
Active Semi-Supervised Approach for Checking App
Behavior Against Its Description

Siqi Ma1, Shaowei Wang1, David Lo1, Robert Huijie Deng1, and Cong Sun2
1School of Information System, Singapore Management University
2 School of Computer Science and Technology, Xidian University

Email:{siqi.ma.2013,shaoweiwang.2010,davidlo,robertdeng}@smu.edu.sg
suncong@xidian.edu.cn

Abstract—Mobile applications are popular in recent years.
They are often allowed to access and modify users’ sensitive
data. However, many mobile applications are malwares that
inappropriately use these sensitive data. To detect these malwares,
Gorla et al. propose CHABADA which compares app behaviors
against its descriptions. Data about known malwares are not
used in their work, which limits its effectiveness. In this work,
we extend the work by Gorla et al. by proposing an active and
semi-supervised approach for detecting malwares. Different from
CHABADA, our approach will make use of both known benign
and malicious apps to predict other malicious apps. Also, our
approach will select a good set of apps for experts to label as
malicious or benign to form a set of labeled training data – it
is an active approach. Furthermore, it will make use of both
labeled data (known malicious or benign apps) and unlabeled
data (unknown apps) – it is a semi-supervised approach. We
have evaluated our approach by using a set of 22,555 Android
apps. Our approach achieves a good performance in detecting
malicious apps with a precision of 99.82%, recall of 92.50%,
and F-measure of 96.02%. Our approach improves CHABADA
by 365.8%, 64.8%, 209.6% in terms of precision, recall, and F-
measure.

Keywords—App Mining, Malware Detection, Deviant Behavior
Detection, Text Mining, Classification

I. INTRODUCTION

With the rapid growth of smartphones, mobile applica-
tions (apps for short) of different categories, such as social,
financial, game, lifestyle, etc., are available for download from
different application markets, such as Android’s Google Play
Store and other third-party markets. Android applications often
provide the detailed information, including application names,
application descriptions, categories that they belong to, ratings
from users, etc. Among these information, users identify apps
that they want according to the application description, which
means that the application should behave according to what
the description of the application specifies. Gorla et al. [3]
propose an approach to detect outliers, named CHABADA,
which compares app behaviors against its descriptions. In
their work, data about known malwares are not made use of
to identify other malwares, which limits the effectiveness of
their approach. Malware data could be used to improve the
effectiveness of malware detection.

In this paper, we propose an approach that automatically
detects malicious apps by matching app description and app
behaviors using semi-supervised learning and active learning.
We utilize both malicious and benign apps’ descriptions and
API method usages to train a classifier to predict malicious

apps with Ensured Collaborative Active and Semi-Supervised
Labeling (ECASSL) [10]. ECASSL combines active learning
and semi-supervised learning. Our approach will select a good
set of apps for experts to label as malicious or benign to form
a set of labeled training data – it is an active approach. Also,
it will make use of both labeled data (known malicious or
benign apps) and unlabeled data (unknown apps) – it is a semi-
supervised approach.

We have evaluated our solution on 22,555 apps of different
categories, which contains 22,383 benign apps and 172 ma-
licious apps. We evaluate our approach in two ways. Firstly,
we perform an experiment by following stratified 10-fold cross
validation, and compare the results of our approach with that of
CHABADA [3]. The results show that our detection approach
could improve CHABADA by 365.8%, 64.8%, 209.6% in
terms of precision, recall and F-measure respectively. Sec-
ondly, to determine that our approach could work with limited
training data, we run an experiment with different amount of
training data. We vary the amount of training data from 10%
to 90% of the entire data with 10% interval. Our results show
that we could achieve a precision of 100%, recall of 91.23%,
and F-measure of 95.41%, when using 10% of the entire data
as training data.

The contributions of our work are as follows:
• We propose a solution that combines semi-supervised

learning and active learning, which aims to use small
set of labeled data to achieve a good classifier with
high accuracy. We leverage features extracted from
description and binary code to detect the suspicious
behaviors of an app.

• We have performed an empirical evaluation of our
approach. The results show that our approach could
achieve a higher F-measure than the previous ap-
proach, proposed by [3]. Moreover, our approach still
has a higher accuracy with only 10% of labeled data,
which demonstrate that our approach could detect
malicious apps effectively, even with a small set of
labeled data.

The structure of this paper is as follows. We give the
overall framework of our approach in Section II. In Section
III, we introduce the preprocessing strategies in detail. We
present the method to extract features from app descriptions
and installation files in Section IV. We illustrate our classifier
learning algorithm and label prediction strategy in Section
V. Our evaluation results are presented in Section VI. We

Description

Preprocessor

App

Preprocessor

Application

Description

Application

Installation

File (.apk)

Feature

Extractor

Classifier

Learner

Training Phase Deployment Phase

Application

Description

Application

Installation

File (.apk)

Description

Preprocessor

App

Preprocessor

Classifier

Model

Category

Label

Feature

Extractor

Label

Predictor

Fig. 1. Our proposed framework

discuss related work in Section VII. Section VIII closes with
conclusion and future work.

II. OVERALL FRAMEWORK

We present the overall framework of our approach in
Figure 1. Our framework contains two phases: training phase
and deployment phase. For the training phase, the framework
takes as inputs basic application information, which are apps
descriptions and apps installation files (i.e., “.apk” files) and
outputs a classifier model that is able to differentiate malicious
apps and benign apps. This learned classifier model will then
be passed to the deployment phase. In the deployment phase,
given an unknown application (i.e., it is unclear if it is a benign
or malicious app) with its basic information (i.e., application
description and application installation file), we preprocess the
basic information and apply the classifier model generated
from the training phase to detect whether this application is a
malicious app or a benign app automatically.
A. Training Phase

In the training phase, we have four components: Descrip-
tion Preprocessor, App Preprocessor, Feature Extractor, and
Model Learner. Description Preprocessor and App Preproces-
sor perform preprocessing on the description and installation
file of each given app. Then, we extract the features of every
app by using the Feature Extraction component (see Section
IV for details).

Finally, we train a classifier by taking the feature vectors
of apps and the app labels (i.e., malicious or benign) as inputs.
Here, we choose a machine learning algorithm to generate the
classifier for detecting malicious apps (see Section V-A for
details). The classifier would be used in the deployment phase.

B. Deployment Phase

In the deployment phase, we also have 4 components:
Description Preprocessor, App Preprocessor, Feature Extrac-
tor, and Label Prediction. We apply the same preprocessor
and feature extraction steps on the unknown app. Then, the
classifier model that is generated in the training phase is used
to process the feature vector of the app and predict whether this
app is malicious or benign (see Section V-B for details). This
last step is performed by the Label Prediction component.

III. DESCRIPTION & APP PREPROCESSOR

A. Description Preprocessor

We use standard techniques in information retrieval (IR)
and natural language processing (NLP) to preprocess the ap-
plication description. There are two steps: stop-word removal,
and stemming.

Stop-Word Removal: Stop words are words that appear
very often in textual documents (e.g., “am”, “on”, “it”, etc.).
Since these words appear too often, they are of little help in
differentiating one document from another. They are normally
removed from documents before they are processed by a
text analysis tool. We use the stop-word list provided by
RANKS.NL1 and remove stop words specified in the list
from app descriptions. We also remove numbers, URLs, email
addresses, and punctuation marks.

Stemming: We apply Porter Stemmer2 to do stemming
on all non-stop words that appear in the app descriptions.
Stemming is to convert a word to its root form. For example,
words “stemmer”, “stemming”, “stemmed” are all stemmed to
the root “stem”. Note that a root word is not necessarily a
valid English word.

B. App Preprocessor

We use the App Preprocessor component to preprocess the
application installation files (i.e., “.apk” files). In our paper, app
behaviors are described by its API method usage, which can
be obtained by decompiling the “.apk” files. We use apktool3
to decompile every “.apk” file and get smali files for every
app. Each smali file defines the API methods that are used by
the application.

IV. FEATURE EXTRACTOR

In order to learn a classifier, we extract two kinds of fea-
tures for every application: topic features from the application
description, and API features from the application bytecode
(i.e, .apk file). The workflow of our feature extraction com-
ponent is shown in Figure 2. The feature extractor component
contains three sub-components: Description Feature Extractor,
App Feature Extractor, and Feature Vector Generator.

A. Description Feature Extractor

An application description, typically contains one or more
topics or key concepts. For example an app can be related
to speed game, or music, etc. To extract topics (i.e., abstrac-
tions of words in the descriptions), our Description Feature
Extractor inputs the preprocessed app description to a topic
modeling technique which will automatically infer a set of
topics that appear in the app description. We use a well-known
topic modeling algorithm namely Latent Dirichlet Allocation
(LDA) [2].

In LDA, a topic contains a lot of words that appear in the
documents, and each word could be regarded as an attribute of
this topic. Every document is relevant to a number of topics

1http://www.ranks.nl/stopwords
2http://tartarus.org/martin/PorterStemmer/java.txt
3http://code.google.com/p/android-apktool/

LDA-GA

Method Filter

Topics Text

.smali Sensitive API

Usage

Feature Vector

Generator

Feature ExtractorApplication

Descriptions

Application

Installation Files

Description Feature Extractor

App Feature Extractor

Feature

Vectors

Fig. 2. Architecture and workflow of our feature extractor component

with a corresponding probability. Table I shows some topic
samples with their attribute words which are extracted from
the descriptions of Android applications. For topic 1, a set of
words, such as “car”, “speed” and “race” is grouped together.
Although LDA does not give a name to this topic, we can infer
that this topic is related to speed game. An application will be
assigned to topic 1 if the relevant attribute words of topic 1
occur many times in its description.

LDA accepts a number of parameters, e.g., the number of
topics (κ), α, β, the number of iterations, etc. It is not easy
to correctly determine optimal values of these parameters. In
[3], they freely set the number of topics as 30, however, it is
not clear if 30 is the best value for this parameter. An optimal
LDA configuration is essential to train a good classifier. In
this work, we make use of LDA-GA [14] to obtain a near-
optimal LDA configuration. The LDA-GA (Latent Dirichlet
Allocation-Genetic Algorithm) algorithm combines LDA algo-
rithm with genetic algorithm (GA) [5] to imitate the process
of “survival of the fittest” to generate near optimal solutions.
LDA-GA makes use of the concept of silhoutte coefficient to
assess the fitness of a set of parameters. The value of silhouette
coefficient is always between -1 and 1. When the value of
the silhouette coefficient of a word is close to 1, the word is
assigned to the appropriate topic. Conversely, if the value of
the silhouette coefficient is close to -1, the word is in a wrong
topic.

TABLE I. SOME SAMPLE TOPICS WITH THEIR ATTRIBUTE WORDS

Topic Id Short Description Attribute Words
1 Speed Game car, speed, race, fast, super, control, ...
2 Music Media file, download, audio, music, media, ...
3 Shopping shop, place, famili, order, visit, pick, ...
4 Web keyword, histori, websit, brows, ad, ...
5 Social call, messag, contact, email, voic, text, ...

After running the LDA-GA algorithm, we obtain a set of
near-optimal values for the LDA configuration. Note that a
LDA computes the probability of a document to belong to a
topic. Following [3], we define that an app description belongs
to a topic if its probability for that topic is at least 5%. Since
an app can be related to many topics, we do not specify a
maximum number of topics that can be assigned to an app
description. Table II shows an example of topics we obtained
from descriptions of different apps.

As an example, Fancy Widgets Unlocker, shown in Table
II. It belongs to the following topics :
• Topic 61 with the probability of 11.4%.

• Topic 62 with the probability of 9.74%.

• Topic 27 with the probability of 7.22%.

According to the probabilities, Topic 61 is the most re-
lated topic, which contains words such as “screen”, “widget”,
“home”, “add”, etc. From the words, we can infer that the
topic is related to the concept “screen widget”.

TABLE II. EXAMPLES OF TOPICS AND THEIR REPRESENTATIVE
WORDS WE OBTAINED FROM APP DESCRIPTIONS

Package Name Category Topic Id (Topic Attributes)

Coin Pirates Cards
Topic 15 (want, like, need, try, ...)
Topic 30 (level, game, challeng, score, ...)
Topic 50 (game, fun, plai, challeng, ...)

Fancy Widgets Personalization
Topic 27 (try, free, power, featur, ...)
Topic 61 (screen, widget, home, add, ...)

Unlocker Topic 62 (instal, devic, displai, android, ...)

B. App Features Extraction

After the preprocessing phase, each .apk file is converted
into a set of API methods that it invokes. Since not all API
methods are important ones, we only focus on a number of
sensitive API methods, and filter the API methods by using
app feature extractor.

The sensitive API methods that we use in this study are
based on those that are identified in [3]. They decide an API
method to be sensitive or not based on the Android permission
setting that is required to run the API method. They collect
304 sensitive API methods.

In this work, we regard sensitive API methods with
the same name but different parameters as the same API
method. We do this step since API methods of the same
name but different parameters are typically very similar to
one another. Considering their potential high similarities,
rather than treating them as separate methods, it is better
to treat them as the same method. For example, method an-
droid.accounts.AccountManager.getAuthToken is used to get an
authentication token of a specific type for a particular account,
and it has three variants that take different parameters. These
three methods perform the same activity, and thus we use
android.accounts.AccountManager.getAuthToken to represent
all of the three methods. After grouping sensitive methods of
the same name, we have a total of 270 sensitive API methods.

C. Feature Vector Generator

Give a app’s topic features (i.e., topics in the description
of the app) and API features (i.e., sensitive API methods used
by of the app), the Feature Vector Generator sub-component
produces a vector that combines these two types of features.
Each element in the vector is a pair that contains a topic
(that appears in the app’s topic features) and an API method
(that appears in the app’s API features). We extract these
features since some topic-API combinations are common and
characterize benign apps, while other topic-API combinations
are rare to indicate suspicious or even malicious applications.

Example: Suppose an app’s API features are API1
and API4, and its topic features are Topic1 and
Topic3. We obtain these API and topic features, Feature
Vector Generator will generate the following feature
vector: 〈(Topic1, API1), (Topic1, API4), (Topic3, API1),
(Topic3, API4)〉.

V. CLASSIFIER LEARNER & LABEL PREDICTION

This section describes the Classifier Learner and Label
Predictor components. Classifier Learner is run in the training
phase, and Label Predictor is run in the deployment phase.

A. Classifier Learner

Classifier learner is used for training a classifier model
to differentiate malicious apps from benign apps. It takes
as inputs a set of feature vectors and labels (i.e., benign
or malicious) of apps in a training dataset. Each feature
vector contains pairs of API method used by an app and
topic of the app’s description. Thus, the classifier learner
could learn to differentiate topic-API pairs that correspond
to benign applications and those that correspond to malicious
applications.

SVM

Algorithm

Margin

Sampling

Pseudo Label

Generation

SVM

Algorithm

Dataset

Pseudo-

Labeled

Data

Labeled

Data

Unlabeled

Data

Update

Dataset

Fig. 3. Classifier learning process

In our paper, we use support vector machines (SVM),
which has been shown to perform very well for text classifica-
tion [17]. Furthermore, instead of using supervised learning
that requires all training data to be labeled, we choose to
use the Ensured Collaborative Active and Semi-Supervised La-
beling (ECASSL) algorithm, which combines semi-supervised
learning (SSL) and active learning (AL) and is built on top
of SVM [10].

The classifier learning process that we follow in this work
is illustrated in Figure 3. The steps in the process is described
as follows:

1. Build an initial set of pseudo labeled apps. We make use
of the tri-training algorithm [19] to generate an initial set of
pseudo labeled apps to enrich the input labeled apps which
are small in number. In tri-training algorithm, three classifiers
(i.e., decision trees4) are built, and a pseudo label is assigned
to an app only if any two of the classifiers agree on the label
of the app.

2. Run SVM algorithm to build an initial model. Taking the
initial set of pseudo labeled data and labeled data, we employ
SVM to build a classifier, SVM 1.

3. Perform margin sampling to select some apps to label.
We perform an iteration of active learning. In an iteration,
we employ the margin sampling algorithm [15] to select the
top Nbudget

t unlabeled apps which are the most close to the
hyperplane of SVM 1, where Nbudget is the labeling budget
(i.e., maximum number of apps to label) and t is the number
of iterations.

4We choose decision tree algorithm, since the performance of the decision
tree is better than other classifiers.

4. Manually label the selected apps. Apps selected in step
3 will be manually labeled. After they are labeled, the sets of
unlabeled and labeled apps are updated.

5. Run SVM algorithm to build a refined model. Taking the
updated set of labeled apps, we use SVM to learn a second
classifier SVM 2.

6. Generate additional pseudo labels. For every unlabeled
app, we generate new pseudo labels Label 1 and Label 2
using SVM 1 and SVM 2, respectively. Then, we take all apps
which have the same Label 1 and Label 2 as new pseudo-
labeled apps.

We repeat the above-mentioned steps t times by using the
new set of pseudo labeled apps. The process will stop when the
labeling budget Nbudget has been reached, and output SVM 1.

The intuition behind the classifier is that benign apps are
likely to have only commonly used topic-method pairings,
while malicious apps are likely to have one or more rare
topic-method pairings. To illustrate this intuition, consider the
following examples.

Consider two applications CP5 and FWU6. CP is a game
and make use of sensitive API methods related to network con-
nection. Apps with the same topic (i.e., game apps) normally
use network connection. Thus, it can be inferred that CP is a
benign app. On the other hand, FWU is an app that provides a
clock and weather widget, and it calls API methods that obtain
device and subscriber ids, and listens to, the telephony service
on the device. It is not normal for a clock and weather app
to perform these actions. From these uncommon behaviors,
captured by uncommon topic-API pairings, it can be inferred
that FWU is a malicious app.

B. Label Prediction

Given a new unlabeled app, the Label Predictor outputs a
label (i.e., malicious or benign) based on the classifier model
generated by Classifier Learner. The unlabeled app is first pro-
cessed by the Feature Extractor component which generates a
feature vector for this app. Then, the Label Predictor inputs
this feature vector into the classifier model and assigns a label
with the highest likelihood to the app.

VI. EVALUATION

In this section, we present the experimental setting, re-
search questions and their results, and some threats to validity.

A. Datasets & Experiment Settings

We use the dataset provided by Gorla et al. [3], which
includes the application description, and the application API
method usage. In their dataset, there is 22,555 apps with 172
malicious apps and 22,383 benign apps.

Our approach is mainly implemented in Java. We use
JGibbLDA [18] and JGAP [1] to implement the LDA-GA
algorithm and obtain a set of semi optimal configuration7 to
run LDA. By default, we set the value of t, which controls the
number of active learning iterations, to 15.

5The name of the app has been anonymized.
6The name of the app has been anonymized.
7α = 0.6, β = 0.3, and the number of topic κ = 95

B. Metrics

To measure the effectiveness of a malware detection tech-
nique, we use four standard metrics: precision, recall and F-
measure. They are defined based on the true positive (TP8),
true negative (TN9), false positive (FP10), and false negative
(FN11).

In a classification task [13], precision for a class is defined
as the number of true positives divided by the total number
of data points (in our case: apps) labeled as positive. Recall
is defined as the number of true positives divided by the total
number of data points (in our case: apps) that are actually
positive (in our case: malicious). F-measure represents the
harmonic mean of precision and recall.

Higher values of precision, recall, and F-measure indicate
higher detection quality. F-measure is typically used as a
summary measure to combine precision and recall.

C. Research Questions

To evaluate our approach, we conduct experiments to
answer the following main research questions:

RQ1 How effective is our approach for malware detection?
Can our approach outperforms the state-of-the-art approach?

To answer this research question, we compare the effec-
tiveness of our approach and that of CHABADA [3], in terms
of precision, recall and F-measure. We evaluate our approach
by performing a stratified 10-fold cross validation on the same
dataset. We split the entire set of 22,555 applications into 10
subsets. We run the experiment 10 times, each time we select
a different subset for testing, and the other 9 subsets as the
training data. We report the average performance over the ten
experiments.

RQ2 How does the performance of our approach vary for
various amount of training data?

In 10-fold cross validation, we use 90% of the data for
training and 10% for testing. This setting assumes that a
large amount (i.e., 90%) of labeled training data is available.
Our approach employs active learning and semi-supervised
learning. The aim of using these techniques is to reduce the
amount of training data labeled by experts. In this research
question, we would like to investigate whether our approach
can work well with a reduced amount of training data. To
answer this research questions, we run multiple experiments
by varying the amount of training data from 10% to 90% of
the entire data, with 10% interval. We perform our experiment
9 times with different amount of training data.

RQ3 How does the performance of our approach vary for
different setting of t?

Our approach accepts one parameter t. t is a parameter to
control the number of active learning iterations. In this research
question, we would like to investigate the effect of varying
the value of t. To answer this research question, we vary the

8TP: an app that is a malicious app and is classified as a malicious app.
9TN: an app that is a benign app and is classified as a benign app.
10FP: an app that is a benign app and is classified as a malicious app.
11FN: an app that is a malicious app and is classified as a benign app

TABLE III. COMPARISON BETWEEN OUR APPROACH AND CHABADA
Precision Recall F-measure

Our approach 99.82% 92.50% 96.02%
CHABADA 21.43% 56.10% 31.01%

TABLE IV. RESULT USING DIFFERENT AMOUNT OF LABELED DATA
USED FOR TRAINING. P = PRECISION, R = RECALL, F = F-MEASURE.

P R F P R F
10% 100% 91.23% 95.41% 60% 99.49% 93.62% 96.46%
20% 90.33% 92.23% 91.76% 70% 99.98% 93.31% 96.52%
30% 100% 92.48% 96.09% 80% 100% 92.87% 96.30%
40% 99.89% 92.97% 96.31% 90% 100% 93.42% 96.60%
50% 100% 92.81% 96.27%

value of t from 1 to 15 and evaluate the effectiveness of our
approach, in terms of precision, recall, and F-measure, for each
of the t value.

D. Experiment Results

In the following paragraphs, we describe our experiment
results which answer the research questions presented in the
previous sub-section.

1) RQ1: Effectiveness of our approach in detecting mali-
cious apps: The results are shown in Table III. The results
demonstrate that our approach improves CHABADA on all
metrics. The precision, recall, and F-measure values of our
approach are 99.82%, 92.50%, 96.02%, respectively. Com-
pared with CHABADA, who gets the precision, recall, and F-
measure scores of 21.43%, 56.10%, and 31.01% respectively,
our approach improves CHABADA by 365.8%, 64.8%, and
209.6%, respectively.

2) RQ2: Training data sensitivity analysis: The results are
shown in Table IV. We notice that even with 10% of the entire
dataset as the training data, our approach could detect malware
effectively, with precision of 100%, recall of 91.23%, and F-
measure of 95.41%.

3) RQ3: Effect of the varying t: The results are shown in
Figure 4. From the figure, we can note that the effectiveness
of our approach is substantially poorer when we use a small
number of iterations. The performance is better when the
number of iterations are set to 10 or above. Increasing the
number of iterations from 10 to a larger number does not
improve the effectiveness of our approach by much.

0 5 1 0 1 5

0 . 7

0 . 8

0 . 9

1 . 0

N u m b e r o f I t e r a t i o n

 F - m e a s u r e
 P r e c i s i o n
 R e c a l l

Fig. 4. Impact of varying the value of t on our approach in terms of precision,
recall and F-measure

E. Threats to Validity

Threats to internal validity relates to errors in our experi-
ments and datasets. We make use of the dataset made available
by Gorla et al. and thus share the same threats to internal
validity as them. We have checked our code for bugs and
errors, however, there could be bugs and errors that we miss.
Threats to external validity relates to the generalizability of our
findings. We have only investigated the effectiveness of our
approach on a dataset containing 22,000+ apps. These apps
might not represent all possible apps. In the future, we plan to
reduce the threats to external validity further by investigating
additional apps. Threats to construct validity relates to the
suitability of the evaluation metrics that we use. We make use
of precision, recall, and F-measure. These metrics are standard
data mining metrics [4] and they have been used in various
software engineering studies, e.g., [6], [9]. Thus, there would
be little threat to construct validity.

VII. RELATED WORK

Only few recent techniques leverage app description infor-
mation to detect malwares. WHYPER [12] detects malware by
matching app description and its required permissions. Gorla
et al. extend WHYPER, by proposing CHABADA [3], which
identifies outliers by matching app description and its API
method usage. In this work, we extend CHABADA. Similar
to CHABADA, we analyze app description and API usages.
However, rather than only using information from benign apps
to create a model, our approach also uses information of
malicious apps. To limit the amount of training data needed,
we use semi-supervised learning and active learning to build
a classifier, which can achieve high accuracy even with few
labeled data.

Many software engineering research works make use of
classification algorithms to automate various software engi-
neering tasks [7], [16], [8], [11]. Jalbert and Weimer pro-
pose an approach that extracts features from bug reports
and automatically predict if a bug report is a duplicate of a
previously submitted bug report [7]. Tian et al. predict fine-
grained severity labels of bug reports from open source bug
tracking systems [16]. Kochhar et al. propose an approach that
can predict fine-grained categories of issue reports (e.g., bug,
request for improvement, documentation, refactoring, etc.) [8].
Lo et al. extracts iterative patterns as features to be input to a
classification algorithm to predict if an execution trace is faulty
or not [11]. Similar to the above mentioned approaches, we
also employ a classification algorithm. However, we address
a different problem: we use the classification algorithm to
predict if an app is a malware or not. We need to extract a
different set of features than those extracted in the above men-
tioned approaches. Also, while most of the above mentioned
approaches are using fully supervised classification algorithms,
we are using active learning and semi-supervised learning to
make our approach performs well even when there is a limited
number of training data.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes an automated approach to detect
malicious apps. To realize this, our approach processes both
app description and the .apk file of an app. Our approach

extracts topics from app description and used API methods
of an app. It then constructs a feature vector to characterize
an app where each element of the vector is a topic-API pairs.
Feature vectors of apps are then used to train a classifier model.
We make use of the ECASSL classification algorithm, which
combines both semi-supervised learning and active learning,
and is built on top of SVM. We have evaluated our approach on
a set of data with 22,555 benign apps and 172 malicious apps.
We compare the results of our approach with CHABADA and
show that our approach could improve CHABADA by 209.6%
in terms of F-measure. Furthermore, we have performed a
sensitivity analysis by varying the amount of training data and
show that our approach can achieve an F-measure of 95.41%
even when only 10% of the entire data are selected as training
data.

In the future, we plan to enhance our approach with
a dynamic analysis component to improve its effectiveness
further. We also plan to reduce the threats to external validity
by investigating an even larger number of apps.

REFERENCES

[1] Jgap homepage. [Online]. Available: http://jgap.sourceforge.net/
[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

JMLR, vol. 3, pp. 993–1022, 2003.
[3] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior

against app descriptions.” in ICSE, 2014, pp. 1025–1035.
[4] J. Han and M. Kamber, Data Mining: Concepts and Techniques. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000.
[5] J. H. Holland, Adaptation in natural and artificial systems: An intro-

ductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[6] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “Autoodc:
Automated generation of orthogonal defect classifications,” in ASE.
IEEE, 2011, pp. 412–415.

[7] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in DSN. IEEE, 2008, pp. 52–61.

[8] P. S. Kochhar, F. Thung, and D. Lo, “Automatic fine-grained issue report
reclassification,” in ICECCS, 2014.

[9] T.-D. B. Le, F. Thung, and D. Lo, “Predicting effectiveness of ir-based
bug localization techniques,” in ISSRE, 2014.

[10] M. Li, R. Wang, and K. Tang, “Combining semi-supervised and active
learning for hyperspectral image classification,” in CIDM, 2013.

[11] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classification of
software behaviors for failure detection: a discriminative pattern mining
approach,” in KDD, 2009.

[12] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:
Towards automating risk assessment of mobile applications.” in USENIX
Security, vol. 13, 2013.

[13] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar, “In-
ferring method specifications from natural language api descriptions,”
in ICSE. IEEE Press, 2012, pp. 815–825.

[14] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in ICSE.
IEEE Press, 2013, pp. 522–531.

[15] B. Settles, “Active learning literature survey,” University of Wisconsin,
Madison, vol. 52, pp. 55–66, 2010.

[16] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction,” in
WCRE, 2012.

[17] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” JMLR, vol. 2, pp. 45–66, 2002.

[18] C.-T. H. Xuan-Hieu Phan. (2008) Jgibblda homepage. [Online].
Available: http://jgibblda.sourceforge.net/

[19] Z.-H. Zhou and M. Li, “Tri-training: Exploiting unlabeled data using
three classifiers,” TKDE, vol. 17, no. 11, pp. 1529–1541, 2005.

