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Abstract—In a modern software system, when a program
fails, a crash report which contains an execution trace would
be sent to the software vendor for diagnosis. A crash report
which corresponds to a failure could be caused by multiple types
of faults simultaneously. Many large companies such as Baidu
organize a team to analyze these failures, and classify them into
multiple labels (i.e., multiple types of faults). However, it would be
time-consuming and difficult for developers to manually analyze
these failures and come out with appropriate fault labels. In
this paper, we automatically classify a failure into multiple types
of faults, using a composite algorithm named MLL-GA, which
combines various multi-label learning algorithms by leveraging
genetic algorithm (GA). To evaluate the effectiveness of MLL-
GA, we perform experiments on 6 open source programs and
show that MLL-GA could achieve average F-measures of 0.6078
to 0.8665. We also compare our algorithm with Ml.KNN and
show that on average across the 6 datasets, MLL-GA improves
the average F-measure of Ml.KNN by 14.43%.

Index Terms—Software Behavior Learning, Multi-label Learn-
ing, Genetic Algorithm

I. INTRODUCTION

Software faults appear in all stages of software development
lifecycle which necessitates perfective maintenance activities.
A previous study shows that the cost of debugging in a
software could consume 50% - 80% of the development and
maintenance effort [1]. To improve the reliability of software
systems, many vendors employ automated crash reporting
systems [2]. When a program fails, these systems generate
a crash report, corresponding to a failure, which contains an
execution trace, which would be sent to the software vendor
for diagnosis. An execution trace corresponds to a path that a
program takes when executing from the start of the program
till the end when it terminates, and a failure could be caused by
multiple types of faults simultaneously. Many large companies
such as Baidu1 receive hundreds of thousands of crash reports
(failures) every day. Thus, they organize project teams which
analyze the failures they received, and categorize them into
different labels (i.e., fault types). However, based on our
interactions with Baidu developers, we find that there are two
difficulties:

[The work was done while the author was visiting Singapore Management
University.

§Corresponding author.
1Baidu is the largest Chinese-language Internet search provider.

1) The crash reports only contain execution traces, and
there are hundreds of thousands of crash reports that
are received daily. Manually assigning labels (types of
fault) to the failures would be a time-consuming and
tedious work.

2) A failure could be caused by multiple types of faults
simultaneously. Thus, often more than one label should
be assigned to the failure, which makes the work even
harder.

To address the two difficulties, Feng and Chen proposed
multi-label software behavior learning, which automatically
classifies a failure into one or more fault labels [3]. They
use Ml.KNN [4], one of state-of-the-art multi-label learning
algorithms, to solve the problem. Notice that multi-label
software behavior learning is a difficult task: given there are a
total of |L| labels, since one failure could be assigned multiple
labels, there would be 2|L| combinations of labels that could
be assigned to a failure.

A variety of methods have been developed to tackle multi-
label learning problem. These methods can be divided into two
main streams: problem transformation methods and algorithm
adaptation methods [5], [6]. The problem transformation meth-
ods transform the multi-label classification task into multiple
single-label classification tasks; they are usually based on
either binary relevance (BR) (e.g., ensemble of classifier chains
(ECC) [7]), or label powerset (LP) (e.g., random k-labelset
(Rakel) [8]).2 Algorithm adaptation methods extend specific
learning algorithms in order to handle multi-label data directly
(e.g., Ml.KNN [4]).

We notice that the performance of different multi-label
learning algorithms differs for different software behavior
datasets. Some algorithms perform much better than others
on some datasets but lose to the others on other datasets.3 In
this paper, we propose a composite algorithm named MLL-
GA which combines various multi-label learning algorithms
by leveraging genetic algorithm (GA) [9]. In total, MLL-GA
combines 12 multi-label learning algorithms including binary
relevance (BR), ensemble of classifier chains (ECC), random
k-labelset (RAKEL), with KNN, naive Bayes Multinomial,

2For the details of BR and LP algorithms, please refer to Section II.
3For more details, please refer to Section III.



C4.8 decision tree, and SVM [10] as their underlying clas-
sifiers, and Ml.KNN.

To examine the benefits of MLL-GA, we perform exper-
iments on 3 real C programs and 3 Siemens test programs
from the Software-artifact Infrastructure Repository (SIR), i.e.,
tcas, printtokens, printtokens2, replace, flex, and grep [11]. We
show that MLL-GA could achieve average F-measure up to
0.8665. We also compare our algorithm with the state-of-the-
art multi-label software behavior learning algorithm Ml.KNN
used by Feng and Chen. The experiment results show on
average across the 6 datasets, MLL-GA improves average F-
measures of Ml.KNN by 14.43%. Moreover, since we combine
12 different multi-label learning algorithms, we also compare
MLL-GA with each of them, and the experiment results show
that on average across the 6 programs, MLL-GA could on
average improve 10.42% over these 12 algorithms.

The main contributions of this paper are as follows:
1) We investigate the performance of many multi-label

learning algorithms to solve software behavior learning
problem. And we propose a composite algorithm named
MLL-GA which combines various multi-label algorithms
to achieve a better performance by leveraging genetic
algorithm. Notice MLL-GA is an extendable algorithm,
which could combine various multi-label learning algo-
rithms.

2) We evaluate MLL-GA on 6 programs, and the experiment
results show that MLL-GA could improve the state-of-
the-art software behavior learning algorithm Ml.KNN by
a substantial margin.

The remainder of the paper is organized as follows. We
describe the background in Section II. We elaborate MLL-GA
in Section III. We present our experiments in Section IV. We
discuss related work in Section V. We conclude and mention
future work in Section VI.

II. BACKGROUND

In this section, we first present a motivating example to
multi-label software behavior learning in Section II-A. Next,
we describe the multi-label learning algorithms which would
be used in this paper in Section II-B. Then, we elaborate the
algorithm difference phenomenon in Section II-C.

A. A Motivating Example

To help understand multi-label software behavior learning,
we present a motivating example in Figure 1, and this example
is a problem that currently Baidu experiences. In practice,
there are two ways to describe a failure. First, users can write
a textual description of a failure, and provide the input and
output of the failure, the execution trace and runtime context.
Examples of this type of failure descriptions are bug reports
submitted in bug tracking systems. For example, Baidu em-
ploys many temporary testers in its crowdsourcing platform,4

and they would detect a lot of failures and report them to
the development team. For this type of failure descriptions,

4http://test.baidu.com/
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Fig. 1. A Motivating Example.

it is easy to identify the fault types, since there are plenty
of textual descriptions, input and output information. For
example, consider the following failure report:

We have derived a Wizard from the Project Wizard, and
there would be an exception when insert a new page.
Moreover, edit/delete buttons in the previous pages are
enabled although nothing is selected.
After a developer reads this failure description, he/she

could easily decide which types of fault the failure should be
assigned to, i.e., it is assigned to both the “insert page fault”,
and “edit/delete button fault” categories.

However, besides the bug reports, there is another type
of failure descriptions called crash reports [2]. Crash reports
contain only execution traces, and runtime contexts. In Baidu,
there are hundreds of thousands of such crash reports received
every day. Since there are only execution traces and runtime
contexts, it would be difficult for a developer to decide the
proper labels.

Thus, if we could train a model from failures with known
labels and use the model for predicting the labels of failure
descriptions which only contain execution traces, then the
workload for developers could be reduced. As far as we know,
currently Baidu organizes a team to analyze the software
behaviors included in crash reports, and label these failures
into different categories to help in the debugging process. In
this work, we want to automate this manual work that Baidu
developers are currently doing.

B. Multi-label Learning

Multi-label learning can be defined as follows. Let χ denotes
the input space and let L denotes the set of labels. Given a



multi-label training dataset D = {(Xi, Yi)}ni=1 where Xi ∈ χ
and Yi = {0, 1}|L| (Yi = 1 indicates that the instance is as-
signed to the ith label and Yi = 0 indicates otherwise), the goal
of multi-label learning is to learn a hypothesis h : χ → 2|L|

which is used to predict the label set for a new instance [5],
[6]. Problem transformation methods and algorithm adaptation
methods are two main families of approaches to solve multi-
label learning problems. In the following paragraphs, we
describe binary relevance (BR) algorithm, label powerset (LP)
algorithm, and Ml.KNN, which would be used in our MLL-
GA, respectively.

1) Binary Relevance (BR): Given a set of labels L, binary
relevance (BR) algorithm creates |L| binary datasets from the
input dataset. Each of the |L| binary datasets corresponding
to one label from L; Each instance in a binary dataset
corresponding to a label l is relabeled as +ve, if it has the label
l, or -ve, otherwise. The multi-label learning problem is then
decomposed to |L| single-label binary classification problems,
and for each binary classification problem, a separate classifier
would be built. BR algorithm ignores the label correlations,
which causes it not to perform well in many datasets.

There are many extensions of BR which address the label
correlations. Class chain (CC) and ensemble of classifier
chains (ECC) algorithms consider label correlation by in-
putting the predicted labels into feature space [7]. Specially,
CC also builds |L| binary classifiers in sequence, and each
classifier predicts one label in L. For the (n + 1) binary
classifier, for each instance, it would input its original features,
and also the predicted labels (i.e., labels predicted in the
previous n classifiers) into the (n+1) classifier. For example,
consider 5 labels, i.e., {l1, l2, l3, l4, l5}. CC first randomly
selects a sequence to build the 5 binary classifiers, e.g.,
{l5, l3, l2, l1, l4}. Next, to build the l5 classifier, it would use
the original features in the dataset; to build the l3 classifier, it
would use the original features, and also the label predicted
by the l5 classifier; to build the l2 classifier, it would use the
original features, and also the labels predicted by l5 and l3
classifiers; and so on. Since CC randomly selects a sequence of
labels, to increase the overall accuracy and avoid over-fitting,
ECC trains an ensemble of CC classifiers.

2) Label Powerset (LP): Label powerset (LP) algorithm
treats each unique label set as a new single label, and then
it uses the multi-class classification methods to complete the
learning task with the new single labels [5]. Given a set
of labels L, LP potentially generates 2|L| labels for multi-
class classification. For the label set L = {1, 2, 3, ..., |L|},
LP transform it to L

′
= {1, 2, 3, ..., 2|L|}, then the multi-label

classification problem is reduced to a multi-class classification
problem. LP method considers label correlation, but since
there are 2|L| labels, it suffers from label explosion problem.
With 2|L| labels, the training set becomes extremely sparse
which will cause the under-fitting problem.

Similar to BR algorithm, there are many extensions to the
original LP. Most of these algorithms try to address the label
explosion problem. Random k-labelsets (RAKEL) randomly
chooses k labels from the L labels, and uses an LP classifier

to compute the result [8]. With a set of LP classifiers, it outputs
the final result using a voting-based mechanism. For example,
suppose there are 3 labels, i.e., {l1, l2, l3}. We select k = 2
labels from the 3 labels to construct LP classifiers, and we
build 3 such LP classifiers correspond to e.g., {l1, l2}, {l2, l3},
and {l1, l3}. For a new instance, let its predicted labels by
the 3 LP classifiers be {l2}, {l2, l3}, and {l1, l3}. Since the
vote for l1 is 1, which means only 1/3 of the LP classifiers
vote for it, which is less than the 0.5 (i.e., at least half of the
classifiers predict it), l1 would not be assigned to the instance;
similarly, the vote for l2 and l3 are 2, which means 2/3 of the
LP classifiers vote for them, so l2 and l3 would be assigned
to the instance.

Notice BR and LP algorithms could use different underlying
classification algorithms, such as KNN, naive Bayes multino-
mial, C4.8 decision tree, and SVM [10]. We refer to these
kinds of algorithms (e.g., BR and LP) as meta algorithms [12].
In this paper, we denote BR and LP with an underlying
classification algorithm c as BRc and LP c. For example,
random k-labelsets with SVM as its underlying classifier is
denoted as RAKELSVM .

3) Ml.KNN: Ml.KNN is one of the algorithm adaptation
methods [4]. For a new instance Xnew, Ml.KNN first gets
its k-nearest neighbors knn(Xnew) from the training dataset.
For a label l in the label set L, it would compute the number
of instances in knn(Xnew) with the label l. We denote the
number of data instances label l as CXnew(l).

Next, based on the above count, Ml.KNN computes the es-
timated probability of the new instance Xnew to belong to the
label l (denoted as H l

1(Xnew)) and the estimated probability
of the new instance to NOT belong to label l (denoted as
H l

0(Xnew)). These two estimates do not necessarily sum up
to 1. The above two estimated probabilities are computed for
every label in the label set L. If H l

1 is larger than H l
0, the

label l would be assigned to Xnew.

C. Why A Composite Model?

To investigate whether different multi-label learning algo-
rithms would perform differently on different datasets, we
evaluate 12 multi-label learning algorithms on printtokens2
and flex programs.5 The 12 algorithms are selected as follows:
we choose BR, ECC, and RAKEL as meta algorithms, and use
KNN, naive Bayes multinomial, C4.5, and SVM as their corre-
sponding underlying classification algorithms. Then, we have
11 multi-label learning algorithms.6 The twelfth algorithm is
Ml.KNN. Table I presents the average F-measure scores for
the 12 algorithms on printtokens2 and flex programs. The best
performing algorithm for printtokens2 is RAKEL with C4.5,
while the best one for flex is RAKEL with SVM. Thus, for
different datasets, the best performing algorithms could be
different.

We refer to this phenomenon as the algorithm difference
phenomenon. Due to this phenomenon, if we poorly choose

5For the details of printtokens2 and flex, please refer to Section IV.
6Naive Bayes multinomial cannot work with ECC since it only handles

numeric features.



TABLE I
AVERAGE F-MEASURE SCORES FOR 12 MULTI-LABEL LEARNING

ALGORITHMS ON PRINTTOKENS2 AND FLEX PROJECT.

Projects printtokens2 flex
Ml.KNN 0.7123 0.6540
BRKNN 0.6991 0.6759
BRNBM 0.6994 0.5394
BRC4.5 0.8042 0.6685
BRSV M 0.8018 0.7167
ECCKNN 0.6965 0.6514
ECCC4.5 0.8089 0.6344
ECCSV M 0.7930 0.7030

RAKELKNN 0.6974 0.6828
RAKELNBM 0.6987 0.6082
RAKELC4.5 0.8091 0.7206
RAKELSV M 0.7951 0.7349

an algorithm (e.g., BRNBM for flex), then the prediction
performance would be poor. To address this, in this work, we
propose a technique that combines various multi-label learning
algorithms to achieve a better performance.

III. PROPOSED ALGORITHM

In this section, we first describe the overall framework of
MLL-GA in Section III-A. Then, we present the details of the
MLL-GA in Section III-B.

A. Overall Framework

Figure 2 presents the overall framework of MLL-GA. MLL-
GA has two phases: training phase and prediction phase. In the
training phase, our goal is to build a composite model learned
from historical training data (i.e., failures). In the prediction
phase, we apply this model to predict the proper set of labels
(i.e., types of faults) for a new unlabeled data (i.e., a new
failure).

Our framework takes as inputs instances from historical
failures with known labels. A failure corresponds to a program
execution trace, and the executions or non-executions of the
various program elements are the set of binary features char-
acterizing the failure. Next, for the ith multi-label algorithm,
we build a classifier Mi on the historical training data; in
total, we build n multi-label classifiers (Step 1). Then, our
framework searches for the near optimal composition of these
n multi-label classifiers (Step 2), and after enough number of
iterations, it outputs a near-optimal composite model (MLL-
GA classifier) (Step 3). The MLL-GA classifier is a machine
learning classifier which assigns multiple labels to a new
failure based on its execution trace.

After the model is constructed, in the prediction phase it
is then used to predict a set of labels for a new failure. We
input the execution trace of a new failure into the MLL-GA
classifier (Step 4). It would then output the prediction result
which is a set of labels (Step 5).

B. MLL-GA: A Composite Algorithm

Since different multi-label learning algorithms would ex-
hibit different performance on a software behavior dataset, the

basic idea behind MLL-GA is that we assign high weights for
the algorithms which perform well on the dataset, and assign
low weights for the algorithms which perform poorly on the
same dataset.

Formally, given n multi-label algorithms, we first build n
multi-label classifiers (M1 to Mn) on the training failures.
Then, we search for a near-optimal composition of these n
multi-label classifiers, and output the MLL-GA classifier. Given
a instance j, Mi would predict its labels. For a label l, we
denote Labeli(j, l) as the label vote of l by Mi on instance
j (Labeli(j, l) = 1 means label l is assigned to instance j;
Labeli(j, l) = 0 means otherwise). MLL-GA would compute
a weighted sum of all label votes assigned by the n multi-label
classifiers, and for each label l, predict whether l is assigned
to the instance j based on a threshold score of l. Definition 1
provides a more formal definition of the MLL-GA classifier.

Definition 1: (MLL-GA Classifier) Consider n multi-label
classifiers (M1 to Mn) built on the historical training data D.
A MLL-GA classifier composes these n classifiers and assigns
a label l to an instance j as follows:

Label(j, l) =

{
1,

0,

if Composite(j, l) ≥ thresholdl
Otherwise

where,

Composite(j, l) =

n∑
i=1

αi × Labeli(j, l) (1)

In the above equation, Labeli(j, l) is the label vote of label
l outputted by the ith classifier Mi for instance j, α1 to αn are
the weights of the n classifiers, thresholdl is the boundary
used to decide whether label l is assigned to an instance.
Notice for each label l, there is a boundary thresholdl; in
total, there would be |L| such boundaries (threshold1 to
threshold|L|). Label l would be assigned to instance j if
its composite score Composite(j, l) is larger or equal than
thresholdl (i.e., Label(j, l) = 1); otherwise l is not assigned
to j. Note that α1 to αn, and threshold1 to threshold|L| are
the parameters of a MLL-GA classifier. Thus, we denote a GA
classifier as (

∑n
i=1 αiMi, threshold1 to threshold|L|) where

each Mi is a multi-label classifier, αi is the weight of Mi, and
threshold1 to threshold|L| are the boundary for each label
in the label set L.

The search space of all possible compositions corresponds
to the various assignments of values to the weights α1 to
αn, and the thresholds threshold1 to threshold|L|. Each
weight is a real number from zero to one and each boundary
is a real number from zero to n. For example, suppose
there are 3 multi-label learning algorithms M1,M2,M3, and
5 labels l1 to l5. The weights for the 3 algorithms are
{α1 = 0.7, α2 = 0.4, α3 = 0.8}, and the boundaries for
the 5 labels are {1, 0.8, 1.5, 1.4, 0.5}. Table II presents the
prediction results of an instance of MLL-GA. For label l1,
M1 and M3 predict that it is assigned to the instance, so its
composite score is 0.7× 1 + 0.4× 0 + 0.8× 1 = 1.5, which
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Fig. 2. Overall Framework of MLL-GA.

TABLE II
AN EXAMPLE WITH 5 LABELS AND 3 MULTI-LABEL LEARNING

ALGORITHMS.

Algorithms l1 l2 l3 l4 l5
M1 1 0 1 1 0
M2 0 1 1 1 0
M3 1 0 1 0 1

Composite score 1.5 0.4 1.9 1.1 0.8
MLL-GA 1 0 1 0 1

is above threshold1 = 1. Thus, MLL-GA would assign l1 to
the instance.

1) Fitness Function: Fitness function measures the quality
of a solution in a search space. We define a fitness score f so
that the higher the score is, the better performance the MLL-
GA classifier achieves, and the goal is to find the candidate
compositions (i.e., weights and thresholds) which could max-
imize the score of the fitness function f . We set the fitness
function as the average F-measure score (See Section IV), i.e.,
after we choose the weights and the thresholds, we use the
composite model (i.e., MLL-GA classifier) to predict the label
of instances in the historical training failures and compute the
resulting F-measure score.

2) Detailed Procedure: We employ one of the state-of-
the-art search algorithms named genetic algorithms to learn
the weights (α1 to αn) and the thresholds (threshold1 to
threshold|L|). In genetic algorithm, the solutions in a search
space are modeled as chromosomes [13], [9]. In MLL-GA, a
solution is a set of values for the weights and the thresholds.
Genetic algorithm starts with a random selection of chromo-
somes, referred to as the initial population. Then, it evolves the
population by generating subsequent generations, where each
generation is a population of chromosomes. GA evolves the

population by 3 operations: selection, crossover, and mutation.
Selection refers to the process of selecting parent chromo-
somes according to their fitness scores. Crossover refers to
the process of exchanging the genes of selected parents to
produce offsprings with a given probability. Mutation refers
to the process that the genes of new chromosomes would be
modified according to a given probability. More details about
GA can be found in [13], [9].

We use a simple GA [13], [9] implemented in jgap [14]
in this paper. Chromosomes are represented as an array of
(n+ |L|) doubles – n doubles represent the weights α1 to αn
whose values are between 0 and 1, and |L| doubles represent
the thresholds threshold1 to threshold|L| whose values are
between 0 and n. Roulette wheel selection procedure [13], [9]
is used in the selection process, which assigns a high probabil-
ity to a chromosome with a higher fitness score to be selected.
Single point crossover operation is used in the crossover
process, which processes pairs of parent chromosomes and for
each pair, it randomly picks a gene (i.e., a double value) from a
parent chromosome with a certain probability, and swaps that
gene and the subsequent ones with corresponding genes from
the other parent chromosome. Random mutation operation is
used in the mutation process, where for each gene (i.e., a
double), it randomly swaps the gene with another double value
with a certain probability.

Algorithm 1 presents the training phase of MLL-GA. For
the ith multi-label learning algorithms, we first build a clas-
sifier Mi based on the instances in D (Line 10), and we
randomly sample a small dataset Ds from D according to the
SampleSize (Line 11). In this paper, we set SampleSize as
30% of the total instances in D, i.e., only 30% of instances
would be used to search for the near-optimal composition
parameters. The reason we reduce the number of instances



is to reduce the training time needed by the genetic algorithm.
Then, we create an initial population (i.e., P ) containing a total
of PopSize chromosomes (i.e., solutions) which are generated
randomly, and we record the best solution (i.e., the solution
with the maximum average F-measure score on Ds) among
the solutions in P (Lines 12 and 13). Remember that each
solution in P is a set of weights α1 to αn and thresholds
threshold1 to threshold|L|. Next, we evolve the population
in MaxGen iterations; for each iteration, we perform the
selection, crossover, and mutation operations on the current
population, and record the best solution found so far (Lines 15
to 21). The algorithm returns the {α1 to αn}, and {threshold1
to threshold|L|} values which maximize the average F-
measure on Ds (i.e., the best solution among solutions in
the initial population and the populations generated in the
MaxGen generations).

Algorithm 1 The Training phase of MLL-GA.
1: MLL-GA(D, n, PopSize, MaxGen, SampleSize)
2: Input:
3: D: Historical training failures
4: n: Number of n multi-label learning algorithms
5: PopSize: Number of chromosomes in a population
6: MaxGen: Maximum number of generations
7: SampleSize: Sample Size
8: Output: Composite MLL-GA Classifier (

∑n
i=1 αiMi, threshold1 to

threshold|L|).
9: Method:

10: For the ith multi-label learning algorithm, Build a classifier Mi on D;
11: Let D − s as a set of instances from D randomly sampled from D.
12: Sample a small size instances Ds from D according to SampleSize;
13: Let P = Initial population with PopSize members;
14: Evaluate P and record the best solution (i.e., the solution with the maximum average

F-measure scores on Ds) found so far;
15: Let curGen = 0
16: while curGen < MaxGen do
17: Let P

′
= select(P );

18: P
′
= crossover(P

′
);

19: P
′
= mutation(P

′
);

20: Evaluate P
′

and record the best solution so far;
21: curGen = curGen + 1;
22: end while
23: Output (

∑n
i=1 αiMi, threshold1 to threshold|L|) which achieves the high-

est average F-measure score.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of MLL-GA.
The experimental environment is a Windows 7, 64-bit, Intel(R)
Xeon(R) 2.53GHz server with 24GB RAM. We first present
our experiment setup, evaluation metrics, and 3 research
questions in Section IV-A, IV-B, and IV-C, respectively. We
then present our experiment results that answer the 3 research
questions (Sections IV-D, IV-E, and IV-F).

A. Experiment Setup

We evaluate MLL-GA on 3 Siemens test programs and
3 real C programs from the Software-artifact Infrastructure
Repository (SIR), i.e., tcas, printtokens, printtokens2, replace,
flex, and grep [11]. For each of such programs, we inject
multiple faults [15] into it, and each fault represents a type
of fault (i.e., a label). In SIR, for each program, there are
multiple faulty versions. We collect faults from these versions
and categorize them into types. We randomly pick one fault per

TABLE III
STATISTICS OF COLLECTED DATASETS.

Project LOC # Func. # Cases # Fail. # Faults
tcas 173 9 1,608 497 9

printtokens 726 18 4,130 252 5
printtokens2 570 19 4,115 1,072 10

replace 564 21 5,542 870 7
flex 10,459 162 567 466 7
grep 10,068 146 809 657 7

type and inject them to each of the programs. Then, we run the
test cases for these programs, and collect the execution traces.
For programs tcas, printtokens, printtokens2, and replace, since
they are small programs, we collect execution traces at the
statement level. For programs flex and grep, since they are
larger programs, we collect execution traces at the method
(function) level. Next, for the test cases which fail (i.e.,
failures), we analyze their root causes and assign them into
multiple fault types (i.e., labels). Table III presents the statistics
of the 6 programs. The columns correspond to the program
name (Program), the lines of source code (LOC), the number
of functions (# Func.), the number of test cases (# Test Cases),
the number of failures (# Fail.), and the number of types of
faults (# Faults). Notice the number of failures, and the number
of types of faults correspond to the number of instances, and
the number of labels in the multi-label learning setting. Thus,
the last two columns of Table III are in bold.

We implemented MLL-GA on top of Mulan [16], which is
a Java library for multi-label learning. We choose Ml.KNN
and 3 multi-label meta algorithms, i.e., binary relevance (BR),
ensemble of classifier chains (ECC), and random k-labelsets
(RAKEL) algorithms, since they are state-of-the-art multi-
label learning algorithms, c.f., [5], [6]. We choose KNN,
naive Bayes Multinomial, C4.8 decision tree, and SVM [10]
as the underlying classifiers for these 3 multi-label meta
algorithms. These underlying classifiers are widely used in
software engineering studies (e.g., bug triaging [17], defect
prediction [18], reopened bug prediction [19], etc.), and data
mining studies [10]. We use the implementation of these 4
underlying classifiers in Weka [20]. In total, we combine 12
multi-label learning algorithms. The detailed configuration of
the algorithms are as follows: for Ml.KNN and KNN, we set
number of neighbors as 10. For naive Bayes Multinomial and
C4.8 decision tree, we use the default settings in Weka. For
SVM, we use the polynomial kernel. For ECC, we set the
ensemble time as 10. For RAKEL, we use the random 3-
labelsets, i.e., we select 3 labels to form the label powerset
(LP) classifier. With the 12 multi-label learning algorithms,
we use jgap, a Java implementation of genetic algorithm
to combine them. We set the population size (PopSize in
Algorithm 1) as 1,000, and the number of iterations (MaxGen
in Algorithm 1) as 1,000.

Ten-fold cross validation [12] is used to evaluate the per-
formance of MLL-GA, i.e., we randomly divide the dataset
into 10 folds, and of these 10 folds, 9 folds are used to train
a classifier, while the remaining one is used to evaluate the



performance. The whole process iterates 10 times. The overall
performance score across the 10 iterations is reported.

We compare MLL-GA with the state-of-the-art work on
multi-label software behavior learning by Feng and Chen [3].
Feng and Chen makes use of Ml.KNN, and thus we com-
pare MLL-GA against Ml.KNN. The number of neighbors of
Ml.KNN is set to 10 – this setting is also used in Feng and
Chen’s paper.

B. Evaluation Metrics

Give a label l in the label set L, for an instance in the
multi-label software behavior learning dataset, there are four
outcomes: An instance is assigned to label l when it truly
belongs to l (true positive, TPl); it assigned to label l when
it actually does not belong to l (false positive, FPl); it is
not assigned to label l when it actually belong to l (false
negative, FNl); or it is not assigned to label l when it actually
does not belong to l (true negative, TNl). Based on these
possible outcomes, precision, recall and F-measure for label l
are defined as:
• Precision for l: the proportion of instances that are

correctly labeled as l among those labeled as l.

Pl = TPl/(TPl + FPl) (2)

• Recall for l: the proportion of instances labeled as l that
are correctly labeled.

Rl = TPl/(TPl + FNl) (3)

• F-measure for l: a summary measure that combines both
precision and recall for label l - it evaluates whether an
increase in precision (recall) outweighs a reduction in
recall (precision).

Fl = (2× Pl ×Rl)/(Pl +Rl) (4)

Given the precision, recall, and F-measure for l, the average
precision, recall, and F-measure across the |L| labels are given
as:

Ave.P = 1
|L|

∑
l∈L

Pl

Ave.R = 1
|L|

∑
l∈L

Rl

Ave.F = 1
|L|

∑
l∈L

Fl

(5)

Notice that the average precision, recall, and F-measure
measure the prediction performance across all the |L| labels,
which are also used in previous software behavior learning [3],
and many multi-label learning studies [8], [7].

C. Research Questions

In this paper, we are interested in answering these research
questions:
RQ1 How effective is MLL-GA? How much improvement can
it achieve over Ml.KNN proposed by Feng and Chen [3]?

We need to compare MLL-GA with other state-of-the-art
multi-label software behavior learning algorithms. Answer to

this research question would shed light to the extent MLL-
GA advances the state-of-the art algorithms. To answer this
research question, we compare MLL-GA with Ml.KNN pro-
posed by Feng and Yang. We compute the average precision,
recall, and F-measure scores to evaluate the performance of
these 2 approaches on the 6 programs from SIR.

RQ2 What is the performance of the 12 multi-label learn-
ing algorithms proposed to solve software behavior learning
problem?

Our MLL-GA is a composite model which combines 12
multi-label learning algorithms. Each of these 12 algorithms
could also be used separately to solve the software behavior
learning problem. However, due to the algorithm difference
phenomenon, the selection of the best multi-label learning
algorithm would be a difficult problem. Answer to this re-
search question could validate whether algorithm difference
phenomenon happens in other programs, and also whether the
composite model is better than these single models. To answer
this research question, we run these 12 multi-label learning
algorithms on the 6 programs, and record their average F-
measure scores, and compare with MLL-GA.

RQ3 How much time does it take for MLL-GA to run?
The efficiency of MLL-GA would affect its practical usage.

MLL-GA combines various multi-label learning algorithms by
leveraging genetic algorithms. Training time refers to the time
to build the MLL-GA classifier, which contains two parts: the
time to build a classifier of each of the algorithms, and the
time to choose near-optimal composition of these algorithms.
Prediction time refers to the time to output the final prediction
set of labels: first, a new instance would be input into each
of multi-label classifiers which would output the intermediary
prediction results; then, these results are composed to predict
the final set of labels. To answer this research question, we
compare the training and prediction time of MLL-GA with
those of Ml.KNN.

D. RQ1: MLL-GA vs. Ml.KNN

Table IV compares the performance of MLL-GA and
Ml.KNN in terms of average F-measure, precision, and recall.
The average F-measure, precision, and recall of MLL-GA
vary from 0.6078 to 0.8665, 0.5861 to 0.8804, and 0.7170
to 0.8623, respectively.

From Table IV, the improvement of our method over
Ml.KNN is substantial. Across the 6 programs, MLL-GA
outperforms Ml.KNN by 14.43%, 5.35%, and 21.66% for
average F-measure, precision, and recall, respectively. In the
printtokens program, MLL-GA achieves the highest improve-
ment of 29.30%, 8.33%, and 40.56% over Ml.KNN for average
F-measure, precision, and recall, respectively.

Average precision and recall are both important metrics
for multi-label software behavior learning since they measure
quality in two aspects. If the average precision is low, then the
developer would not use the tool, due to a high number of false
labels. On the other hand, if the average recall is low, which
means that most correct labels are not assigned to the failures,



TABLE IV
EXPERIMENT RESULTS OF MLL-GA COMPARED WITH ML.KNN.

Project Average F-measure Average Precision Average Recall
MLL-GA Ml.KNN Impro. MLL-GA Ml.KNN Impro. MLL-GA Ml.KNN Impro.

tcas 0.6078 0.5855 3.81% 0.5861 0.5720 2.47% 0.7170 0.6410 11.86%
printtokens 0.7816 0.6045 29.30% 0.7935 0.7325 8.33% 0.7947 0.5654 40.56%
printtokens2 0.8124 0.7123 14.50% 0.8145 0.7858 3.65% 0.8193 0.6764 21.13%

replace 0.8665 0.7535 15.00% 0.8804 0.8423 4.52% 0.8623 0.7219 19.45%
flex 0.7856 0.6540 20.12% 0.7646 0.6790 9.93% 0.8608 0.6690 28.67%
grep 0.8015 0.7683 4.32% 0.7978 0.7728 3.23% 0.8290 0.7655 8.30%

Average. 0.7759 0.6797 14.43% 0.7698 0.7307 5.35% 0.8139 0.6732 21.66%

TABLE V
AVERAGE F-MEASURE SCORES OF MLL-GA COMPARED WITH THE OTHER 12 MULTI-LABEL LEARNING ALGORITHMS. THE LAST COLUMN SHOWS

THE AVERAGE IMPROVEMENT OF MLL-GA OVER THE OTHERS.

Projects tcas printtokens printtokens2 replace flex grep Average. Ave.Impro.
MLL-GA 0.6078 0.7816 0.8124 0.8665 0.7856 0.8015 0.7759 0%
Ml.KNN 0.5855 0.6045 0.7123 0.7535 0.6540 0.7683 0.6797 14.43%
BRKNN 0.5913 0.5903 0.6991 0.7454 0.6759 0.7837 0.6810 14.36%
BRNBM 0.5437 0.6110 0.6994 0.6459 0.5394 0.7672 0.6344 23.36%
BRC4.5 0.6038 0.7217 0.8042 0.8363 0.6685 0.7889 0.7372 5.45%
BRSV M 0.5822 0.6964 0.8018 0.8446 0.7167 0.7947 0.7394 5.17%
ECCKNN 0.5918 0.6049 0.6965 0.7384 0.6514 0.7573 0.6734 15.39%
ECCC4.5 0.6097 0.7364 0.8089 0.8351 0.6344 0.7870 0.7353 5.95%
ECCSV M 0.6119 0.7374 0.7930 0.8259 0.7030 0.7997 0.7452 4.11%

RAKELKNN 0.5913 0.6085 0.6974 0.7443 0.6828 0.7651 0.6816 13.99%
RAKELNBM 0.5598 0.6161 0.6987 0.6950 0.6082 0.7951 0.6622 17.73%
RAKELC4.5 0.6097 0.7288 0.8091 0.8459 0.7206 0.7877 0.7503 3.42%
RAKELSV M 0.6097 0.7799 0.7951 0.8474 0.7349 0.7955 0.7604 2.00%

TABLE VI
AVERAGE TRAINING AND PREDICTION TIME (SECONDS) FOR MLL-GA

COMPARED WITH ML.KNN.

Project Training Time Prediction Time
MLL-GA Ml.KNN MLL-GA Ml.KNN

tcas 182.36 0.26 2.10 0.03
printtokens 57.69 0.25 1.44 0.03

printtokens2 629.75 3.40 38.92 0.39
replace 296.10 1.53 11.60 0.18

flex 182.22 0.74 6.08 0.09
grep 333.03 1.15 12.00 0.13

Average. 280.19 1.22 12.02 0.14

developers would not use the tool also. There is a trade off
between precision and recall [12]. One can increase precision
by sacrificing recall (and vice versa). In our framework, we
can sacrifice precision (recall) to increase recall (precision),
by manually lowering (increasing) the value of the thresholdl
parameters for each label l in Equation (1). F-measure, which
is the harmonic mean of precision and recall, is often used
to judge whether an increase in precision outweighs a loss
in recall (and vice versa) [12]. Thus, in many past papers,
e.g., [3], [21], [22], [23], it is often used as a summary
measure.

E. RQ2: Performance of Different Multi-label Learning Algo-
rithms

In this section, we would like to show that the composite
algorithm could achieve a better performance than a separate
algorithm, and also investigate whether algorithm difference
phenomenon exists in the programs. Table IV presents the

average F-measure scores of MLL-GA compared with the
other 12 multi-label learning algorithms. Notice in this paper,
MLL-GA is composed of these 12 algorithms. The improve-
ment of MLL-GA over the other algorithms varies from 2%
(RAKELSVM ) to 23.36% (BRNBM ). On average across the
12 algorithms, MLL-GA improves the average F-measure score
of 10.42%.

Moreover, the algorithm difference phenomenon exists in
the programs. For example, in the tcas and grep programs, it
would be best to select the ECCSVM , and in the printtoken2
program, it would be best to select the ECCC4.5. And for
other programs, it would be best to select the RAKELSVM .
However, in practice, we could not get these average F-
measure scores before we run the algorithms. MLL-GA sim-
plifies the algorithm selection process, i.e., the users just need
to input their algorithms into MLL-GA, and MLL-GA would
output a near-optimal composite model, and this model could
on average achieve a better performance than the best single
algorithms.

From Table IV, we notice that among the 3 meta algorithms,
random k-labelset (RAKEL) algorithm performs the best, fol-
lowed by ensemble of class chain (ECC), and binary relevance
(BR). Across the 6 programs, the average F-measure scores of
RAKEL, ECC, and BR varies from 0.6622 to 0.7604, 0.6734
to 0.7452, and 0.6344 to 0.7394, respectively. The reason that
BR does not perform well is it ignores the label correlation,
while RAKEL and ECC consider the label correlation by using
an ensemble of classifiers. Moreover, among the 4 underlying
classifiers, SVM performs the best, followed by C4.5, KNN,
and naive Baeyes multinomial. For example, across the 6



programs, RAKELSVM could achieve the average F-measure
score of 0.7604, while RAKELNBM only achieves 0.6622.

F. RQ3: Time Efficiency

Table VI presents the average training and prediction time
needed for MLL-GA and Ml.KNN. We notice that the training
and the prediction time of MLL-GA are more expensive than
those of Ml.KNN. However, they are still reasonable. On
average, we need about 5 minutes (280 seconds) to build a
MLL-GA classifier, and 12 seconds to predict the labels for
the instances in the test set, respectively. Note that the training
phase can be done offline (e.g., overnight), and the learned
model could be used to predict labels of many instances.

G. Threats to Validity

Threats to internal validity relate to errors in our exper-
iments. We have double checked our experiments and the
datasets collected from the 6 programs, still there could be
errors that we did not notice.

Threats to external validity relate to the generalizability of
our results. We have analyzed 16,771 execution traces of test
cases from 6 programs in SIR, and extract 3,814 failures, and
assigned them into multiple types of faults. In the future, we
plan to reduce this threat further by analyzing more failures
from more software projects.

Threats to construct validity refer to the suitability of our
evaluation measures. We use average F-measure scores as the
main evaluation metric which is also used by past studies to
evaluate the effectiveness of a prediction technique in previous
multi-label software behavior learning study [3], and other
software engineering studies [21], [22], [23]. Thus, we believe
there is little threat to construct validity.

V. RELATED WORK

A. Software Behavior Learning

1) Multi-label Software Behavior Learning: To our best
knowledge, there are limited studies on multi-label software
behavior learning [3]. Feng and Chen first propose the concept
of multi-label software behavior learning [3]. They study the
failures in software projects, and find that a failure could
be caused by multiple types of faults simultaneously which
corresponds to multiple labels. Thus, they propose multi-label
software behavior learning, and leverage Ml.KNN to solve
the problem. Our work extends their work: we propose a
new multi-label learning algorithm to solve the problem. We
consider the algorithm difference phenomenon, and propose
a composite algorithm MLL-GA which composes different
algorithms by leveraging genetic algorithm.

2) Supervised Software Behavior Learning: There have
been a number of studies on supervised software behavior
learning [24], [25], [26]. Bowring et al. propose an active
learning algorithm to classify program executions into one of
the two labels: “fail” or “passed” [24]. In their model, the
classifier is updated incrementally with a series of labeled data.
Haran et al. propose three techniques, i.e., random forests,
basic association trees, and adaptive sampling association

trees, to automatically classify program executions into the
same 2 labels as proposed by Bowring et al. [25]. Lo et
al. propose a pattern mining algorithm to classify program
execution traces into the same two labels [26]. Our study is
related to, and yet is different from the above studies: the
above studies work on single-label learning setting, where
one instance could only belong to one label; our study works
on multi-label learning settings, where one instance could be
assigned to multiple labels simultaneously.

3) Unsupervised Software Behavior Learning: There have
been a number of studies on unsupervised software behavior
learning [27], [28], [2]. Dickinson et al. cluster program execu-
tion traces to help developers find failures [27]. They use an
agglomerative hierarchical clustering algorithm and consider
various kinds of distance metrics and different numbers of
clusters. Podgurski et al. propose a hybrid algorithm to cluster
failures such that failures caused by the same/similar faults are
grouped together [28]. They first perform a feature selection
step to select important features that discriminates failures
from successful executions. These features are then used to
cluster failures into groups of similar failures. Liu et al. present
different metrics that measures the similarity (aka. proximity)
of two failures [2]. These metrics can then be used to cluster
failures into groups of similar failures. Our work is orthogonal
to the above studies, rather than clustering failures into groups,
we assign a set of labels, corresponding to fault types, to
each failure. In the above studies, when failures are clustered
to groups, each failure can only belong to one group (i.e.,
one label). In our work, each failure can be assigned multiple
labels.

B. Multi-label Learning

There have been a number of studies on multi-label learn-
ing [5]. Tsoumakas et al. [5], and Zhang and Zhou [6] provide
a survey of multi-label learning studies in data mining and
machine learning literature. Zhang et al. propose Ml.KNN
algorithm which predicts the labels for a new instance using its
k-nearest neighbors [4]. Tsoumakas et al. propose random k-
labelset (RAKEL) algorithm, which uses an ensemble of label
powerset (LP) classifiers [8]. Read et al. propose ensemble
of class chains (ECC), which builds an ensemble of sets of
binary relevance (BR) classifiers [7]. In this paper, we build
a composite model which combines the above algorithms to
achieve a better performance.

There have been a number of studies on multi-label learning
in software engineering [29], [30]. Xia et al. propose TagCom-
bine to recommend tags in software information sites [29].
Xia et al. propose DevRec to recommend bug resolvers [30].
Each of these two studies makes use of a multi-label learning
algorithm. Our work is orthogonal to the above studies since
we study a different problem - we focus on predicting the fault
types of a failure rather than recommending a set of tags or
resolvers. Also, different from the above studies, in this study
we use a genetic algorithm to combine 12 different multi-label
learning algorithms.



C. Search-based Software Engineering

There have been a number of studies on search-based
software engineering [31], [32], [33]. Harman et al. provide a
review and classification of search-based software engineering
algorithms [31]. Panichella et al. propose a search-based ge-
netic algorithm which tunes Latent Dirichlet Allocation (LDA)
parameters, and apply it in different software engineering
tasks [32]. Goues et al. propose GenProg to automatically
repair defects by using genetic algorithm [33]. In this work,
we also use a search-based technique to learn a near-optimal
composition of multi-label classifiers. Different from the above
mentioned studies, we address a different problem namely
multi-label software behavior learning.

VI. CONCLUSION AND FUTURE WORK

In this paper, we address multi-label software behavior
learning problem, which classifies a failure into one or more
faults types (i.e., labels). Due to the algorithm difference phe-
nomenon, we propose a composite algorithm named MLL-GA
which combines different multi-label learning algorithms by
leveraging genetic algorithm. We set the fitness function in GA
as average F-measure scores to adapt to different algorithms,
which makes MLL-GA achieve a better performance. In total,
we combine 12 multi-label learning algorithms. We perform
experiments on 6 programs in SIR, and MLL-GA could achieve
average F-measures of 0.6078 to 0.8665. We also compare
our algorithm with Ml.KNN used by Feng and Chen. The
experiment results show on average across the 6 datasets,
MLL-GA improves the average F-measures of Ml.KNN by
14.43%. Moreover, we compare MLL-GA with each of the 12
different multi-label learning algorithms, and the experiment
results show that on average across the 6 programs, MLL-GA
could on average improve 10.42% over these 12 algorithms.

In the future, we plan to evaluate MLL-GA with datasets
from more software projects, and develop a better algorithm
which could improve the prediction performance (i.e., average
F-measure) further. We also plan to investigate the effect of
varying amount of training data on the performance of our
approach.
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