
In-Game Action List Segmentation and Labeling in Real-Time
Strategy Games

Wei Gong, Ee-Peng Lim, Palakorn Achananuparp, Feida Zhu, David Lo and Freddy Chong Tat Chua

Abstract—In-game actions of real-time strategy (RTS) games
are extremely useful in determining the players’ strategies, ana-
lyzing their behaviors and recommending ways to improve their
play skills. Unfortunately, unstructured sequences of in-game
actions are hardly informative enough for these analyses. The
inconsistency we observed in human annotation of in-game data
makes the analytical task even more challenging. In this paper,
we propose an integrated system for in-game action segmentation
and semantic label assignment based on a Conditional Random
Fields (CRFs) model with essential features extracted from the
in-game actions. Our experiments demonstrate that the accuracy
of our solution can be as high as 98.9%.

I. INTRODUCTION

Real-time strategy (RTS) game is a popular online game
genre in which players gather necessary resources to train
army units and build bases to fight against opponents. To max-
imize the chance of winning in RTS games, one needs to learn
the right strategies. Hence, it is not a surprise many players
turn their attention to game commentaries that explain the dos
and don’ts of game playing using previously recorded games
for illustration. For example, Sean ‘Day9’ Plott, a famous
commentator of the highly popular RTS game StarCraft II1,
has attracted over 45 millions views on his YouTube Channel2.

From the RTS game developer perspective, to attract and
retain players, it is equally important to help their players
understand the games and learn the right strategies to play
well. Today’s RTS games, however, have only limited capacity
to offer such assistance to their players other than a good help
menu and user guide. The current best way for players to learn
the games is still by trial and error, a potentially tedious and
time-consuming process.

Fortunately, the recent advances in database systems and
collaborative web sites, have made it possible to record mas-
sive amount of data generated by real RTS games (often known
as game replays), and share them at game data repository
websites. One can then apply data analytics to discover game
strategies and to evaluate their effectiveness in improving
gaming performance and experience. The knowledge gained
can be further used to guide individual players to play better
and help game developers design better games.
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In this paper, we analyze the in-game actions of a popular
RTS game, StarCraft II: Wings of Liberty, developed and
released by Blizzard Entertainment. StarCraft II (or SC2) is
selected because (1) the popularity of SC2 makes it easy to find
highly active players for the purpose of human annotation; (2)
SC2 replay files are publicly available for downloading from
several websites; (3) the highly complicated gameplay in SC2
has given rise to a wealth of sophisticated strategies from its
players; and (4) comparing to the original StarCraft3, SC2 is
a newer game with a greater variety of gameplay mechanics.
Hence, the game is not yet fully understood by the players and
the gameplay strategies are still evolving, which makes SC2
more interesting and challenging for analysis. Even as this
paper focused on SC2 only, the same problem and proposed
techniques will be applicable to other popular RTS games such
as League of Legends4, and DOTA25.

A replay file in SC2 records in temporal order all ac-
tions performed by the players, including mouse movements
and keyboard inputs. These mouse and keyboard actions are
recorded as atomic actions, such as training a unit, selecting
a building or attacking some facility. The sequence of times-
tamped actions performed by one player in a game is called
an action list.

While unstructured action lists are hardly adequate to reveal
the player’s intention and strategy, it is much easier when
consecutive atomic actions are grouped into logical segments
assigned with meaningful semantic labels. Our objective is
thus to partition each SC2 action list into segments and give
each segment a label which represents the collective meaning
of the actions in this segment. Knowing these action segments
and their semantic labels will give us an idea how the player
executes her strategy in the game.

Formally, given an action list L = (a1, a2, ..., am) with
m actions performed by one player, a segmentation S of
L is defined as k non-overlapping segments, denoted as
S = {s1, s2, ..., sk}, where for 1 ≤ i ≤ k, si =
(abi , abi+1..., abi+li), 1 ≤ bi < bi+1 ≤ m and

∑k
i=1 li =

m− k. Let A = {α1, α2, ..., αh} be a set of h unique labels.
Our problem is to find all the segments s1, s2, ..., sk, and
assign a label αsi ∈ A for each segment si, 1 ≤ i ≤ k.
In this problem formulation, we assume that the label set A is
given. To obtain this label set, we actually need some expert
knowledge about the SC2 game which is covered in Section

3http://sea.blizzard.com/games/sc/
4http://lol.garena.com/playnow.php/
5http://www.dota2.com/
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III-B.
The task of segmentation and labeling sequential data has

been studied in many fields, including bioinformatics [6],
natural language processing [2] and speech recognition [14].
The segmentation techniques include Hidden Markov Models
(HMMs) [15], Maximum Entropy Markov Models (MEMMs)
[11], and Conditional Random Fields (CRFs) [9]. Since CRFs
are known to outperform both HMMs and MEMMs on a
number of real-world sequence segmentation and labeling
tasks [9], [13], we use CRFs to automatically segment and
label game action lists in our framework.

Several challenges are unique in this in-game action list
segmentation and labeling task. Firstly, to the best of our
knowledge, there are no publicly available labeled action lists
to be used for training. The manual process of labeling takes
much time and effort and the labeling agreement between
annotators in our experiment has been shown to be far below
what we considered to be useable. Secondly, the noise level
in the raw in-game action lists is very high. This prevents
accurate segmentation and labeling. Our experiments show
that 80% of actions in the actions lists can be considered as
spams. The spam actions are generated in various ways, such
as accidental keypress, repeated use of trivial game commands
to inflate personal statistics, i.e. number of actions performed
per minute, etc. Finally, we need to identify the features to be
used in segmentation and labeling. None of the above tasks
has been studied for the segmentation task in the past.

In our literature survey, we found several prior works on
RTS games focusing on discovering the build order based
strategies [20], [21] and incorporating them into the artificial
intelligence (AI) game agents [12], [22]. However, the above
works make assumption about the way the games will be
played and only focus on a small subset of in-game actions
(build order). There is relatively little work on mining game
strategies from the entire set of in-game actions, and using
the mined strategies to explain the game matches. In [5],
action list segmentation and labeling was also studied but
the work focused on fixed length segmentation approach over
the in-game actions related to build order. The work assumes
equal length segments of 30 seconds each, and applies HMMs
to learn the segment labels. Unlike our work below, this
segmentation method is not data-driven and does not consider
human annotated ground truths in training and evaluation.
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Fig. 1. Framework for Our Approach

A. Contributions

The in-game action segmentation and labeling task is novel.
By identifying and addressing the associated challenges, we
contribute to game analytics research as follows:

1) We proposed a framework (as shown in Figure 1) to
solve the action list segmentation and labeling problem.
This framework has two phases, namely model training
and model application. In model training, we collect
raw action lists, recruit annotators to segment and label
action lists so as to obtain the training data, extract
representative features from the training data, and train a
CRF model. In model application, features are extracted
from a new action list, which is then segmented and
labeled by the trained CRF model.

2) We have developed a prototype annotation tool known as
Labelr6 to collect segmentation and labeling data from
SC2 players so as to derive the ground truth data.

3) We have devised a simple heuristics to filter spurious
actions from the action lists. We show that our trained
CRF model achieves high accuracy in the segmentation
and labeling task.

B. Outline of Paper

The outline of this paper is as follows. Section II describes
the in-game data of SC2. Section III introduces the dataset
we collected. Section IV describes our proposed CRF based
segmentation and labeling method. Section V presents our
experimental results. Section VI concludes by summarizing
our work and presenting the future work.

II. OVERVIEW OF STARCRAFT II

A. StarCraft II Mechanics

SC2 is a military science fiction RTS game developed by
Blizzard Entertainment. In SC2, players observe the game
actions from a topdown perspective. They are required to
collect resources, develop technologies, build up their army
and use them to destroy the opposing player’s. Players can
choose to play as one of the three unique races, Terran,
Protoss, and Zerg when game starts. Each race is designed to
be played differently with its own sets of units and buildings.

When the game starts, players issue commands to the units
and buildings under their control in real-time through mouse
clicks and keyboard shortcuts. This is different from turn-
based games, such as chess, where players take turn to move
their pieces.

Figure 2 shows the types of objects in SC2. There are
two kinds of resources: minerals and gas. Minerals are the
basic form of currency required in every training, building,
researching and upgrading actions. Gas is the rarer form
of currency used in the training and construction of more
advanced units and buildings as well as upgrading technology.
There are three types of units: worker, combat, and production
unit. Workers are responsible for collecting resources and
constructing buildings. Although they can also attack other

6http://202.161.45.174/sc2annotation
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units, they are much weaker than the regular combat units.
Combat units are comprised the main army of the players.
Each combat unit has its own strengths and weaknesses against
different types of units. There exists a special type of units,
called production units, such as Zerg larva, which are static and
only used to produce other units. Buildings are mainly used as
the production facilities to train different units. Some building
can also be used to upgrade certain technology, improving
the efficiency of the economy and the effectiveness of combat
units.

The mechanics in SC2 requires players to perform both
micro-management (micro) and macro-management (macro)
actions. The micro actions are those involving tactical move-
ment, positioning, and maneuvering of individual or groups of
units to maximize their damage on opponents and minimize
the damage received. On the other hand, the macro actions
involve improving and maintaining the overall economic and
military profile of the players. These include a constant pro-
duction of worker and combat units, upgrading the technology
levels, etc. Highly skilled players are typically those who
multitask effectively between micro-management and macro-
management.

Competitive online multiplayer mode is what makes SC2
a highly popular game. In this mode, players can find other
human players who are near their skill level to compete
against using Battle.net, an official online multiplayer plat-
form developed by Blizzard. At the end of each multiplayer
game, players’ performance will be evaluated automatically
by Battle.net and skill ratings will be awarded to the players.
Similar to chess, players’ skills are categorized into different
leagues. The leagues ranked from the lowest to the highest
include Bronze, Silver, Gold, Platinum, Diamond, Master, and
Grandmaster. Battle.net’s matchmaking system will try to pair
players of comparable skill levels to play against each other.

In this paper, we define a game match to be an instance of
SC2 game played by at least two human players, such that this
match ends with a win or lose outcome for each player. As
shown in Figure 3, when a game is over, all game match data
can be saved as a replay. The replay file records everything
that SC2 in-game renderer needs to replay the corresponding
game. Therefore, the replay file logs rich information about the
game, such as chat, map name, players’ name, and all actions
performed by each player from the time the game starts till it
ends. After collecting the replay files, we can use the replay
parsers such as phpsc2replay [19] and sc2gears [1] to extract
all the action data in them.

Game Replay 
ParsersPlayers Replay

In-game Actions, 
Players' names...

Fig. 3. Collecting replays and action lists

TABLE I
A PARTIAL ACTION LIST PERFORMED BY ONE PLAYER FROM A SC2

REPLAY

Time
(mins) Player Action

0:00 Select Command Center (10288)
0:00 Train SCV
0:00 Train SCV
0:00 Train SCV

0:01 Select SCV x6 (1028c, 10290, 10294, 10298,
1029c, 102a0), Deselect all

0:02 Right click; target: Mineral Field (100b4)
. . . . . .
0:07 Select Command Center (10288), Deselect all
0:08 Right Click; target: Mineral Field (10070)

B. Action List Representation

Given a replay R, an action list L = (a1, a2, ..., am) is the
sequence of actions performed by a player p in R in temporal
order. m is the number of actions in L. Each action ai in L
has a corresponding timestamp ti, where t1 ≤ t2 ≤ ... ≤ tm.

A partial example action list is shown in Table I. Each line
in this table represents an action which includes timestamp
and the corresponding action. Each action consists of action
type and target. For example, from the first action in Table I,
‘Select Command Center (10288)’, we can identify the action
type as ‘Select’, and the target as ‘Command Center’ (which
is a type of buildings in the Terran race). In this action, the
alphanumeric string (10288) is the ID for previous object
(Command Center). In SC2, every object has a unique ID.
In addition, certain actions are automatically generated by a
game client. For example, we can see ‘Deselect all’ at the end
of 0:01 (minutes) and 0:07 select actions, which means that
if a player is selecting something at a certain time, the game
client will automatically deselect all the objects that the player
selected before.

After selecting the command center, the player trains three
SCVs (which are the workers of the Terran race) at time 0:00,
selects six SCVs at time 0:01, and right clicks a mineral field
at time 0:02. After some other actions, the player then selects
the command center at time 0:07, and right clicks a mineral
field at time 0:08.

C. Action List Segments

Consider the action list in Table I. Although we understand
the meaning of each single action, we still do not know
what does this player really want to do, such as what is the
difference between the actions at time 0:02 and time 0:08 (both
are right clicking a mineral field)? Why does the player control
SCVs? What is the player’s purpose of selecting a command
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center? If we group actions at time 0:01 and 0:02, and group
actions at time 0:07 and 0:08, at this point in the game, the
player tried to develop her economy by training more workers
and ordering them to harvest minerals. As new workers are
produced from the command center, they automatically go to
a specific mineral field set by the player’s rally point. Thus,
to make sense of an individual, we must also consider the
context in which the action takes place. This is similar to
natural language understanding, where the meaning of a word
can be inferred from other neighboring words.

In the example, we may group actions at time 0:01 and 0:02
into a segment, and assign a label ‘mine’. For the segment
containing actions at time 0:07 and 0:08, the appropriate label
is ‘set rally point’.

III. DATASET AND SEGMENT LABELING

A. Data Collection

Several websites are dedicated to host SC2 replays. These
sites are used by SC2 players to share selected gameplays with
the public. We developed a web crawler to collect replays from
GameReplays.org7, a SC2 replay repository site. A total of 866
replays of SC2 games played by one player against another
player (1 vs. 1) were downloaded, from which we obtained
1732 action lists.

B. Manual Segmentation and Labeling

1) Human Annotation Tool: A 20-minute long SC2 game
normally contains thousands of in-game actions. This makes
labeling the action lists quite cumbersome for human annota-
tors. To facilitate the process, we have developed a web-based
human annotation tool called Labelr.

As shown in Figure 4, Labelr provides necessary web user-
interface functions for an annotator to organize, segment,
and label action lists with minimum effort. For example,
the annotator can simply assign the start and end points to
split the action sequence. Then, she can select from a default
list (training, building, mining, etc.) or create an appropriate
label for the corresponding segment. To aid the annotator in
making sense of some complex in-game sequence, Labelr also
provides a link to download the actual binary replay file which
can be played back in the game client. All annotation data from
each annotator are stored in a relational database.

2) General Players Annotation: Two business-major un-
dergraduate students who have extensive knowledge in SC2’s
gameplay mechanics and have been competing in high level
online leagues (Diamond & Platinum) for over a year were
hired to label the data using Labelr. They each labeled five
common action lists. From their feedback, we learned that
segmentation and labeling on action list is time consuming.
On average, it took an annotator three hours to label a 20-
minute game. This is because the SC2 action list is very long:
the average game length of the five labeled action lists is 23.4
minutes involving an average of 4628 actions. To segment
and label one action list, annotators have to go through all the

7www.gamereplays.org/starcraft2/replays.php?game=33

Fig. 4. Part of screenshot of Labelr

TABLE II
RATERS AGREEMENT, PRESENTED BY FLEISS’ KAPPA

(a) Kappa of replay annotation
Action list id Kappa value

1 0.43
2 0.21
3 0.42
4 0.32
5 0.41

avg 0.36

(b) Kappa interpretation
Kappa value Interpretation

<0 Poor agreement
0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 1.00 Almost perfect agreement

actions at least once, at the same time, and verify the players’
actions by watching the replays in-game.

Moreover, we found that the resultant segments and labels
are also very inconsistent between annotators. We used Fleiss’
Kappa [7] to measure the agreement between them. Table II
shows that the two annotators are only in fair agreement with
each other. The average Kappa value is 0.36.

Due to the low degree of agreement between our annotators,
we decided not to use this labeled data as the ground truths.
Two lessons were learned in this effort. Firstly, general players
may not be able to reliably segment and label action lists.
This leads us to later choose an expert SC2 player who is a
postdoc researcher and a Master league player with extensive
knowledge of the game to annotate action lists. Secondly,
action lists are very long and noisy. The noise filtering rules
should be introduced to preprocess the action lists.

3) Rule Based Noise Filtering: Suggested by the expert
annotator, we filter out noises from the raw action lists before
segmenting and labeling them. Noisy actions are trivial actions
that the player performs in the game either accidentally (e.g.,
wrong keypress or mouse clicks) or purposely (e.g., to inflate
her personal gameplay statistics like number of actions per
minute). These actions do not affect the game and the game
will progress exactly in the same manner if the noise is
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removed. We worked closely with the expert player to work
out the following noise filtering rules:

• Rule 1: Remove all the non-command actions, such as
a ‘move screen’ action. The move screen actions only
change player’s view of the battle field, but do not directly
affect the players’ strategies.

• Rule 2: If there are consecutive ‘select’ actions, keep the
last one while removing the rest. This is because the last
selection action supersedes the previous selections.

• Rule 3: If there are consecutive ‘right click’ actions, keep
the last one while removing others. Again, the last right
click supersedes the previous ones.

We call the filtered action lists the clean action lists. The
action distribution before and after filtering are shown in
Figure 5. We can observe that after filtering noises, the number
of action lists with few actions increases significantly. The
average number of actions in action list is reduced to 693
from 3517, which means that on average, 80% noise actions
in action lists are noises.
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Fig. 5. The action distribution before and after filtering.

4) Expert Annotation: The expert labeled all the clean
action lists in our dataset (totally 1732 action lists)8. As shown
in Table III, there are 10 unique labels defined by the expert
labeler. Every segment in the 1732 action lists is assigned one
of these 10 labels.

TABLE III
LABELS GIVEN BY THE EXPERT PLAYER

Label name Description
TRAIN Training of any combat or worker units
BUILD Constructing any buildings
UPGRADE Upgrading units or buildings
RESEARCH Researching a new technology
USE ABILITY Using any special abilities or spells
HOTKEY ASSIGN Assigning hotkeys to units or buildings
MINE Gathering either minerals or gas
ATTACK Attack opponent’s units or buildings
RALLY POINT Setting the units’ rally point
MOVE Moving any units or buildings around

IV. CRFS BASED SEGMENTATION AND LABELING
FRAMEWORK

CRFs are a probabilistic framework which can be applied
to segmenting and labeling sequential data. A CRF is a

8http://ink.library.smu.edu.sg/data/1/

form of undirected graphical model that defines a conditional
probability distribution over label sequences given a particular
observation sequence. CRFs relax the independence assump-
tions required by HMMs, which define a joint probability
distribution over label sequences given a observation sequence,
and also avoid the label bias problem, which is a weakness
of MEMMs [9]. For our action list segmentation and labeling
problem, the observation sequence is an action list. Since the
label of a segment represents the meaning of actions within
this segment, we can automatically assign the same label to
all the actions in that segment. Therefore, the label sequence
in our problem is the list of actions’ labels.

Linear-chain CRFs define the probability of a label sequence
y given observation sequence x to be:

p(y|x,λ,µ) =
1

Z(x)
exp(

∑
i,j

λjtj(yi−1, yi,x, i) +
∑
i,k

µksk(yi,x, i)).
(1)

where Z(x) is a normalization factor that makes the proba-
bility of all label sequences sum to one; λ and µ are the param-
eters to be estimated from training data; tj(yi−1, yi,x, i) is a
transition feature function of the entire observation sequence
and the labels at positions i and i − 1, and λj is learned
parameter associated with feature tj ; sk(yi,x, i) is a state
feature function of the label at position i and the observation
sequence, and µk is learned parameter associated with sk.

We specify feature functions when the CRF model is to be
learned. For example, one boolean transition feature function
might be true if action xi−1 contains ‘select’, action xi
contains ‘train’, label yi−1 is ‘train’, and label yi is ‘train’;
one boolean state feature function might be true if the action
xi contains ‘build’, and label yi is ‘build’.

To simplify our notation, we write

s(yi,x, i) = s(yi−1, yi,x, i) (2)

and
Fj(y,x) =

∑
i

fj(yi−1, yi,x, i) (3)

where each fj(yi−1, yi,x, i) is either a state function or a
transition function. This allows we simplify the probability as

p(y|x,λ) = 1

Z(x)
exp(

∑
j

λjFj(y,x, i)). (4)

The most probable label sequence for an input x can be
efficiently determined using Viterbi algorithm [15].

y∗ = argmax
y

p(y|x,λ,µ). (5)

Given a training dataset {(x(t),y(t))}, the parameters λ
in Eq. 4 can be estimated by maximum log-likelihood which
is maximizing the conditional probability of {y(t)}, given
corresponding {x(t)}. For a CRF, the log-likelihood is given
by:
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L(λ) =
∑
t

log(p({y(t)}|{x(t)},λ))

=
∑
t

(
∑
j

λjFj(y
(t),x(t))− logZx(t)).

(6)

The parameters can be identified by using an iterative tech-
nique such as traditional method iterative scaling [4], or
LBFGS, which is a fast method [3], [10], [16]. More details
about CRFs can be found in [9].

A. Features Extraction

This section outlines the three types of informative features
extracted from action lists. All the features are binary.

• Current Action Features (Type I): These are infor-
mation extracted from the current action, such as the
current action type (select, right click, attack, upgrade,
research, etc.), the current action’s target type (worker,
soldier, building, resource, etc.), occurrence of a special
word (e.g. flying), and player’s race (Terran, Zerg and
Protoss).

• Neighboring Action Features (Type II): These are
information extracted from the neighboring actions of the
current action. For example, the features can be the last
action’s action type, the 2nd last action’s action type,
the 3rd last action’s action type, the 4th last action’s
action type, the next action’s action type, and so on
so forth. Additionally, features in Type II can also be
the combination of information from neighboring actions,
such as the 2nd last action’s target type together with the
last action’s target type (e.g.: Last Last Target = worker
and Last Target = resource).

• Bigram Features (Type III): These are information
combined from the current action and the neighbors of the
current action, such as: combine action types of previous
and current actions (e.g.: Current = right click and Last
= select).

We extract a total of 373,163 binary features. The number
of features of the three types of features are listed in Table
IV.

TABLE IV
FEATURES USED IN OUR EXPERIMENTS

Type I II III
# of features 46 411 372,706

V. EXPERIMENTS

In this section, we describe our experiment setup and
analyze the performance results.

A. Experiment Setup

We first evaluate the action lists segmentation and labeling
performance using CRF. The implementation of CRF we used
is CRF++ [17], which uses LBFGS to learn the parameters.
For comparison, we use Support Vector Machine (SVM) as

our baseline method. In our first experiment, we evaluate the
performance of CRF and SVM using different number of
training action lists including 1, 5, 10, 20, 50, 100, and 200,
and the remaining labeled action lists as testing data. We also
trained CRF model on 500 and 800 action lists, since their
results are very similar to the result of 200 action lists, we
will not show them in the figures. In this experiments, we use
all features in Table IV to train both CRF and SVM model.

In the second experiment, we show the performance of CRF
model using different subsets of features and 200 action lists
as training data.

To measure the overall performance of segmentation and
labeling using CRF and SVM, we use accuracy defined below:

accuracy =
number of actions assigned correct label

number of actions
(7)

To evaluate the performance for each label, we used F1-
score. Recall A = {α1, α2, ..., αh} represents the set of action
labels. The F1-score of label αi is defined as:

F1-scoreαi
=

2× precisionαi
× recallαi

precisionαi + recallαi

(8)

where

precisionαi
=
number of actions assigned αi correctly

number of actions assigned αi
(9)

recallαi =
number of actions assigned αi correctly

number of actions with label αi
(10)

For each training data size involving some number of action
lists, say x, we conducted 5 runs of experiments so as to obtain
the average accuracy for overall performance and average F1-
score for each label performance. Each run used a different
set of randomly selected x action lists for training.

B. Performance Analysis
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Fig. 6. Accuracy on different training dataset size.

1) Overall Performance: We now present the performance
results for CRF and SVM. Figure 6 shows the average accu-
racy of action list segmentation labeling for different number
of training action lists. This figure shows that the performance
of CRF is much better than SVM for any training data size.
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Fig. 7. Performance for different action labels. The x-axes represents number
of action lists. The y-axes represents the F1-score.
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action lists).

The performance of CRF improves significantly with more
training action lists. However, the performance improvement
is less significant for SVM. When we used 200 action lists as
training data, the CRF model achieved an accuracy as high as
98.9%.

2) Performance for Each Label: We now analyze the
performance of CRF and SVM for each action label to gain
a better insight. Figure 7 shows the average F1-score of each
action label for different number of training action lists.

We observe that the performance of all action labels has
a positive correlation with the size of the training data.
The results suggest the labels ‘train’, ‘build’, ‘attack’ and
‘mine’ can be easily segmented and labeled even when few
training action lists are given. There are also action labels (e.g.
‘upgrade’,‘use ability’, etc.) that are more difficult to segment
and label. The difficulty can be overcome by having more
training action lists. For example, F1-score increases sharply
when the number of training action lists increases from 1 to 5.
Given sufficiently large number of action lists such as 200, we
obtain an F1-score of at least 0.96 for all action labels. Further
increase in training data size does not bring about significant
improvement.

Figure 7 also shows that SVM performs much worse
than CRF for some action labels, particularly for ‘research’,
‘upgrade’ and ‘hotkey assign’ labels. This could be due to
imbalanced data in our action lists. Imbalanced data is known
to cause poor performance in classification particularly for
the minority classes [8], [18]. Figure 8 shows the number
of actions with different action labels in our dataset. The
number of actions with ‘research’, ‘upgrade’, and ‘hotkey
assign’ labels are relatively fewer compared to other labels.
It is therefore not a surprise to have SVM performs badly for
these classes. Interestingly, CRF appears to be more robust to
our imbalanced dataset.

3) Performance on Different Type of Features: Figure 9
shows the performance of CRF model using different sets of
features including (a) Type I - Current Action Features only,
(b) Type II - Neighboring Actions Features only, (c) Type
III - Bigram Features only, and (d) All features. This figure
shows that using all features gives us the best accuracy. Type
I features only gives us the worst performance as compared
to other type of features. Compared with Type I features, the
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Fig. 9. Accuracy on different subset of features.

performance of using Type II features is better by 14%. This
indicates that the neighboring actions can provide more useful
information than the current action in determining the action
labels. The accuracy of using Type III features is slightly
lower than using all features. This result is reasonable as
Type III features use the information from both current actions
and neighboring actions. On the whole, we conclude that
contextual information of an action including the labels of
neighboring actions is important for segmenting and labeling
action lists.

VI. CONCLUSION

This paper introduces an action list segmentation and la-
beling framework to interpret player’s actions in their games.
In our research, we observe that: (i)the general players seg-
mentation and labeling results are very inconsistent; (ii) on
average, 80% of the actions in action lists are noises; (iii) the
segments and labels given by our expert player on the filtered
action lists are suitable for training a segmentation and labeling
model; and (iv)the performance of CRF model for this task
is generally quite good. The accuracy of segmentation and
labeling increases with training data size, and it could be as
high as 98.9%.

Our future work will focus on mining game play strategies
from in-game data using action list segments and labels. In
RTS game, player’s strategy is a plan of actions designed to
beat the opponents. It corresponds to how player organizes
resources and controls army units. Understanding player strat-
egy is useful for many reasons. Firstly, we can help player
understand his/her playing skills at a high level. Secondly,
we can help players study the replays of his/her opponents.
Thirdly, we can also recommend strategy to players to help
them improve their playing skills. Finally, the strategy helps
researchers analyze player characters and behaviors.
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