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Abstract—Configuration bugs are one of the dominant causes
of software failures. Previous studies show that a configuration
bug could cause huge financial losses in a software system. The
importance of configuration bugs has attracted various research
studies, e.g., to detect, diagnose, and fix configuration bugs. Given
a bug report, an approach that can identify whether the bug
is a configuration bug could help developers reduce debugging
effort. We refer to this problem as configuration bug reports
prediction. To address this problem, we develop a new automated
framework that applies text mining technologies on the natural-
language description of bug reports to train a statistical model
on historical bug reports with known labels (i.e., configuration
or non-configuration), and the statistical model is then used to
predict a label for a new bug report. Developers could apply
our model to automatically predict labels of bug reports to
improve their productivity. Our tool first applies feature selection
techniques (e.g., information gain and Chi-square) to preprocess
the textual information in bug reports, and then applies various
text mining techniques (e.g., naive Bayes, SVM, naive Bayes
multinomial) to build statistical models. We evaluate our solution
on 5 bug report datasets including accumulo, activemq, camel,
flume, and wicket. We show that naive Bayes multinomial with
information gain achieves the best performance. On average
across the 5 projects, its accuracy, configuration F-measure
and non-configuration F-measure are 0.811, 0.450, and 0.880,
respectively. We also compare our solution with the method
proposed by Arshad et al.. The results show that our proposed
approach that uses naive Bayes multinomial with information
gain on average improves accuracy, configuration F-measure and
non-configuration F-measure scores of Arshad et al.’s method by
8.34%, 103.7%, and 4.24%, respectively.
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I. INTRODUCTION

Modern software systems allow users to customize the
systems behaviors via configuration options. However, the
flexibility of configuration options could potentially affect the
reliability of the software systems. Previous studies show that
configuration bugs (i.e., misconfiguration) are one of the major
causes for the downtime of large-scale software systems [1].
For example, Barroso and Hölzle reported that configuration
bugs contributed to approximately 28% of service-level fail-
ures, which is the second major cause of failures at one
of Google’s main data centers [2]. Facebook reported that a
configuration bug blocked their 500 million users to access its
website for several hours [3]. Similar findings are also reported
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for other software systems, such as Microsoft Azure [4],
Amazon EC2 [5], and Google [6]. Hale reported that more
than 80% of network outages are caused due to configuration
bugs [7].

Aside from causing downtime, configuration bugs also
increase cost in various ways. Kappor concluded that tech-
nical support consumed 17% of the total cost of maintaining
working desktop computers in a company, and troubleshooting
configuration errors (i.e., bugs) took a large proportion of it [8].
Yin et al. showed that 27% of bugs are configuration-related
in a major storage company’s customer support database [9].

Recently, much research effort has been made to detect,
diagnose, and fix configuration bugs [10], [11], [12]. Wang et
al. propose PeerPressure which identifies configuration errors
by leveraging statistical analysis [10]. Zhang and Ernst develop
a tool named ConfDiagnoser which combines static analysis,
dynamic profiling, and statistical analysis to identify the root
cause of a configuration bug [11]. Xu et al. propose SPEX to
automatically infer configuration constraints from source code,
and then use these constraints to expose misconfiguration vul-
nerabilities, and detect error-prone configuration design [12].

To further advance the state-of-the-art in this area, and
help developers to reduce debugging effort and improve their
productivity, in this paper, we investigate a new research
problem: given a bug report, identify whether this bug is a
configuration bug. We refer to this problem as configuration
bug reports prediction. We develop a new automated tool
which applies text mining technologies on the natural-language
description of bug reports to train a statistical model on the
historical bug reports with known labels (i.e., configuration
or non-configuration) to classify a new bug report as either
a configuration bug report or a non-configuration bug report.
The rationale of our tool is to explore the valuable natural-
language information provided in bug reports. Although bug
reporters do not manually flag a bug as configuration-related,
the natural-language description of the bug report could be
enough to identify that the bug is indeed configuration-related.

The number of terms in natural-language description of
bug reports are often large and this could introduce inaccuracy
to the prediction of bug report labels (i.e., configuration or
non-configuration). Thus, in our tool, we first apply feature
selection techniques [13] to select significant terms from the
bug reports. Two state-of-the-art feature selection techniques,
information gain and Chi-square [13], are investigated in this
paper. Next, we represent these bug reports by using the
selected terms, and leverage classification techniques to build a
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statistical model (i.e., a classifier). In this paper, we investigate
various state-of-the-art classification techniques (e.g., naive
Bayes, SVM, naive Bayes multinomial, and kNN [14]) which
are widely used in text mining and software engineering
literatures, c.f., [14], [15], [16], [17], [18]. Finally, the sta-
tistical model is used to classify a new bug report as either a
configuration or non-configuration bug report.

The most related work to ours is proposed by Arshad
et al. [19]. They propose a keyword query-based approach
to automatically identify configuration bugs. In their query,
existence of keywords such as “config”, “setting”, “setup”,
“set-up” and “set up” are used to identify if a bug report is a
configuration bug. We use their method as a baseline that we
would compare our proposed approach with.

We evaluate our tool on 5 datasets from different open
source software projects: accumulo1, activemq2, camel3,
flume4, and wicket5. In total, we analyze 3,203 bug reports.
We measure the performance of the approaches in terms of
accuracy, configuration F-measure, and non-configuration F-
measures. On average across the 5 datasets, naive Bayes multi-
nomial with information gain achieves the best performance;
its accuracy, configuration F-measure and non-configuration F-
measure are 0.811, 0.450, and 0.880, respectively. The results
show that naive Bayes multinomial with information gain on
average improves accuracy, configuration F-measure and non-
configuration F-measure scores of Arshad et al.’s method by
8.34%, 103.7%, and 4.24%, respectively.

The main contributions of this paper are:

1) We develop a new automated tool which applies text
mining technologies on the natural-language descrip-
tion of bug reports to identify configuration bugs.

2) We experiment on a broad range of datasets con-
taining a total of 3,203 bugs to demonstrate the
effectiveness of our tool. We show that our tool
outperforms the method proposed by Arshad et al.
on the configuration bug report prediction problem
by a substantial margin.

The remainder of the paper is organized as follows. We
describe a motivating example in Section II. We outline the
overall framework of our proposed approach in Section III.
We elaborate the feature selection and classification techniques
in Sections IV and V, respectively. We report our experiment
results in Section VI. We describe related work in Section VII.
We conclude and mention future work in Section VIII.

II. MOTIVATION

A typical bug report contains various useful fields, such as
status, priority, component, summary, and description. Notice
that in the summary and description fields, reporters would
use natural language to describe the bug. In this paper, we
refer to the natural-language description of bug reports as the
textual information in the summary and description fields. Fig-
ure 1 shows a bug report from accumulo with BugID=1560.6

1https://issues.apache.org/jira/browse/ACCUMULO
2https://issues.apache.org/jira/browse/AMQ
3https://issues.apache.org/jira/browse/CAMEL
4https://issues.apache.org/jira/browse/FLUME
5https://issues.apache.org/jira/browse/WICKET
6https://issues.apache.org/jira/browse/ACCUMULO-1560

Figure 2 shows the corresponding fix patch for this bug. The
root cause of this bug is an incompatibility between different
architectures and platforms, i.e., the RPM packages which
were created for 64-bit amd64 architecture, are not recognized
on Redhat Linux with x86 64 architecture. The fix of this bug
is to modify its maven configuration file, i.e., pom.xml, by
changing the value of the “needarch” parameter from “true”
to “x86 64”.

Fig. 1. Bug Report of accumulo with BugID=1560.

Fig. 2. The Patch File for the Bug in Figure 1.

Observations and Implications. From the above motivating
example, we can observe the following:

1) The natural-language description of a bug report
provides information to indicate whether a bug is a
configuration bug. For example, the natural-language
description of the bug report in Figure 1 describes
a RPM package compatibility problem due to a
configuration bug when maven is used to build the
system.

2) Some terms in a bug report are good indicators
to identify whether it is a configuration bug, while
some other terms are noise. For example, the terms
“compatible”, ”build”, ”maven”, “RPM”, etc., in the
bug report in Figure 1 are good indicators; while the
terms “system”, “plugin ”, “create” are noise since
both configuration and non-configuration bug reports
would use these terms. Thus, it would be good to
select good indicators (i.e., useful terms) and remove
noise (i.e., useless terms) from a bug report.

The above observations tell us that we could use the
natural-language description of bug reports to identify con-
figuration bugs, and selecting good terms (indicators) from
bug reports could help to improve classification performance.
Therefore, an automated tool which applies text mining tech-
niques on the natural-language description of bug reports
could assist developers to identify configuration bugs and
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reduce their debugging effort and cost. The following scenarios
illustrate the benefits of our tool:

Scenario 1 - Without Tool: Bob is a junior developer in a large
software project which contains many configuration files. One
day, he was asked to fix a newly reported bug. Due to his lack
of experience, he tried to fix this bug by modifying various
source code files. And he wasted much time and effort to locate
the relevant source code files, however, he still did not find the
root cause of the bug. Then, he asked a senior developer Alice
for help. After reading the description of the bug report, Alice
told him that this bug was caused by a wrong setting in a
configuration file, and only one parameter in the configuration
file needs to be modified. Finally, Bob fixed this bug by making
that small change in the configuration file, however much time
and effort had been wasted.

Scenario 2 - With Tool: Bob is a junior developer in a large
software project which contains many configuration files. One
day, he was asked to fix a newly reported bug. Bob initially
thought that the root cause of this bug was in one of the
source code files. To confirm his initial analysis, he used our
tool. However, our tool told Bob that this bug is highly likely
to be a configuration bug, and thus he should look into the
configuration files. He followed the direction of our tool and
soon he was able to locate the root cause which is a wrong
setting in a parameter in a configuration file. The total bug
fixing process only took him a short period of time.

III. OVERALL FRAMEWORK

Figure 3 shows our configuration bug report prediction
framework. The whole framework includes two phases: model
building phase and prediction phase. In the model building
phase, our goal is to build a classifier (i.e., statistical model) by
leveraging text mining techniques from historical bug reports
with known labels (i.e., configuration or not). In the prediction
phase, this classifier would be used to predict if an unknown
bug report would be a configuration bug report or not (i.e., a
non-configuration bug).

Our framework first extracts features from a set of training
bug reports (i.e., bug reports with known status) (Step 1).
Features are various quantifiable characteristics of bug reports
that could potentially distinguish reports that are related to
configuration bugs from those that are not. In this paper, we use
textual features from the natural-language description of bug
reports. Our framework extracts the description and summary
texts from bug reports. For each description and summary text,
our framework tokenizes them, removes stop words (e.g., I,
you, he, the), stems them (i.e., reduces them to their root forms,
e.g., “configuration” and “configure” are reduced to “config”),
and represents them in the form of a “bag of words” [20].

Then, our framework applies feature selection techniques to
select a subset of relevant textual features to further improve
the prediction performance (Step 2).7 By employing feature
selection techniques, we can reduce model building times, and
avoid overfitting [13]. In this paper, we investigate 2 state-of-
the-art feature selection techniques, i.e., information gain and
Chi-square.

7Detailed information of the feature selection techniques is presented in
Section IV.
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Fig. 3. Proposed Configuration Bug Report Prediction Framework.

After we select a subset of textual features, our framework
next constructs a classifier (i.e., statistical model) based on the
selected textual features of the training bug reports (Step 3).8

A classifier is a statistical model which assigns labels (in our
case: configuration or non-configuration) to a data point (in our
case: a bug report) based on its textual features. The classifier
construction phase would compare and contrast the features
of bug reports that are configuration bugs, and those of bug
reports that are not. In this paper, we investigate 5 text mining
techniques, i.e., naive Bayes multinomial, naive Bayes, kNN,
Bayesian network, and SVM [14].

In the prediction phase, the classifier is then used to predict
whether a bug report with unknown label is a configuration
bug or not. For each of such bug reports, our framework first
preprocesses and extracts textual features from it (Step 4),
and represent it by using the features selected in the model
building phase (Step 5). Next, these features are input into
the classifier in the classifier application step (Step 5). This
step would output the prediction result which is one of the
following labels: configuration or non-configuration (Step 6).

IV. FEATURE SELECTION TECHNIQUES

Previous studies show that feature selection techniques
could improve the performance of text categorization [13],
[21]. In this section, we describe 2 state-of-the-art feature
selection techniques, i.e., information gain (IG) and Chi-square
(CHI). Let us denote a bug report collection as BR =
{(B1, C1) , (B2, C2), ...(BN , CN )}, where Bi represents the
ith bug report and Ci is a label that represents whether this bug
report is a configuration bug (c) or not (c̄) (i.e., Ci ∈ {c, c̄}),
and the terms in BRi are denoted as BRi = 〈t1, t2, ..., t|BRi|〉.
For a term t, and the configuration label c, for a bug report
Bi, there would be 4 possible relationships:

1) (t, c): Bi contains the term t, and it is a configuration
bug (i.e., c);

2) (t, c̄): Bi contains the term t, but it is not a configu-
ration bug (i.e., c̄);

8Detailed information of this step is presented in Section V.
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3) (t̄, c): Bi does not contain the term t, but it is a
configuration bug (i.e., c);

4) (t̄, c̄): Bi does not contain the term t, and it is not a
configuration bug (i.e., c̄);

Based on the above 4 possible relationships, we can com-
pute information gain (IG) and chi-square (CHI) scores which
are elaborated in the following paragraphs.

A. Information Gain (IG)

Information gain (IG) [13], [21] measures the number
of bits of information required for predicting a label (i.e.,
configuration or non-configuration) by knowing the presence
or absence of a term in a bug report. The information gain
(IG) score of term t and label c is computed as:

IG(t, c) =
∑

c′∈{c,c̄}

∑

t′∈{t,t̄}
p(t′, c′)× log

p(t′, c′)
p(t′)× p(c′)

(1)

B. Chi-square (CHI)

Chi-square [13], [21] measures divergence from the chi-
square distribution expected with one degree of freedom to
judge extremeness if one assumes the occurrence of a term
t is actually independent of the label c. We denote A as the
number of bug reports where relationship (t, c) is observed, B
as the number of bug reports where (t, c̄) is observed, C as
the number of bug reports where (t̄, c) is observed, and D as
the number of bug reports where (t̄, c̄) is observed. Then, the
chi-square (CHI) score of term t and label c is computed as:

CHI(t, c) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)
(2)

In the above equation, N is the total number of bug reports.

C. Ranking the Scores

After we apply feature selection techniques (e.g., IG or
CHI) to compute the scores for each term, we rank these scores
from high to low to generate a ranked list. The higher the score
is, the more important the term to distinguish a label c is. We
select top k% terms whose feature selection scores are in the
top k% of the ranked list, and remove the other terms. In this
way, we reduce the number of features in the model building
phase, and also in the prediction phase. By default, we choose
the top 10% of the total number of terms.

V. CLASSIFICATION TECHNIQUES

In this section, we elaborate 5 state-of-the-art classification
techniques which we use in this paper.

A. Naive Bayes (NB)

Naive Bayes [22] assumes that features (i.e., terms) are
conditionally independent given a label (configuration or non-
configuration bug). Based on this assumption, for a bug report
BRi = 〈t1, t2, ..., t|BRi|〉, where ti is the terms in the bug
report, and a label Ci, we have:

p(BRi|Ci) =

|BRi|∏

i=1

p(ti|Ci) (3)

By applying Bayes Theorem on Equation (3), we have:

p(Ci = c|BRi) =
p(Ci = c)× p(BRi|Ci = c)∑

c′∈{c,c̄} p(Ci = c′)× p(BRi|Ci = c′)

=
p(Ci = c)×∏|BRi|

i=1 p(ti|Ci = c)
∑

c′∈{c,c̄} p(Ci = c′)×∏|BRi|
i=1 p(ti|Ci = c′)

(4)

We can use Equation (4) to predict the label for a bug
report BRi, i.e., if p(Ci = c|BRi) ≥ p(Ci = c̄|BRi), then
we classify this bug report as a configuration bug report; else
otherwise. The major advantage of naive Bayes classification
is its short computational training time, since it assumes
conditional independence. Notice that in naive Bayes, we only
consider the presence or absence of a term in a bug report;
the number of times a term appears in the bug report is not
considered.

B. Naive Bayes Multinomial (NBM)

Naive Bayes multinomial (NBM) [22] is similar to naive
Bayes, but the label for a bug report is not simply determined
by the presence or absence of terms in the bug report, rather
by the number of times each of the terms appears in the bug
report. In general, NBM performs better than naive Bayes
when the total number of unique terms in the bug report
collection is large.

C. K-Nearest Neighbor (kNN)

K-nearest neighbor (kNN) [14] is an instance-based al-
gorithm for text mining. The general idea behind kNN is
to predict the label of a bug report based on its k-nearest
neighbors (i.e., bug reports). kNN has two steps:

1) For an unlabeled bug report, kNN finds its k-nearest
neighbors in the training bug reports according to a
distance metric;

2) kNN then assigns to this unlabeled bug report the
most frequent label that its k-nearest neighbors have,
i.e., if the number of neighboring bug reports that are
configuration bug reports are more than those that are
not, then we classify it as a configuration bug report;
else otherwise.

There are various distance metrics, such as Euclidean
distance, Minkowsky distance, Manhattan distance, etc –
c.f., [23]. In this work, by default, we use Euclidean distance
as the distance metric.
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D. Support Vector Machine (SVM)

Support vector machine (SVM) [14] was developed from
statistical learning theory, and it constructs a hyperplane or a
set of hyperplanes in a high- or infinite-dimensional space,
which are used for classification. Each training bug report
is represented as a point in a multi-dimensional space where
each term (i.e., feature) represents a dimension. SVM selects a
small number of critical boundary instances (i.e., bug reports)
as support vectors for each label (in our case, the labels are
configuration and non-configuration), and builds a linear or
non-linear discriminant function to form decision boundaries
with the principle of maximizing the margins among training
bug reports belonging to the different labels.

E. Bayesian Network (BN)

Bayesian network (BN) is a graphical model which uses
probability theory to represent the relationships between terms
and labels in bug reports [24]. It is a directed acyclic graph
(DAG) and each node in a BN represents either a term or
the label. A directed edge between two nodes denotes that
there is a causal (i.e., dependency) relationship between them.
In the model building phase, BN would construct a Bayesian
network from the training bug reports. In the prediction phase,
this Bayesian network is then used to predict the label for a
new unlabeled bug report.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our pro-
posed tool. The experimental environment is an Intel(R)
Core(TM) i5 3.20 GHz CPU, 4GB RAM desktop running
Windows 7 (32-bit). We first present our experiment set-
up, evaluation metrics, and 4 research questions in Sec-
tion VI-A, VI-B, and VI-C, respectively. We then present
our experiment results that answer the 4 research questions
(Sections VI-D, VI-E, VI-F, and VI-G).

A. Experiment Setup

We evaluate our proposed tool on 6 datasets from different
open source software projects: accumulo, activemq, camel,
flume, trafficserver, and wicket. For each of the projects, we
first download all the issue reports from their corresponding
issue tracking systems (i.e., JIRA systems). Notice in JIRA,
some issue reports are feature requests, and we remove them
and only keep the issue reports whose types are “bug”. We
refer to these issue reports as bug reports. Next, we mine the
projects’ corresponding source code repositories (i.e., Git), and
we find commits which are linked to our collected bug reports,
i.e., these commits fixed bugs described in bug reports. To
identify these commits, we automatically analyze their logs
using a regular expression. In total, we collected 3,203 bug
reports in these 6 projects which can be linked to commits
that fix them. A feature of a configuration bugs is that its fix
should include a modification to a configuration file. Thus,
for each of the commits which is linked to a bug report, we
also check the files that are modified by the commit. For
a bug report, if its linked commits include the modification
of a configuration file, we consider it as a configuration
bug. We also manually analyze these bug reports and their
corresponding fixes, to further confirm whether each of the

TABLE I. STATISTICS OF COLLECTED DATASETS.

Project # Bugs Time # Confs # Terms
accumulo 181 2011. 10 - 2013. 06 33 227

activemq 175 2005. 12 - 2007. 12 29 327

camel 1,189 2007. 07 - 2013. 09 333 1,261

flume 279 2010. 07 - 2013. 05 83 341

wicket 1,379 2006. 11 - 2013. 09 46 1,340

bug reports is a configuration bug or not. In total, we have
524 configuration bug reports. Table I presents the statistics of
the 6 projects. The columns correspond to the project name
(Project), the number of bug reports collected (# Bugs), the
time period of the collected bug reports (Time), the number of
configuration bug reports (# Confs), and the number of unique
terms (# Terms).

We use WVTool [25] to extract terms from these bug
reports. WVTool is a Java library for statistical language
modeling, which is used to create word vector representations
of text documents. We use WVTool to tokenize natural-
language description of bug report, remove stop words, and do
stemming. We remove terms which appear less than 5 times
to reduce noise.

Stratified ten-fold cross validation [23] is used to evaluate
the performance of our proposed tool. We randomly divide
the dataset into 10 folds. Of these 10 folds, 9 folds are use
to train a statistical model, while the last one fold is used to
evaluate the performance of the model. We iterate the whole
process 10 times, and record the average performance across
the 10 iterations. The distribution of labels in the training and
test folds are the same as the original dataset to simulate
the actual usage of our tool. Stratified cross validation is a
standard evaluation setting, which is widely used in software
engineering studies, c.f., [26], [27], [28], [29], [30], [31].

We use the implementation of the 2 feature selection
techniques and the 5 classification techniques in Weka [32].9

By default, we select as features terms whose feature selection
scores are in the top 10% ranked list. For kNN, we set
the number of neighbors to 5. For the other classification
techniques, we use their default settings in Weka.

B. Evaluation Metrics

To evaluate the predictive performance of our proposed
tool, we create a confusion matrix to store prediction results.
Table II presents an example of a confusion matrix. The rows
of the matrix correspond to predicted labels of bug reports.
The columns of the matrix correspond to correct labels of bug
reports. A cell in the matrix contains the number of bug reports
of a particular predicted label and a particular correct label.

For each bug report, there would be 4 possible outcomes: a
bug report can be classified as a configuration bug report when
it truly is a configuration bug report (true positive, TP); it can
be classified as a configuration bug report when actually it is
a non-configuration bug report (false positive, FP); it can be
classified as a non-configuration bug report when it is actually
a configuration bug report (false negative, FN); or it can be

9http://www.cs.waikato.ac.nz/ml/weka/
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TABLE II. CONFUSION MATRIX.

Classified as True Class
Configuration Non-configuration

Configuration TP FP

Non-configuration FN TN

classified as a non-configuration bug report and it truly is a
non-configuration bug report (true negative, TN). By using
the values stored in the confusion matrix, in this paper, we
calculate the accuracy, precision, recall and F-measure scores
for each label (i.e., configuration and non-configuration) to
evaluate the performance of our proposed tool.

• Accuracy: the number of correctly classified bugs
(both configuration and non-configuration bugs)
over the total number of bugs, i.e., Acc =

TP+TN
TP+FP+TN+FN .

• Configuration Precision: the proportion of bugs that
are correctly labeled as configuration bugs among
those labeled as configuration bugs, i.e., P (C) =

TP
TP+FP .

• Configuration Recall: the proportion of configuration
bugs that are correctly labeled, i.e., R(C) = TP

TP+FN .

• Non-configuration Precision: the proportion of bugs
that are correctly labeled as non-configuration bugs
among those labeled as non-configuration bugs, i.e.,
P (NC) = TN

TN+FN .

• Non-configuration Recall: the proportion of non-
configuration bugs that are correctly labeled, i.e.,
R(NC) = TN

TN+FP .

• F-measure: a summary measure that combines both
precision and recall – it evaluates if an increase
in precision (recall) outweighs a reduction in recall
(precision). For configuration F-measure, it is F (C) =
2∗P (C)∗R(C)
P (C)+R(C) . And for non-configuration F-measure, it

is F (NC) = 2∗P (NC)∗R(NC)
P (NC)+R(NC) .

Notice that precision and recall are both important metrics
for configuration bug report prediction since they measure
quality of our tool in two aspects. If the precision is low, then
the developer would not use the tool, due to a high number
of false positives. If the recall is low, developers would not
use the tool also, since most configuration (non-configuration)
bug reports are not successfully predicted. There is a trade off
between precision and recall, and one can increase precision
by sacrificing recall (and vice versa) [23]. F-measure, which
is the harmonic mean of precision and recall, is often used
to judge whether an increase in precision outweighs a loss in
recall (and vice versa) [23]. In many past papers in software
engineering literature, e.g., [33], [34], [35], [29], F-measure
is often used as a summary measure. Thus, in this paper,
we choose configuration F-measure and non-configuration F-
measure as two most important evaluation metrics.

C. Research Questions

We are interested to answer the following research ques-
tions:

RQ1 How effective is our proposed tool? Which feature
selection and classification techniques achieves the best per-
formance? How much improvement could our proposed tool
achieve over the baseline method proposed by Arshad et al.?

In our proposed tool, we propose the usage of 2 feature
selection techniques and 5 classification techniques. Thus, in
total, there are 10 different combinations of feature selection
and classification techniques. We would like to investigate
which combination of these 2 techniques could achieve the
best performance. Also, Arshad et al. have proposed a keyword
query based approach to identify configuration bugs [19].
Thus, we consider their approach as a baseline method, and
compare our proposed approach with theirs.

Answer to this research question would shed light to
whether our proposed tool advances the state-of-the art meth-
ods. To answer this research question, we first investigate
which combination of our proposed method achieves the best
performance, and then we compare this combination with the
baseline method proposed by Arshad et al.

RQ2 Can feature selection techniques really improve the
performance of our tool?

Since we apply feature selection techniques to preprocess
bug reports, and then use the selected features (i.e., terms) to
train a classifier, we also investigate whether feature selection
techniques really improve the performance of our tool. To
answer this research question, we compare the performance
of our tool with and without feature selection techniques.

RQ3 Do different numbers of selected features affect the
performance of our proposed tool?

By default, we select the top 10% features with the high-
est feature selection scores. We investigate whether different
number of selected features (i.e., terms) would affect the
performance of our proposed tool. To answer this research
question, we vary the number of selected features from 1% to
20% of the total number of features.

RQ4 What are the best features for discriminating whether a
bug report is a configuration bug report or not?

Aside from producing a model that can identify configu-
ration bug reports, we are also interested in finding discrimi-
native features that could help in distinguishing configuration
bug reports and non-configuration bug reports. To answer this
research question, we compute the information gain scores of
all the features that we collected and present the top features.

D. RQ1: Performance of Our Tool

Tables III and IV present the accuracy, configuration F-
measure, and non-configuration F-measure scores for the 5
datasets and 5 classification algorithms when information
gain (IG) and chi-square (CHI) are used as feature selection
techniques, respectively. We notice that there are only small
differences between scores corresponding to these two feature
selection techniques. For example, the accuracy, configuration
F-measure, and non-configuration F-measure for IG with kNN
are 0.813, 0.229, and 0.888 respectively, while these values are
0.814, 0.224, and 0.889 for CHI with kNN. In the following
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TABLE III. ACCURACY, CONFIGURATION F-MEASURE (CONF. F-MEASURE), AND NON-CONFIGURATION F-MEASURE (NON. F-MEASURE) FOR THE 5
DATASETS WITH INFORMATION GAIN AS THE FEATURE SELECTION TECHNIQUE. THE LAST COLUMN SHOWS THE AVERAGE ACCURACY AND F-MEASURE

SCORES ACROSS THE 5 DATASETS.

Evaluation Techniques accumulo activemq camel flume wicker Average

Accuracy

NB 0.823 0.823 0.740 0.681 0.931 0.800

NBM 0.840 0.823 0.734 0.703 0.954 0.811

kNN 0.823 0.829 0.728 0.717 0.968 0.813

SVM 0.829 0.840 0.733 0.728 0.964 0.819
BN 0.779 0.846 0.750 0.692 0.964 0.806

Conf. F-measure

NB 0.500 0.340 0.418 0.341 0.307 0.381

NBM 0.525 0.392 0.463 0.450 0.422 0.450
kNN 0.238 0.167 0.331 0.288 0.120 0.229

SVM 0.340 0.125 0.236 0.333 0.074 0.222

BN 0.167 0.308 0.410 0.000 0.039 0.185

Non. F-measure

NB 0.893 0.898 0.833 0.790 0.964 0.875

NBM 0.904 0.896 0.823 0.797 0.976 0.880

kNN 0.900 0.904 0.829 0.823 0.984 0.888

SVM 0.902 0.912 0.839 0.829 0.982 0.892
BN 0.873 0.913 0.842 0.818 0.982 0.885

TABLE IV. ACCURACY, CONFIGURATION F-MEASURE (CONF. F-MEASURE), AND NON-CONFIGURATION F-MEASURE (NON. F-MEASURE) FOR THE 5
DATASETS WITH CHI-SQUARE AS THE FEATURE SELECTION TECHNIQUE.

Evaluation Techniques accumulo activemq camel flume wicker Average

Accuracy

NB 0.823 0.823 0.738 0.681 0.930 0.799

NBM 0.845 0.817 0.738 0.703 0.953 0.811

kNN 0.823 0.823 0.737 0.717 0.968 0.814

SVM 0.834 0.834 0.733 0.728 0.964 0.819
BN 0.779 0.846 0.750 0.692 0.964 0.806

Conf. F-measure

NB 0.500 0.340 0.421 0.341 0.304 0.381

NBM 0.533 0.385 0.467 0.450 0.414 0.450
kNN 0.238 0.114 0.360 0.288 0.120 0.224

SVM 0.348 0.121 0.240 0.333 0.074 0.223

BN 0.167 0.308 0.410 0.000 0.039 0.185

Non. F-measure

NB 0.893 0.898 0.831 0.790 0.963 0.875

NBM 0.907 0.893 0.827 0.796 0.975 0.880

kNN 0.900 0.902 0.834 0.823 0.984 0.889

SVM 0.905 0.909 0.838 0.829 0.982 0.892
BN 0.873 0.913 0.842 0.818 0.982 0.806

research questions, we would use information gain as the de-
fault feature selection technique, since the difference between
these 2 techniques are slight.

In terms of accuracy and non-configuration F-measure s-
cores, the differences among different classification techniques
are small. For example, in Table III, the highest accuracy
is 0.819 (SVM), and the lowest accuracy is 0.800 (naive
Bayes (NB)) – SVM only improves NB by 2.4%. However,
for configuration F-measure, the differences among different
classification techniques are high. For example, in Table III,
the highest configuration F-measure is 0.450 (naive Bayes
multinomial (NBM)), and the lowest configuration F-measure
is 0.185 (Bayesian network (BN)) – NBM improves BN by
143.2%. Considering that configuration bug reports are only
a small proportion of the total bug reports, it is much harder
to predict configuration bug report correctly. For this reason,
naive Bayes multinomial (NBM) achieves the best performance
since it achieves similar accuracy and non-configuration F-

measure values, but a much better configuration F-measure
value.

Tables V present the experiment results of our proposed
tool (IG with NBM) compared with Arshad et al.’s method.
The accuracy, configuration F-measure, and non-configuration
F-measure of our proposed tool vary from 0.703 - 0.954,
0.392 - 0.525, and 0.798 - 0.976. On average across the
5 datasets, our proposed tool outperforms Arshad et al.’s
method by 8.34%, 103.70%, and 4.24% in terms of accuracy,
configuration F-measure, and non-configuration F-measure.
Notice that the average configuration F-measure for Arshad
et al.’s method is 0.221, which means that their method can
not identify configuration bug reports well.

E. RQ2: Benefit of Feature Selection

Table VI present the experiment results of directly using
classification techniques without feature selection. We notice
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TABLE V. OUR PROPOSED TOOL (INFORMATION GAIN WITH NAIVE BAYES MULTINOMIAL) VS. ARSHAD ET AL.’S METHOD.

Evaluation Techniques accumulo activemq camel flume wicker Average.

Accuracy

Ours 0.840 0.823 0.734 0.703 0.954 0.811

Arshad et al. 0.807 0.737 0.651 0.681 0.866 0.748

Improv. 4.11% 11.63% 12.79% 3.16% 10.22% 8.34%

Conf. F-measure

Ours 0.525 0.392 0.463 0.450 0.422 0.450

Arshad et al. 0.364 0.080 0.271 0.360 0.031 0.221

Improv. 44.26% 390.20% 70.92% 25.19% 1243% 103.70%

Non. F-measure

Ours 0.904 0.896 0.823 0.798 0.976 0.880

Arshad et al. 0.886 0.847 0.771 0.788 0.928 0.844

Improv. 1.99% 5.86% 6.86% 1.32% 5.20% 4.24%

TABLE VI. ACCURACY, CONFIGURATION F-MEASURE (CONF. F-MEASURE), AND NON-CONFIGURATION F-MEASURE (NON. F-MEASURE) FOR THE 5
DATASETS WITHOUT FEATURE SELECTION.

Evaluation Techniques accumulo activemq camel flume wicker Average

Accuracy

NB 0.641 0.674 0.693 0.663 0.888 0.712

NBM 0.829 0.749 0.754 0.695 0.945 0.794

kNN 0.840 0.817 0.722 0.713 0.966 0.812

SVM 0.834 0.811 0.739 0.706 0.965 0.811

BN 0.779 0.846 0.750 0.692 0.964 0.806

Conf. F-measure

NB 0.381 0.387 0.412 0.420 0.251 0.370

NBM 0.608 0.450 0.499 0.541 0.429 0.505

kNN 0.256 0.000 0.191 0.259 0.000 0.141

SVM 0.423 0.298 0.436 0.423 0.333 0.383

BN 0.167 0.308 0.410 0.000 0.039 0.185

Non. F-measure

NB 0.747 0.778 0.792 0.763 0.939 0.804

NBM 0.890 0.837 0.837 0.772 0.969 0.861

kNN 0.910 0.899 0.832 0.822 0.983 0.889

SVM 0.903 0.891 0.830 0.803 0.982 0.882

BN 0.873 0.913 0.842 0.818 0.982 0.885

that in general feature selection is useful. For example, on
average, across the 6 datasets, the accuracy, configuration F-
measure, and non-configuration F-measure scores for naive
Bayes with IG are 0.800, 0.381, and 0.875, respectively,
while these values for naive Bayes are 0.712, 0.370, and
0.804, respectively. For NBM and SVM with IG, we notice
that their respective configuration F-measures are lower than
those of NBM and SVM without feature selection. However,
considering their accuracy and non-configuration F-measures,
there are still some improvements when feature selection is
used.

F. RQ3: Effect of Varying the Number of Selected Features

We investigate the effect of varying the numbers of selected
features on the performance of our proposed tool. We vary
the number of features selected from 1% to 20% of the total
number of terms. We plot the resultant accuracy, configuration
F-measure, and non-configuration F-measure scores for Camel
in Figure 4. The results show that when we select more
than 3% of the total number of features, the performance of
our proposed tool is stable with various numbers of selected
features. Due to space limitations, we omit the figures for
accumulo, activemq, flume, and wicket datasets, however, we
confirm that for these projects, the trends are the same as
camel.

Fig. 4. Experiment Results of Our Proposed Tool on Camel with Number
of Textual Features Varying from 1% to 20% of The Total Number of Terms.

G. RQ4: Best Features

We extract thousands of features corresponding to the
number of times terms appear in the bug reports. We report the
top 10 features sorted based on their information gain scores
in Table VII. We notice that the information gain score is low
(the highest possible value would be 1), which represents that
one feature alone is not sufficient to discriminate configuration
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TABLE VII. TOP-10 MOST DISCRIMINATIVE FEATURES BASED ON INFORMATION GAIN (IG) SCORES.

accumulo activemq camel flume wicker
plugin 0.065 mav 0.087 spring 0.034 depens 0.039 propers 0.018

gener 0.064 plugin 0.077 karaf 0.028 mav 0.039 depens 0.015

workspac 0.057 build 0.055 install 0.027 build 0.038 artifactid 0.012

mav 0.056 thread 0.053 pack 0.025 point 0.029 method 0.012

nofollow 0.056 problem 0.050 vers 0.025 inclus 0.029 main 0.011

extern 0.056 snapshot 0.046 bundl 0.024 master 0.028 pack 0.010

depens 0.052 project 0.046 featur 0.022 fileconfig 0.025 pag 0.009

trunk 0.052 upd 0.037 osg 0.018 config 0.025 fil 0.009

config 0.050 vers 0.037 mav 0.018 status 0.020 mav 0.008

http 0.048 localhost 0.032 camel 0.018 plugin 0.020 quickstatrt 0.007

bug reports from non-configuration bug reports. The keywork
“config” which is used by Arshad et al. to identify configu-
ration bug reports, appears in the top 10 most discriminative
features of accumulo and flume. As all of the 5 projects are
using maven (“mav”) as a build tool, it appears in the top 10
most discriminative features of all of the 5 projects. Note that
“mav” is the stemmed word of maven. Some other features,
such as “depens” (dependency), “build”, “propers” (property),
“pack” (package), “fil” (file) are all good indicators to identify
whether a bug report is a configuration bug report.

H. Threats to Validity

Threats to internal validity relate to errors in our exper-
iments. We have double checked our experiments and the
datasets collected from the 5 projects, and we have also
manually checked the bug reports to ensure that they are
configuration bug reports, still there could be errors that we
do not notice.

Threats to external validity relate to the generalizability of
our results. We have analyzed 3,203 bug reports from 5 open
source software projects. In the future, we plan to reduce this
threat further by analyzing more bug reports from open source
and commercial software projects .

Threats to construct validity refer to the suitability of our
evaluation metrics. We use accuracy, configuration, and non-
configuration F-measure scores as the main evaluation metrics
which are also used by past software engineering studies to
evaluate the effectiveness of a prediction technique [33], [34],
[35], [29], [18]. Thus, we believe there is little threat to
construct validity.

VII. RELATED WORK

There have been a number of studies on configuration
management [9], [19], [11], [12], [36], [37]. Yin et al. perform
an empirical study on configuration issues in one commercial
and 4 open source software systems [9]. They conclude that
a majority of configuration bugs are due to wrong parameter
setting. Arshad et al. extract configuration bugs from GlassFish
and JBoss, and they characterize the configuration bugs from
several dimensions, i.e., problem-type, problem-time, problem-
manifestation, and problem-culprit [19]. Based on their find-
ings, they also develop a tool named ConfGauge which injects
parameter-based configuration issues into software systems.
Zhang and Ernst combines static analysis, dynamic profiling,
and statistical analysis to detect problems in configuration

files [11]. Xu et al. propose SPEX to automatically infer
configuration constraints from source code, and then use
these constraints to expose misconfiguration vulnerabilities,
and detect error-prone configuration design [12]. Attariyan
and Flinn propose AutoBash which diagnoses configuration
errors by considering the causal dependencies of test case
executions to detect similarities between a sick computer and
a reference computer [36]. Later, Attariyan and Flinn develop
ConfAid which traces configuration errors by leveraging data
flow analysis [37]. Our study complements the above studies;
we predict whether a bug report is a configuration bug or not
to help developers reduce debugging effort.

There have been a number of studies on characterizing or
predicting the types of bugs [38], [39], [40], [41]. Gegick et
al. propose the usage of text mining techniques to identify
whether a bug is a security bug or not [38]. Zaman et al.
perform an empirical study on security bugs and performance
bugs in Firefox [39]. They find security bugs need more time
to be fixed, while performance bugs are not that different from
other bugs, in terms of bug fix time, but more files need to be
changed to fix them. Xia et al. perform an empirical study on
bugs in software build systems such as Ant, Maven, CMake
and QMake, and they find that 21.35% of the build system
bugs are related to external interface problems [40]. Thung et
al. propose a method to automatically categorize bug reports
into two families: control and data flow, and structural [41]. Xia
et al. propose a fuzzy-set based feature selection approach to
categorize defect based on its fault triggering conditions [42].
Our work complements the above studies; we classify a bug
as a configuration or non-configuration bug.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose an automated tool which applies
feature selection and classification techniques to build a statis-
tical model from the natural-language description of historical
bug reports, to predict whether a newly submitted bug report is
a configuration bug or not. Various feature selection techniques
(e.g., information gain and Chi-square) and various classifica-
tion techniques (e.g., naive Bayes, naive Bayes multinomial,
kNN, SVM, and Bayesian network) have been investigated. We
evaluate our proposed tool on 5 open source projects including
a total of 3,203 bug reports. The experiment results show naive
Bayes multinomial with information gain performs the best;
on average across the 5 projects, its accuracy, configuration
F-measure and non-configuration F-measure are 0.811, 0.450,
and 0.880, respectively, which improve Arshad et al.’s method
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by 8.34%, 103.7%, and 4.24%, respectively.

In the future, we plan to improve the effectiveness of our
proposed tool further. We also plan to experiment with even
more bug reports from more projects.
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