitled “the missing package

325

manager for OS X”, which provides a package installer of

UNIX tools for Mac users. This project has 7233 developers.

It shares one or more developers with many other projects

such as rails, docrails, homebrew-php, rvm, etc.

E. Influential Developers

To identify the influential developers, we run the PageR-

ank algorithm in the developer-developer network. The

algorithm returns a score for every developer. The top-5

developers in terms of their scores are shown in Table II.

Developer PageRank
Joshua Peek josh[AT]joshpeek.com 0.00009536
Aman Gupta aman[AT]tmm1.net 0.00008860
Steve Richert steve.richert[AT]gmail.com 0.00008850
Michael Klishin michaelklishin[AT]me.com 0.00008170
Josh Kalderimis josh.kalderimis[AT]gmail.com 0.00008163

Table II
TOP 5 MOST INFLUENTIAL DEVELOPERS

The top-1 developer is Joshua Peek. This developer, who

is part the core team of rails, the second influential project,

works on 81 projects in collaboration with many others

including Aman Gupta from the top-5 influential developers

and others such as Sam Stephenson, Aaron Patterson, Mislav

Marohnic, etc.

F. Threats to Validity

In this preliminary study, we only study a sample of

projects and developers in GitHub. In the future, we plan to

mitigate this threat further by including more projects and

developers. Another threat to validity is that we consider

two developers to be linked as long as they are involved

in the same project. Another threat is that we consider two

developers to be linked as long as they are involved in the

same project.

There are various ways that the networks could be built

and various metrics could be used. In this preliminary study,

we just focus on two different networks and several metrics.

In the future, we would investigate other ways to build

networks and other metrics.

V. RELATED WORK

There have been a number of studies that analyze network

structure. Surian et al. investigate the network structure of

SourceForge [9]. Other studies analyze the relationships be-

tween social media and software development. For example,

Bougie et al. and Tian et al. analyze the use of microblogs

and Twitter in software development [2], [10]. Treude et al.

investigate how developers use StackOverflow [12].

VI. CONCLUSION AND FUTURE WORK

We have performed an empirical study on a popular social

coding site: GitHub. In this study, we extract information

about 100,000 projects from GitHub and analyze both the

project-project network and the developer-developer net-

work. Our evaluation results show that distribution graphs

in the project-project network generally follows a power

law or long tail phenomenon while the developer-developer

network generally does not. Nevertheless, we have shown

that social coding indeed improves collaboration among

developers: this conclusion can be inferred from the small

value of the average shortest path in the largest community

of developers.

In this work, we have measured some properties of the

network structure of social coding in GitHub. In the future,

we plan to develop a recommendation system to choose

suitable developers to work together for particular projects

in GitHub. We could then re-measure the properties after

our recommendation system is applied to a subset of the

developer and project population and investigate if there is

a significance change in the properties of the sub-network.

Information of most influential projects and developers

could also be of interest to recruiters. We would investigate

possibility of recommending suitable candidates to different

recruiters following the work by Capiluppi et al. and Singer

et al. in [4], [8]. We also plan to investigate the difference

between followers network in GitHub with our developer-

developer network. Another interesting future work is to

perform a longitudinal study to investigate how the GitHub

network structure evolves over time. We also plan to con-

sider more fine-grained levels of granularity to define a

collaboration relation (e.g., how much code two developers

contribute to the same method/file/package/project, etc.). We

would like to quantify the degree of collaboration between

two developers.”

REFERENCES

[1] C. Anderson, The Long Tail: How Endless Choice is Creating
Unlimited Demand., 2006.

[2] G. Bougie, J. Starke, M.-A. Storey, and D. German, “Towards un-
derstanding twitter use in software engineering: Preliminary findings
ongoing challenges and future questions,” in Web2SE.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in WWW, 1998.

[4] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical
candidates on the social web,” in IEEE Software, 2012.

[5] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social
coding in github: transparency and collaboration in an open software
repository,” in CSCW, 2012, pp. 1277–1286.

[6] L. C. Freeman, “A Set of Measures of Centrality Based on Between-
ness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[7] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-
messaging network,” in WWW, 2008, pp. 915–924.

[8] L. Singer, F. Filho, B. Cleary, C. Treude, M.-A. Storey, and K. Schnei-
der, “Mutual assessment in the social programmer ecosystem: An
empirical investigation of developer profile aggregators,” in CSCW,
2013.

[9] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from
a large developer network,” in WCRE, 2010, pp. 269–273.

[10] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What
does software engineering community microblog about?” in MSR,
2012.

[11] J. Travers and S. Milgram, “An Experimental Study of the Small
World Problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969.

[12] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in ICSE (NIER), 2011.

[13] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy
of the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.

326

