
An Empirical Study of Classifier Combination for
Cross-Project Defect Prediction

Yun Zhang∗, David Lo†, Xin Xia∗‡ , Jianling Sun∗
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China
†School of Information Systems, Singapore Management University, Singapore

yunzhang28@zju.edu.cn, davidlo@smu.edu.sg, {xxia, sunjl}@zju.edu.cn

Abstract—To help developers better allocate testing and de-
bugging efforts, many software defect prediction techniques have
been proposed in the literature. These techniques can be used
to predict classes that are more likely to be buggy based on
past history of buggy classes. These techniques work well as long
as a sufficient amount of data is available to train a prediction
model. However, there is rarely enough training data for new
software projects. To deal with this problem, cross-project defect
prediction, which transfers a prediction model trained using data
from one project to another, has been proposed and is regarded
as a new challenge for defect prediction. So far, only a few
cross-project defect prediction techniques have been proposed.
To advance the state-of-the-art, in this work, we investigate 7
composite algorithms, which integrate multiple machine learning
classifiers, to improve cross-project defect prediction. To evaluate
the performance of the composite algorithms, we perform exper-
iments on 10 open source software systems from the PROMISE
repository which contain a total of 5,305 instances labeled as
defective or clean. We compare the composite algorithms with
CODEPLogistic, which is the latest cross-project defect prediction
algorithm proposed by Panichella et al. [1], in terms of two
standard evaluation metrics: cost effectiveness and F-measure.
Our experiment results show that several algorithms outperform
CODEPLogistic: Max performs the best in terms of F-measure
and its average F-measure outperforms that of CODEPLogistic

by 36.88%. BaggingJ48 performs the best in terms of cost
effectiveness and its average cost effectiveness outperforms that
of CODEPLogistic by 15.34%.

Keywords—Defect Prediction, Cross-Project, Classifier Combi-
nation

I. INTRODUCTION

To build high quality software, developers need to invest
much testing and debugging efforts. However, developers often
have limited resources and need to prioritize such efforts.
To help developers prioritize testing and debugging efforts,
software defect prediction techniques have been proposed in
the literature. A software defect predicting technique will
identify more likely defect-prone software components by
constructing a predictive classification model constructed from
features such as lines of code, code complexity and number
of symbols [2], [3], [4], [5]. Such predictions can be used
to optimize the allocation of testing and debugging resources
– more resources should be allocated to more defect prone
modules.

Defect prediction techniques work well when a sufficient
amount of training data is available [6]. Unfortunately, training

‡Corresponding author.

data is often limited for new projects with little or no historical
bug data. For such cases, engineers need to use data from other
projects and companies [7]. Cross-project defect prediction is
a strategy that trains a generalized prediction model on data
belonging to other projects, and uses the model to predict
the defect proneness of components belonging to the target
project [8], [9].

Recently, Panichella et al. proposed a composite approach,
referred to as CODEP (COmbined DEfect Predictor), which
combines different and complementary classifiers learned by
different machine learning algorithms, for cross-project defect
prediction [1]. Their experiment results show that CODE-
P outperforms many existing cross-project defect prediction
techniques. However, in the machine learning literature, many
composite techniques have been proposed to combine multiple
classification models. In this work, we want to investigate the
applicability of existing composite techniques proposed in the
machine learning literature for cross-project defect prediction
and whether these composite techniques can outperform the
state-of-the-art work for cross-project defect prediction namely
CODEP.

In this paper, We use two well-known metrics to evaluate
the performance of a predictive algorithm: cost effective-
ness [10], [11], [12], [13] and F-measure [14], [15], [16], [12].
We compare the composite algorithms against the best variant
of CODEP which uses logistic regression as a meta-learner
– referred to as CODEPLogistic. We evaluate the algorithms
on defect datasets from 10 projects (i.e., ant, camel, ivy, jedit,
log4j, lucene, poi, prop, tomcat, xalan) which are part of the
PROMISE data repository1. The datasets contain a total of
5,305 instances along with their labels (i.e., defective or not).
The experiment results show that several of the composite
algorithms outperform CODEPLogistic in terms of F-measure
and cost effectiveness. Among them, Max performs the best
in terms of F-measure, and achieves an average score of
0.412 which improves that of CODEPLogistic by 36.88%;
BaggingJ48 performs the best in terms of cost effectiveness,
and achieves an average NofB20 score of 40.6 which improves
that of CODEPLogistic by 15.34%.

In summary, the main contributions of this paper are:

1) We investigate the effectiveness of 7 different com-
posite algorithms proposed in the machine learning
literature for cross-project defect prediction in terms
of cost effectiveness and F-measure.

1http://promisedata.googlecode.com/

2) We experiment on 10 defect datasets to demonstrate
the effectiveness of the algorithms, and highlight
promising algorithms with better performance than
CODEP.

The remainder of the paper is organized as follows. We
describe several classical classification algorithms and CODEP
in Section II. We then present a number of composite algo-
rithms in Section III. We present our experiments and results in
Section IV. We discuss related work in Section V. We conclude
and mention future work in Section VI.

II. BACKGROUND

A. Classical Classification Techniques

Several machine learning techniques have been used to pre-
dict defect-prone source code classes/files/components, such as
logistic regression [6], Radial Basis Function Network (RBF
Network) [17], Bayesian network [18]. In this paper, we in-
vestigate six classification algorithms, namely Logistic Regres-
sion, Bayes Network, Radial Basis Function Network, Multi-
layer Perceptron, Alternating Decision Trees, and Decision
Table. We will use these classification algorithms to construct
various underlying classifiers for our composite classification
algorithms.

1) Logistic Regression: Logistic regression [19] models
the relationship between features and labels as a parametric
distribution P (y|x), where y refers to the label of a data point,
and x refers to the data point represented as a set of features.
The parameters of this distribution is directly estimated from
the training data. Let x = {xf1 , xf2 , ...xfm} denotes the vector
representation of features of a data point x, and xfi denotes the
value of the i-th feature of x, and W = {w0, w1, w2, ...wm}
denotes the weight vector associated to the features in x, w0 is
a bias parameter, and wi, i ∈ {1, 2, ...m} is the weight of the i-
th feature of x (i.e., xfi). Consider binary classification, where
y takes two values, 0 or 1 (in our case, 0 represents clean, 1
represents defective); We derive p(y = 1|x) and p(y = 0|x)
as:

p(y = 1|x) = 1

1 + exp(w0 +
∑m

i=1 wi × xfi)
(1)

p(y = 0|x) =
exp(w0 +

∑m
i=1 wi × xfi)

1 + exp(w0 +
∑m

i=1 wi × xfi)
(2)

To evaluate the label of a new instance xnew, we can compute
ratio(xnew) = p(y=1|xnew)

p(y=0|xnew) ; If ratio(xnew) > 1, we predict
the label of xnew as 1, else the predicted label is 0. The main
learning task for logistic regression is to estimate the parameter
W . There are various methods to do this, such as gradient
ascent.

2) Bayesian Network: Bayesian Network (BN) is a graph-
ical model of probabilistic relationships representing the input
feature space and label space [20]. It is a directed acyclic
graph (DAG) and each node in a BN represents a feature or a
label (in our case: defective or clean). A directed edge between
two nodes denotes that there is a causal relationship between
them. During the model training phase, BN would construct a
Bayesian network from the training set. And then during the
prediction phase, this Bayesian network is used to predict the
label of a new unlabeled instance.

3) Radial Basis Function Network: The Radial Basis
Function (RBF) Network is an artificial neural network which
uses radial basis function as activation functions [21]. It typ-
ically contains three different layers: an input layer, a hidden
layer with a non-linear RBF activation function, and a linear
output layer. The output of the network is a linear combination
of radial basis functions of the inputs and neuron parameters.

4) Multi-Layer Perceptron: Multi-Layer Perceptron
(MLP) is another type of artificial neural network model
that is trained using a supervised learning technique called
back-propagation algorithm, which maps sets of input data
onto a set of appropriate outputs. A MLP consists of multiple
layers of nodes in a directed graph: one input layer, one
output layer, and one or more hidden layers [1]. The output of
a layer is used as the input of nodes in the subsequent layer.
MLP can distinguish data that are not linearly separable,
which is better than the standard linear perceptron.

5) Alternating Decision Trees: An Alternating Decision
Tree (ADTree) consists of a tree structure with decision nodes
and prediction nodes in an alternating order. Decision nodes
specify conditions (e.g., feature1 < 0.5, etc.) and each of
them is connected to two prediction nodes – one corresponds
to the case when the condition is evaluated to true, and another
corresponds to the case when the condition is evaluated to
false. A prediction node contains a single decimal value. An
instance (in our case: a class) is classified by an ADTree by
finding paths in the tree from the root node to leaf nodes
where all the decision nodes in between the root and the leaf
nodes are evaluated to true based on the feature values of the
instance. The values of the in-between prediction nodes along
the corresponding paths are then summed up. This sum is used
to decide the class label (in our case: defective or clean) of
an instance – i.e., if the sum is positive then an instance is
defective, else it is clean.

6) Decision Table: A Decision Table (DT) can be regarded
as an extension of a one-valued decision tree [19]. It is a
rectangular table where the columns are features and rows are
sets of decision rules. Each decision rule consists of two parts:
(i) a pool of conditions which are linked through “and” and
“or” logical operators; and (ii) an outcome which reflects the
classification of an instance according to the corresponding
rule into one of the class labels (in our case: defective or clean).
In order to eliminate equivalent rules and reduce the likelihood
of over-fitting, DT try to find a good subset of features by
running a feature reduction algorithm.

B. COmbined DEfect Predictor (CODEP)

CODEP is a two level composite algorithm which predicts
the label of an instance (i.e., predicts if a class is defective
or clean) [1]. In the first level, CODEP builds 6 underlying
classifiers on a training set. These six classifiers are built
by running each of the 6 classical classification algorithms
described in Section II-A. Then, the confidence scores output
by each classifier on each instances in the training set are
collected to create a new dataset. In the second level, another
classifier is built on the new dataset, which is referred to as
the meta classifier. In this paper, we use logistic regression
as the meta classifier since Panichella et al. have shown that
it performs the best. To predict the label of an instance,

CODEP first outputs the confidence scores of the 6 underlying
classifiers, then these confidence scores are used as input to
the meta classifier to predict the label of the instance.

III. COMPOSITE ALGORITHMS

Panichella et al. have shown that the composite algo-
rithm CODEP that they proposed outperforms many other
approaches [1]. Based on their work, we investigate several
other composite algorithms proposed in the machine learning
literature aiming at finding one or more which perform better
than CODEP.

A. Overall Framework

Figure 1 presents the overall framework that describes
how we use the composite algorithms for cross-project defect
prediction. The framework contains of two phases: model
building phase and prediction phase. In the model building
phase, our goal is to build a composite classifier by leveraging
several underlying classifiers built using one or more of the
classical classification algorithms presented in Section II. In
the prediction phase, this composite classifier would be used
to predict if a new instance (i.e., class/file/component) would
be defect-prone or not.

Our framework first extracts features from training in-
stances (Step 1). Then, our framework applies a feature selec-
tion technique to select a subset of relevant features to further
improve the prediction performance (Step 2). With these
selected features, we next construct a composite predicting
model by combining several underlying classifiers (Step 3). We
investigate various composite classification techniques which
are used to create composite classification models.

After the composite classifier has been built, in the pre-
diction phase, it is used to predict whether a new instance
would be defective or not. For each of such new instances,
our framework first preprocesses and extracts features from it
(Step 5), and represents it by using the features selected in
the model building phase (Step 6). Next, these features are
input into the composite classifier in the classifier application
step (Step 7). Finally, the classifier would output the prediction
result: defective or not (Step 8).

B. Average Voting

Average voting (Ave) is a voting method which combines
confidence scores from different underlying classifiers [19].
We use the 6 classical classification algorithms described in
Section II-A to build the underlying classifiers. Each underly-
ing classifier outputs a confidence score for an instance which
ranges from 0 to 1. In total, we have 6 confidence scores which
corresponds to the 6 underlying classifiers. Next, Ave averages
the 6 confidence scores, and outputs the final confidence score
(Ave Score) which also ranges from 0 to 1. To decide whether
an instance is of a particular class label (in our case: defective),
we compare the Ave score with 0.5. If it is larger than 0.5,
then we predict it as defective, else it is clean.

C. Maximum Voting

Maximum voting (Max) is also a voting method which
outputs the maximum confidence scores of different underlying

Fig. 1. Our Overall Cross-Project Defect Prediction Framework

classifiers [19]. We use the same 6 classical classification
algorithms to build the underlying classifiers as Ave. Different
from average voting, Max outputs the confidence score of an
instance by selecting the maximum confidence score of the 6
underlying classifiers.

D. Bagging

Bootstrap Aggregating (Bagging) [22] is a robust ensemble
algorithm which can be combined with other supervised learn-
ing algorithms to improve the overall performance and avoid
overfitting. Given a dataset D of size n, Bagging first performs
bootstrapping sampling from D (i.e., random sampling with
replacement) to generate m new datasets D′i, i ∈ {1, 2, ...m}.
The size of D′i is denoted as n′i, and n′i < n. Next, Bagging
trains a weak classifier (aka. an underlying classifier) from
each dataset D′i. For the prediction phase, all the output of m
classifiers are combined to a single prediction using majority
voting. In this paper, we use decision tree (J48) and naive
Bayes as the underlying classifier of Bagging – denoted as
BaggingJ48 and BaggingNaive.

E. Boosting

Boosting [22] is used to generate strong classifiers out
of weak classifiers. It can be combined with many other
supervised learning algorithms to improve the overall accuracy
and performance. Boosting generates and calls a new weak
classifier in a series of rounds. For each round t, it updates
the weights of instances in a dataset, which indicates different
importance of the instances. Generally speaking, instances
which have been misclassified in the previous round would
be assigned a higher weight, while instances which have been
correctly classified would be assigned a lower weight. This
re-weighting strategy makes the weak classifier in the current
round focuses more on the misclassified instances. In this
paper, similar to Bagging, we use decision tree (J48) and naive
Bayes as the underlying classifier of Boosting – denoted as
BoostingJ48 and BoostingNaive.

TABLE I. SOFTWARE PROJECTS USED IN OUR STUDY

Project Release Instances Defect-Prone Instances (%)

Ant 1.7 745 166 22%
Camel 1.6 965 188 19%

Ivy 2 352 40 11%
Jedit 4 306 75 25%

Log4j 1 135 34 25%
Lucene 2.2 247 144 58%

Poi 2 314 37 12%
Prop 6 660 66 10%

Tomcat 6 858 77 9%
Xalan 2.4 723 110 15%

F. Random Forest

Random Forest [23] combines an ensemble of decision
trees. RF takes advantage of both bagging and random feature
selection for the tree building; each of the decision trees is
built using a bootstrap sample of the data, and RF selects a
subset of features randomly to split at each node when growing
a tree instead of using all the features. Multiple decision trees
are learned and the output of the decision trees are combined
to a single prediction using majority voting.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of the 7 com-
posite algorithms and CODEP. The experimental environment
is an Intel(R) Core(TM) T6570 2.10 GHz CPU, 4GB RAM
desktop running Windows 7 (32-bit).

A. Experiment Setup

We evaluate the composite algorithms on defect datasets
from 10 Java projects, i.e., ant, camel, ivy, jedit, log4j, lucene,
poi, prop, tomcat, and xalan, that belong to the Promise
repository. Each of the dataset contains a set of classes labeled
as defective or clean and their corresponding metrics (e.g.,
LOC, Chidamber & Kemerer (CK) metric, etc.). Table I sum-
marizes the statistics of each project. The columns correspond
to the project name (Name), the release version of each
project (Release), the total number of classes in each project
(Instances), the number of defective classes in each project
(Defective Instances), and the percentage of defective classes
(%).

Our experiments are performed in the context of cross-
project defect prediction. Our experiments proceed in ten
iterations. In the first iteration, we take classes from the first
project “Ant” as a testing set, and combine instances from the
other 9 projects as a training set. We learn a model from the
training set and use it to predict the defect labels of instances
from the test set. In the second iteration, we take instances of
the second project “camel” as a testing set and combine the
instances of the other projects as a training set. We repeat
the same process eight more times, each time considering
a different project as the testing set. We report the average
performance of a prediction technique across the ten iterations.

We use the implementations of the 6 classification tech-
niques and 7 composite algorithms in Weka [24]2. For the
average voting, maximum voting, CODEP and random forest,

2http://www.cs.waikato.ac.nz/ml/weka/

we use their default settings in Weka. And for the bagging and
boosting, we set the number of iterations to 10.

B. Evaluation Metrics

We use two performance metrics for our evaluation: cost
effectiveness and F-measure. These two measures are useful
in different situations.

1) Cost Effectiveness: Cost effectiveness is widely used in
defect prediction as an evaluation metric [12], [11], [10]. It
aims at maximizing benefits in the condition of spending the
same amount of cost. In the context of defect prediction, the
cost is the lines of code to inspect, and the benefit is the number
of buggy classes found. The cost effectiveness setup we use
is the same as the one used by Jiang et al. [3]. We want to
count the number of buggy classes found when a developer
inspect the first 20% lines of code – this number is referred
to as NofB20.

2) F-measure: F-measure, which is the harmonic mean of
precision and recall, is a standard and widely used measure to
evaluate classification algorithms [19], [25]. There are four
possible outcomes for an instance in a target project: An
instance can be classified as buggy when it truly is buggy (true
positive, TP); it can be classified as buggy when it is actually
clean (false positive, FP); it can be classified as clean when it
is actually buggy (false negative, FN); or it can be classified
as clean and it truly is clean (true negative, TN). Based on
these possible outcomes, precision, recall and F-measure are
defined as:

Precision: the proportion of instances that are correct-
ly labeled as buggy among those labeled as buggy, i.e.,
Precision = TP/(TP + FP).

Recall: the proportion of buggy instances that are correctly
labeled, i.e., Recall = TP/(TP + FN).

F-measure: a summary measure that combines both pre-
cision and recall - it evaluates if an increase in precision
(recall) outweighs a reduction in recall (precision), i.e., F −
measure = 2×Precision×Recall

Precision+Recall .

There is a trade-off between precision and recall. One can
increase precision by sacrificing recall (and vice versa). The
trade-off causes difficulties to compare the performance of
several prediction models by using only precision or recall
alone [19], [25]. For this reason, we compare the prediction
results using F-measure, which is a harmonic mean of preci-
sion and recall.

C. Research Questions

How effective are the 7 composite algorithms? How much
improvement could these composite algorithms achieve
over CODEPLogistic?

Motivation. We need to investigate the effectiveness of
the 7 composite algorithms and compare them against
CODEPLogistic [1]. Answer to this research question would
shed light to whether and to what extent the composite
algorithms improve over CODEPLogistic, which is the state-
of-the-art cross-project defect prediction technique.

Approach. To answer this research question, we compute F-
measure and NofB20 scores of the 7 composite algorithms and

TABLE II. F-MEASURE SCORES OF THE 7 COMPOSITE ALGORITHMS

Algorithms ant camel ivy jedit log4j lucene poi prop tomcat xalan Average

Ave 0.343 0.112 0.444 0.516 0.205 0.066 0.237 0.222 0.44 0.402 0.299
Max 0.554 0.306 0.439 0.608 0.5 0.319 0.286 0.295 0.38 0.439 0.412

CODEPLogistic 0.321 0.127 0.43 0.435 0.293 0.053 0.296 0.239 0.415 0.404 0.301
BaggingJ48 0.284 0.127 0.27 0.441 0.205 0.115 0.217 0.184 0.234 0.376 0.245

BaggingNaive 0.421 0.188 0.383 0.492 0.211 0.116 0.254 0.171 0.379 0.365 0.298
BoostingJ48 0.343 0.22 0.362 0.397 0.356 0.231 0.282 0.202 0.306 0.322 0.302

BoostingNaive 0.407 0.183 0.414 0.481 0.211 0.128 0.229 0.168 0.396 0.366 0.298
RF 0.43 0.175 0.313 0.434 0.293 0.186 0.267 0.217 0.392 0.376 0.308

TABLE III. NOFB20 SCORES OF THE 7 COMPOSITE ALGORITHMS

Algorithms ant camel ivy jedit log4j lucene poi prop tomcat xalan Average

Ave 87 73 13 82 15 33 8 13 30 27 38.1
Max 79 77 13 81 15 33 6 11 32 24 37.1

CODEPLogistic 88 77 12 23 15 76 8 12 22 19 35.2
BaggingJ48 80 92 10 58 12 82 6 11 27 28 40.6

BaggingNaive 93 76 13 0 20 80 6 10 24 22 34.4
BoostingJ48 66 74 10 26 20 101 4 14 19 20 35.4

BoostingNaive 54 42 7 31 15 26 3 7 23 20 22.8
RF 69 64 11 65 16 84 4 9 25 25 37.2

CODEPLogistic when they are applied to 10 datasets from the
PROMISE repository. We then compare the results achieved
by each of the 7 composite algorithms with the results of
CODEPLogistic.

Results. Table II presents the F-measure scores of
CODEPLogistic as compared with those of Ave, Max,
BaggingJ48, BaggingNaive, BoostingJ48, BoostingNaive and
RF. The F-measure scores of CODEPLogistic vary from
0.053-0.435. Across the 10 datasets, the average F-measure
of CODEPLogistic is 0.301. From Table II, we can note that
the average F-measure scores of Max, BoostingJ48 and RF
are 0.412, 0.302 and 0.308 respectively, which outperform
the average F-measure of CODEPLogistic by 36.88%, 0.33%
and 2.33% respectively. Max achieves the best F-measure
scores; its F-measure scores vary from 0.286-0.608 and the
average score is 0.412. Meanwhile, the other four composite
algorithms that we investigate in this study do not perform as
well as CODEPLogistic in terms of F-measure. The average
F-measure scores of Ave, BaggingJ48, BaggingNaive and
BoostingNaive are 0.299, 0.245, 0.298 and 0.29, respectively,
which are lower than that of CODEPLogistic by 0.67%,
22.86%, 1.01% and 1.01% respectively.

Table III presents the NofB20 score of CODEPLogistic as
compared with those of Ave, Max, BaggingJ48, BaggingNaive,
BoostingJ48, BoostingNaive and RF. The NofB20 scores of
CODEPLogistic vary from 8-88. Across the 10 datasets, the av-
erage NofB20 score of CODEPLogistic is 35.2. From Table II,
we can note that the average NofB20 scores of Ave, Max,
BaggingJ48, BoostingJ48 and RF are 38.1, 37.1, 40.6, 35.4
and 37.2 respectively, which outperform the NofB20 score of
CODEPLogistic by 8.24%, 5.40%, 15.34%, 0.57% and 5.68%
respectively. BaggingJ48 achieves the highest NofB20 score;
its NofB20 scores vary from 6-92 and the average score is 40.6.
Meanwhile, the other two composite algorithms that we inves-
tigate in this study do not perform as well as CODEPLogistic

in terms of NofB20. The average scores of BaggingNaive and
BoostingNaive are 34.4 and 22.8 respectively, which are lower
than that of CODEPLogistic by 2.33% and 54.39% respectively.

D. Threats to Validity

Threats to internal validity relate to errors in our ex-
periments. We have double checked our experiments and
implementation. Still, there could be errors that we did not
notice. Threats to external validity relate to the generalizability
of our results. We have analyzed 5,305 instances from 10 open
source software projects. In the future, we plan to reduce
this threat further by analyzing even more defect data from
more open source and commercial software projects. Threats
to construct validity refer to the suitability of our evaluation
metrics. We use cost effectiveness and F-measure which are
also used by past software engineering studies to evaluate the
effectiveness of various prediction techniques [26], [27], [12],
[15], [28], [27], [29]. Thus, we believe there is little threat to
construct validity.

V. RELATED WORK

In the last few years, a substantial effort has been devoted
to use cross-project strategy in predicting the defect proneness
of software entities. This means using defect data from other
projects to improve defect prediction for a target project.
Zimmermann et al. propose a cross-project defect prediction
approach which trains a model on a source project, and uses
the model on a target project [8]. They list factors that software
engineers should consider before selecting a project as a source
project for a given target project. Turhan et al. employ a
k-nearest neighbor algorithm for cross-project defect predic-
tion [9]. Their algorithm selects instances from other projects
to be used as training data for a target project; for every
unlabeled instance in a target project, they select 10 nearest
instances from source projects. Similar to the work by Turhan
et al., Peters et al. propose Peters filter for cross-company
defect prediction, which also uses a nearest neighbor approach
to select instances from source projects [14]. Nam et al. point
out that the poor performance of cross-project defect prediction
is largely because of the different feature distribution between
the source and target projects [15]. They then propose TCA+,
a novel transfer defect learning approach, which make feature
distributions in source and target projects similar [15]. Canfora
et al. propose a multi-objective approach for cross-project

defect prediction, which uses genetic algorithm to build a
multi-objective logistic regression model [16]. Zhang et al.
build a universal defect prediction model for a large set of
projects with diverse contexts [30]. While all of the above
studies reduce the gap between the accuracy of within-project
and cross-project defect predictions, cross-project defect pre-
diction still represent one of the main challenges in the defect
prediction field.

Recently, Panichella et al. propose a state-of-the-art cross-
project defect prediction algorithm named CODEP that uses a
meta classification algorithm to combine results of six basic
classification algorithms [1]. The best results are achieved
when logistic regression is used as the meta classification
algorithm (i.e., CODEPLogistic). In our work, we focus on
finding effective composite algorithms for cross-project de-
fect prediction, which can outperform CODEPLogistic. We
investigate 7 composite algorithms proposed in the machine
learning community. These algorithms use different strategies
to combine results of a number of basic classifiers. In our
experiments, we use the same basic classifiers as CODEP,
and the results of the experiments show that 3 out of the 7
composite algorithms perform better than CODEP in terms of
both F-measure and cost effectiveness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the effectiveness of 7 compos-
ite algorithms proposed in the machine learning community
for cross-project defect prediction, aiming at finding one or
more algorithms that perform better than CODEP. We evaluate
the composite algorithms using two metrics: F-measure and
cost effectiveness. We perform experiments on defect datasets
from 10 different open-source software projects containing a
total 5,305 instances. The results show that Max performs
the best in terms of F-measure and achieves an average F-
measure score of 0.412, which outperforms the average F-
measure of CODEPLogistic by 36.88%; Also, BaggingJ48

performs the best in terms of cost effectiveness and achieves an
average NofB20 score of 40.6, which outperforms the average
NofB20 score of CODEPLogistic by 15.34%. In addition to
these two algorithms, several other algorithms also outperform
CODEPLogistic in terms of F-measure and/or cost effective-
ness.

In the future, we plan to investigate additional composite
algorithms or create a custom composite algorithm that per-
forms better for cross-project defect prediction.

Acknowledgment. This research was supported by the Na-
tional Basic Research Program of China (the 973 Program)
under grant 2015CB352201, National Key Technology R&D
Program of the Ministry of Science and Technology of China
under grant 2014BAH24F02, and the Fundamental Research
Funds for the Central Universities.

REFERENCES

[1] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’union fait la force,” in CSMR-WCRE. IEEE,
2014, pp. 164–173.

[2] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in ICSE. ACM, 2008, pp. 531–540.

[3] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in ASE.
IEEE, 2013, pp. 279–289.

[4] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” TSE, vol. 34, no. 4, pp. 485–496, 2008.

[5] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimization
of software quality modeling with multiple repositories,” TSE, vol. 36,
no. 6, pp. 852–864, 2010.

[6] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in ICSE. ACM, 2006, pp. 452–461.

[7] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,” TSE,
vol. 33, no. 5, pp. 316–329, 2007.

[8] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in ESEC-FSE. ACM, 2009, pp. 91–100.

[9] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[10] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining techniques
for building fault-proneness models in telecom java software,” in ISSRE.
IEEE, 2007, pp. 215–224.

[11] F. Rahman and P. Devanbu, “How, and why, process metrics are better,”
in ICSE. IEEE Press, 2013, pp. 432–441.

[12] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of
cross-project defect prediction,” in FSE. ACM, 2012, p. 61.

[13] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in ESEC-FSE. ACM, 2013, pp. 147–157.

[14] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect
prediction,” in MSR. IEEE, 2013, pp. 409–418.

[15] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE.
IEEE Press, 2013, pp. 382–391.

[16] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Multi-objective cross-project defect prediction,” in ICST.
IEEE, 2013, pp. 252–261.

[17] M. E. Bezerra, A. L. Oliveira, and S. R. Meira, “A constructive rbf
neural network for estimating the probability of defects in software
modules,” in Neural Networks, 2007. IJCNN 2007. International Joint
Conference on. IEEE, 2007, pp. 2869–2874.

[18] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian
networks,” Empirical Software Engineering, vol. 19, no. 1, pp. 154–181,
2014.

[19] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan kaufmann, 2006.

[20] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[21] M. D. Buhmann, “Radial basis functions,” Acta Numerica 2000, vol. 9,
pp. 1–38, 2000.

[22] J. R. Quinlan, “Bagging, boosting, and c4. 5,” in AAAI/IAAI, Vol. 1,
1996, pp. 725–730.

[23] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[25] X. Xuan, D. Lo, X. Xia, and Y. Tian, “Evaluating defect prediction
approaches using a massive set of metrics: An empirical study,” in SAC.
ACM, 2015.

[26] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” TSE, vol. 34, no. 2, pp. 181–196, 2008.

[27] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high ac-
curacy prediction of reopened bugs,” Automated Software Engineering,
pp. 1–35, 2014.

[28] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “Elblocker: Predicting
blocking bugs with ensemble imbalance learning,” Information and
Software Technology, 2015.

[29] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-project
build co-change prediction,” in SANER. IEEE, 2015, pp. 311–320.

[30] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model,” in MSR. ACM, 2014, pp. 182–191.

