
Chapter 6
Leveraging Web 2.0 for software evolution

Yuan Tian and David Lo

Summary. In this era of Web 2.0, much information is available on the Internet.
Software forums, mailing lists, and question-and-answer sites contain lots of techni-
cal information. Blogs contain developers’ opinions, ideas, and descriptions of their
day-to-day activities. Microblogs contain recent and popular software news. Soft-
ware forges contain records of socio-technical interactions of developers. All these
resources could potentially be leveraged to help developers in performing software
evolution activities. In this chapter, we first present information that is available
from these Web 2.0 resources. We then introduce empirical studies that investigate
how developers contribute information to and use these resources. Next, we elab-
orate on recent technologies and tools that could mine pieces of information from
these resources to aid developers in performing their software evolution activities.
We especially present tools that support information search, information discov-
ery, and project management activities by analyzing software forums, mailing lists,
question-and-answer sites, microblogs, and software forges. We also briefly high-
light open problems and potential future work in this new and promising research
area of leveraging Web 2.0 to improve software evolution activities.

Much of the content of this chapter is a summary of, and is based on, the following articles having
either one or both of the chapter authors as co-authors: [3, 343, 703, 805, 806, 841, 845]. We would
like to thank the other co-authors of these articles: Swapna Gottipati, Jing Jiang, Ferdian Thung,
Lingxiao Jiang, Didi Surian, Nian Liu, Hanghang Tong, Ee-Peng Lim, Christos Faloutsos, Hong
Cheng, Achananuparp Palakorn, and Philips Kokoh Prasetyo.

163
 Springer

. et al. (eds.), E ,
DOI 10.1007/978-3- - - _6, © 201
T Mens volving Software Systems

642 45398 4 -Verlag Berlin Heidelberg 4

164 Yuan Tian and David Lo

6.1 Introduction

Web 2.0 has revolutionized the use of web sites [667]. Prior to Web 2.0, most web
sites were simply static pages that did not support much user interactions. With Web
2.0, users can post new content dynamically, update a long list of friends in real time,
collaborate with one another, and more. This has changed the paradigm of how users
use the Web. Web 2.0 sites include but are not limited to blogs, microblogging sites,
social networking sites, and sharing and collaboration sites. Currently, most web
users spend a substantial amount of time in Web 2.0 sites and the adoption of Web
2.0 sites is growing [235]. Much knowledge is shared in these Web 2.0 sites.

Web 2.0 also affects software developers. Currently, developers share a lot of
information in Web 2.0 sites. These resources could be leveraged to help develop-
ers perform their tasks better. It is common for developers to consult information
sharing sites like software forums, e.g., CNET1, Oracle OTN forum2, SoftwareTip-
sandTricks3, and DZone4. Developers often encounter the same problems, and solu-
tions found by one developer are disseminated to others via these sites. Developers
of open source projects such as GNOME5 use mailing lists as discussion forums to
support communication and cooperation in project communities. Besides software
forums and mailing lists, developers often turn to question-and-answer sites, such as
StackOverflow6, to seek help from other expert developers about software-related
problems that they face. Blogging services are also popular among software devel-
opers. Developers use blogs to record knowledge including their ideas and experi-
ence gained during software evolution tasks. This knowledge could be discovered
by other developers through web search. In the recent few years, with the advent of
social media, developers have yet another means to share and receive information.
Much information is shared via microblogging sites such as Twitter [863] and Sina
Weibo 7. Information shared in microblogging sites is often recent and informal.
The unique nature of information in these sites makes them interesting resources
that augment other Web 2.0 resources. Developers also use many collaboration sites
to jointly work together to complete various software projects. These collaboration
sites, also referred to as software forges, can host tens of thousands of projects or
even more. Examples of these collaboration sites (or software forges) are GitHub8

and SourceForge9.
Web 2.0 can be leveraged to assist developers find information that help them in

software evolution tasks. Developers often want to find answers to various develop-

1 forums.cnet.com
2 forums.sun.com/index.jspa
3 www.softwaretipsandtricks.com/forum
4 java.dzone.com
5 www.gnome.org
6 stackoverflow.com
7 www.weibo.com
8 github.com
9 sourceforge.net

http://www.softwaretipsandtricks.com/forum
http://www.gnome.org
http://www.weibo.com
http://forums.cnet.com
http://forums.sun.com/index.jspa
http://java.dzone.com
http://stackoverflow.com
http://github.com
http://sourceforge.net

6 Leveraging Web 2.0 for software evolution 165

ment questions. Software forums often contain such answers. However, it can take
much time for developers to sift the mass of contents shared there to find desired
answers. Developers also often want to reuse programs satisfying some properties.
Information stored in Web 2.0 resources can be leveraged for this task. For the above
mentioned tasks, automation is needed to bring relevant pieces of information to de-
velopers.

Developers can also leverage Web 2.0 to discover new and interesting knowledge.
For example, developers often want to be notified of new patches to security loop
holes, new useful libraries, new releases of some libraries, new programming tips,
and many other pieces of information. Today, developers often need to manually
search for such new information by leveraging search engines or reading slightly
outdated information from magazines or books. The more recent these pieces of in-
formation are, the more useful they are to developers, e.g., developers could quickly
patch new security loop holes before they get exploited. For these purposes, mi-
croblogging sites are promising sources of information as information shared there
is often recent and informal, providing timely and honest feedback on many recent
issues that various developers find interesting.

Developers often work together in various open source projects hosted in many
software forges.10 Based on projects that developers have worked on, we can build
various support tools that improve the management of projects in these software
forges [805, 806]. These project management support tools can help to better allo-
cate resources (i.e., developers) to tasks (i.e., projects) [805] or predict bad situations
(e.g., project failures) such that appropriate mitigation actions can be taken [806]. In
practice, often such project management tasks are done manually and thus support
tools could reduce the amount of manual effort needed.

In this chapter, we first present information available in various Web 2.0 re-
sources in Section 6.2. We then describe how developers use these Web 2.0 re-
sources in Section 6.3. Next, we review recently proposed automated techniques
that leverage Web 2.0 resources for information search, information discovery, and
project management. We start by summarizing past studies that leverage Web 2.0 for
information search including studies on answering software development questions
and searching for similar projects [343, 841] in Section 6.4. We then summarize
past studies that leverage Web 2.0 sites for information discovery, e.g., [3, 703], in
Section 6.5. We also present past studies that leverage Web 2.0 to support project
management, e.g., [805, 806], in Section 6.6. We describe open problems and future
work in Section 6.7. Finally, we conclude in Section 6.8.

10 Please refer to Chapter 10 of this book

166 Yuan Tian and David Lo

6.2 Web 2.0 Resources

There are various Web 2.0 resources that software developers often use to learn and
exchange information and knowledge. In this section, we highlight several of these
resources.

6.2.1 Software Forums, Mailing Lists and Q&A Sites

Developers often ask and discuss questions in software forums. Other more experi-
enced developers that face the same problems can reply with some answers. These
exchanges of information are documented and thus other developers facing similar
problems in the future can also benefit. There are many software forums available
online. Some forums are specialized such as Oracle OTN forum and DZone. Some
others are general purpose such as CNET and SoftwareTipsandTricks. Figure 6.1
shows the Oracle OTN Forum where many people discuss Java programming.

A software forum is often organized into categories. For example, Figure 6.1
shows that inside Oracle OTN forum, questions and answers are categorized into:
Java Essentials, Java API, etc. Inside Java Essentials, there are more sub-categories:
New to Java, Java Programming, and Training / Learning / Certification. Within each
sub-category, there are many threads. Within each thread, there are many posts. At
times a thread can contain even hundreds of posts. The posts contain questions, an-
swers, or other pieces of information (e.g., positive feedbacks, negative feedbacks,
junk, etc).

Fig. 6.1: Oracle OTN Forum

6 Leveraging Web 2.0 for software evolution 167

Developers of open source projects use mailing lists to communicate and col-
laborate with one another. A mailing list works as a public forum for developers
or users who have subscribed to the list. Anyone in the list can post messages to
other people in the list by sending emails to a public account. Contents of these
messages are usually related with changes made by developers or problems faced
by developers or users during software development or product usage. For example,
from GNOME website developers and users can get information about each mailing
list and decide whether to subscribe to one or more lists.11 These lists are created
for various purpose: some are created for messages related to particular modules
(e.g., “anjuta-devel-list” is for messages related to Anjuta IDE), some are created
for messages related to special events (e.g., “asia-summit-list” is for messages re-
lated to GNOME.Asia Summit organization), some are created not for developers
but for end users (e.g., “anjuta-list” is for messages from users of Anjuta IDE), etc.

Developers also can seek answers for questions from question-and-answer sites.
In general question-and-answer sites like Yahoo! Answers, people can ask ques-
tions about various domains including news, education, computer & internet, etc.
StackExchange12 is a fast-growing network which contains 104 domain specific
question-and-answer sites focusing on diverse topics from software programming
to mathematics and IT security. Among the 104 question-and-answer sites, Stack-
Overflow is the biggest and most famous one. It has more than 5 millions questions
(most of them are related to software development) and more than 2 millions users
since it was launched in 2008.

Fig. 6.2: Question-and-Answer Threads in Stack Overflow

11 mail.gnome.org/mailman/listinfo
12 stackexchange.com

http://mail.gnome.org/mailman/listinfo
http://stackexchange.com

168 Yuan Tian and David Lo

Figure 6.2 shows question-and-answer threads extracted from StackOverflow.
Each question in StackOverflow has a short title that briefly summarizes the ques-
tion. A user who asks the question can assign several tags like “java” according to
the topics of the question. These tags are used to help users to search for similar
questions and their answers. A user who views a question can vote up the question
if he/she thinks the question is useful or vote down it if he/she thinks the question is
unclear. The sum of votes, the number of people who has viewed the question, and
the total number of provided answers are recorded for each question.

6.2.2 Software Blogs & Microblogs

Blogging is one of the typical features of the Web 2.0 era. Similar with home pages,
blogs are created for individuals. They record personal thinking, experience and
stories in a diary-like format. Different from home pages, blogs’ contents change
more often and blogs support discussions by allowing others to post comments.
In addition, the RSS (Really Simple Syndication) technology allows people to not
only link to a page containing a blog but also to subscribe to it. People who have
subscribed to a blog will be informed if the blog’s content has been modified.

Developers are using blogs to share their ideas, knowledge, and experiences on
software development. Usually people find others’ blogs through web search. For
instance, a developer has encountered a problem but lacks experience to solve the
problem; he or she might go to Google Search and seek for solutions using some
keywords. Some of the top returned search results may link to other developers’
blogs where the ways to solve the same or similar problem are presented. By this
means, blogs provide knowledge for the whole community of software developers.

In the recent years, microblogging services are getting popular. Millions of peo-
ple communicate with one another by broadcasting short messages which are made
public to all. Different from traditional blogging services and other social media,
microblogs are usually short and often contain information of very recent news and
events; microblogs are also informal in nature and microbloggers are often unafraid
to express their honest opinions about various topics. Software developers also make
use of this new social media trend. Thus, one could potentially discover various in-
formation from microblogs, e.g., new features of a library, new methodologies to
develop software systems, new conferences, new security loop holes, etc. The in-
formal and timely nature of microblogs suit software development well. In software
development, many new “events”, e.g., releases of new libraries, etc., occur from
time to time. Developers could learn from the wisdom of the masses that are avail-
able in the millions of microblogs about various software relevant topics. Further-
more, a number of studies have shown the important role of informal communica-
tion [108, 343, 675]. Microblogging is yet another kind of informal communication.
Microbloggers can express honest opinions about various libraries, programming
languages, etc. through their microblogs that are available for all to see.

6 Leveraging Web 2.0 for software evolution 169

Fig. 6.3: Microblogs in Twitter

Figure 6.3 shows some sample microblogs (a.k.a. tweets) from Twitter, which
is arguably the largest microblogging site. Microbloggers can post short contents
(at most 140 characters in Twitter) that would then be broadcasted to those that
subscribe to it. These microblogs are also publicly available for all to see. A mi-
croblogger can subscribe to (i.e., follow in Twitter) other microbloggers and get
notified whenever new microblogs are generated. A microblogger can also forward
microblogs to (i.e., retweet in Twitter) others, as well as reply to others’ microblogs.
Microblogs can be tagged with particular keywords (i.e., hashtags in Twitter). For
instance, the microblogs in Figure 6.3 are all tagged with hashtag #csharp.

Developers can include various contents in their microblogs. For example, from
Figure 6.3, the first microblogger shares a tip on visitor pattern. The second mi-
croblogger asks a question, while the third microblogger broadcasts a personal mes-
sage on what he is currently doing.

6.2.3 Software Forges

With the advent of Web 2.0, developers can choose to work on various projects with
many collaborators across the globe. Software forges provide additional support for
this. A software forge, e.g., Google Code, SourceForge, GitHub, etc., hosts hundreds
or even hundreds of thousands of projects. Developers can view these projects, be
aware of development activities happening in them, download and use the projects,

170 Yuan Tian and David Lo

and also contribute code, test cases, bug reports, etc. to the projects. Figure 6.4
shows some projects that are hosted in SourceForge.

Fig. 6.4: Projects in SourceForge

Software forges often provide APIs for others to query activities that happen
within them. With these APIs, much information can be gathered. We can track how
developers work with others across time. We can track the number of downloads.
We can also track new projects and new collaborations that are created over time.
Chapter 10 of this book describes the evolution of projects in software forges.

6.2.4 Other Resources

There are also other Web 2.0 resources like LinkedIn13, Facebook14, Wikipedia15,
Academic.edu16, Foursquare17, Google Talk18, and many more. Many of these re-
sources often contain information about subgroups devoted to specific topics in-
cluding software evolution. For example LinkedIn and Facebook contain profiles
of many software developers. Wikipedia defines many software evolution related
terms. Academic.edu shares research studies including those related to software
evolution. Foursquare provides geospatial locations of people including those of

13 www.linkedin.com
14 www.facebook.com
15 www.wikipedia.org
16 academia.edu
17 foursquare.com
18 support.google.com/talk/?hl=en

http://www.linkedin.com
http://www.facebook.com
http://www.wikipedia.org
http://academia.edu
http://foursquare.com
http://support.google.com/talk/?hl=en

6 Leveraging Web 2.0 for software evolution 171

software developers. These resources also provide a wealth of information that can
potentially be leveraged to improve software evolution activities.

6.3 Empirical Studies

In this section, we review several empirical studies that investigate how Web 2.0 re-
sources have been used by software developers. We categorize these studies accord-
ing to resources that they target, namely: software forums, mailing lists & question-
and-answer sites, software blogs & microblogs, and software forges.

6.3.1 Software Forums, Mailing Lists and Q&A Sites

Rupakheti and Hou analyzed 150 discussion threads from Java Swing forum [738].
They found that API problems recur in software forums. This phenomenon was
leveraged to design an API critic which advises how an API should be used. They
manually categorized the threads into unclear threads, other threads (not related to
layout and composition), application specific requirement threads, and threads that
would benefit from the automated API critic.

Bird et al. constructed a social network from a mailing list [108]. Each node in
the network is an individual and there is an edge between a to b if b replied to a
message that is generated by a. They analyzed more than 100,000 messages from
Apache HTTP Server’s developer mailing list. They found that the out-degree (i.e.,
the number of people that replies to a person) and in-degree (i.e., the number of
people to whom a person has replied to) follow power-law distributions. They also
found that the level of activity in a mailing list is strongly related to the level of
activity in the source code.

Sowe et al. investigated knowledge sharing interactions among knowledge provi-
ders and knowledge seekers in the mailing lists of the Debian project [789]. A
knowledge provider is an expert that helps other participants in the project. A knowl-
edge seeker refers to any participant who asks questions related to software devel-
opment or software usage. They collected messages and replies generated by 3735
developers and 5970 users. They found that knowledge providers and knowledge
seekers interact and share knowledge a lot. Developers generate more replies than
messages while users generated more messages than replies.

Treude et al. analyzed how developers use question-and-answer sites like Stack-
Overflow [854]. The authors collected 15 days of question-and-answer threads and
manually analyzed a smaller set of 385 questions that are randomly sampled from
the collected threads. They divided these questions into different groups and found
that questions that ask for instructions are the most popular questions. They also
found that questions that ask for code review, the questions made by novices, and
abstract questions are answered more frequently than other types of questions.

172 Yuan Tian and David Lo

Nasehi et al. compared high quality and low quality answers on StackOverflow to
learn important attributes of good code examples [634]. An answer is of high qual-
ity if it has been accepted by the asker or it has a relatively high voting score. The
authors sampled 163 question-and-answer threads. Each of them has at least one an-
swer that contains a code example and receives 4 or more points. They summarized
that high quality answers usually contain concise code example, use the context of
the question, highlight important elements, give step-by-step solutions, and provide
links to extra resources.

6.3.2 Software Blogs & Microblogs

Pagano and Maalej investigated how software developers use blogging services [675].
They collected blog posts generated by 11,00 developers from four open source
project communities, namely Eclipse, GNOME, PostgreSQL, and Python. The au-
thors matched the bloggers’ identities to source code committers. They found that
blogggers who are also committers post more frequently than single bloggers who
never commit changes to the source code. They reported that commits are fre-
quently, short, and precise while blog posts are less frequent, longer (14 times longer
than commit), and contain less source code. They also found that developers are
more likely to post blogs after corrective engineering or management tasks than
after forward engineering or re-engineering tasks.

Parnin and Treude studied blog posts that are related to API documentations [680].
In their work, they collected developers’ blog posts by performing Google searches
for all methods’ names in the jQuery API. They then manually categorized the top-
10 returned search results and found that blog posts cover 87.9% of the API meth-
ods. They also found that tutorials and experience reports are the most common
types of blog posts. A tutorial often describes problems to be solved and shows so-
lutions in detailed steps. An experience report describes the experience gained from
handling a problem. Different from the findings reported by Pagano and Maalej that
only 1.8% of blog posts contain source code, this work found that 90% of the blog
posts mentioning API methods contain code snippets. The authors concluded that
these API related blog posts are used to: describe a philosophy of a design approach
or a problem, support a niche community, and store information for bloggers’ future
personal use.

Parnin et al. investigated the motivation and challenges of blogging developer
knowledge [681]. They extracted 55 blogs by performing Google searches using
keywords related to three technology areas: IDE plugin development, mobile devel-
opment, and web development.19 They sent a survey to each of the authors of the
55 blogs and collected 30 responses in the end. They found that developers blog be-
cause it can help them educate employees, gain personal reputation, document their
experiments, and get feedback that can be used to improve their code or product.

19 They choose Eclipse and Visual Studio plugins, Android and iPhone development, and Django
and jQuery development as representatives.

6 Leveraging Web 2.0 for software evolution 173

They also summarized that the biggest challenges for developers to use blogging
services are time and the lack of a reward system. For instance, it takes much time
for authors to write a high quality blog; it is also time consuming to manage all blog
posts, such as porting blogs between systems and filter spam comments.

Bougie et al. conducted an empirical work to understand how developers use
Twitter to support communication in their community and what they talk about
on Twitter [136]. They sampled 68 developers from three project communities:
Linux, Eclipse, and MXUnit. By analyzing 600 microblogs generated by these 68
microbloggers and comparing them with microblogs generated by normal Twitter
users, they found that microblogs generated by sampled developers contain more
conversations and information sharing. They categorized these 600 microblogs into
four categories: software engineering-related, gadgets and technological topics, cur-
rent events outside technical topics, and daily chatter.

We and a few others extended the work by Bougie et al.’s [845]. We analyzed
300 microblogs (a.k.a. tweets) that are tagged with software related hashtags (i.e.,
#csharp, #java, #javascript, #dotnet, #jquery, #azure, #scrum, #testing, and #open-
source). Compared with Bougie et al’s sampling method that extracts all microblogs
generated by a special group of developers, these 300 microbloggs are more rele-
vant to software development. We manually analyzed the contents of the 300 mi-
croblogs and categorized them into ten categories: commercials, news, tools&code,
q&a, events, personal, opinions, tips, jobs, and miscellaneous. We found that jobs,
news, and q&a are the top 3 most popular categories. We also calculated the percent-
ages of microblogs that are retweeted for each category and found that the most dif-
fused microblogs are from events and commercials categories. Some examples are:
“. . . vote for Superdesk in Ashoka Changemakers Global Innovation Contest. . . .”
(events), “. . . GlobalStorage for #dotnetnuke 6 #azure, . . . is 15% OFF . . .” (com-
mercials). Personal microblogs also get retweeted. The least diffused categories,
aside from miscellaneous, are: tools&code, jobs, and q&a. Although these tweets
are many in number, they are not widely diffused in the Twitter network.

6.3.3 Software Forges

Madey et al. analyzed open source projects that are hosted in SourceForge [552].
They analyzed 39,000 projects which are developed by more than 33,000 develop-
ers. They created a collaboration social network where developers are nodes and
collaborations among developers (i.e., two or more developers work on the same
project) are edges. A modified spanning tree algorithm was used to extract clusters
(i.e., groups) of connected developers. Based on this collaboration social network
they found that power-law relationships exist for project sizes (i.e., number of de-
velopers in a project), project memberships (i.e., number of projects that a developer
joins), and cluster sizes (i.e., number of developers in a cluster).

Xu et al. investigated social network properties of projects and developers in
SourceForge [932]. They found that the networks exhibit small world phenomena

174 Yuan Tian and David Lo

and are scale free. Small world phenomenon refers to a situation where each node
in a network is connected to other nodes in the network by a small number of in-
termediary nodes. Scale free network refers to a situation where degree distribution
of nodes follows a power-law distribution. For scale free networks, preferential at-
tachment (i.e., probability of a new node to link to an existing node is proportional
to the degree of the existing node) exists.

Ricca and Marchetto investigated 37 randomly selected projects in Google Code
and SourceForge [716]. They investigated “heroes” in these projects; heroes refer
to important developers that have critical knowledge on particular parts of a soft-
ware system. They found that heroes are a common phenomenon in open source
projects. They also reported that heroes are faster than non-heroes in completing
change requests.

Dabbish et al. investigated a different software forge namely GitHub [210]. Dif-
ferent from SourceForge, GitHub is more transparent, i.e., other developers can
track and follow the activities of other developers or changes made to a project.
They interviewed a set of GitHub users to investigate the value of transparency.
They found that transparency is beneficial for various reasons including: developer
recruitment, identification of user needs, management of incoming code contribu-
tions, and identification of new technical knowledge.

6.4 Supporting Information Search

In this section, we describe several studies that leverage Web 2.0 to support infor-
mation search. We first describe two of our previous studies that consider two in-
formation search scenarios, namely searching for answers in software forums [343],
and searching for similar applications in software forges [841]. We then highlight
other studies.

6.4.1 Searching for Answers in Software Forums

Motivation. A thread in a software forum can contain a large number of posts. Our
empirical study on 10 software forums found that a thread can contain up to 10,000
posts [343]. Scanning for relevant posts in these threads can be a painstaking pro-
cess. Likely many posts are irrelevant to a user query. Some posts answer irrelevant
questions. Some other posts are relevant but do not provide an answer to the problem
that a developer has in mind. Furthermore, even after an exhaustive investigation,
there might be no post that answers relevant questions or a correct answer might not
have been provided in the forum.

To aid in searching for relevant answers, developers typically make use of gen-
eral purpose search engines (e.g., Google, Bing, etc.) or customized search engines
available in software forums. General purpose search engines return many web-

6 Leveraging Web 2.0 for software evolution 175

pages. Often many of them are not relevant to answer the questions that developers
have in mind, e.g., searching for Java might return the island Java in Indonesia or the
Java programming language. Customized search engines are likely to return more
relevant results however the number of returned results can still be too many. For
example, consider searching the Oracle forum with the following question: “How to
get values from an arraylist?”. Figure 6.5 shows the returned results. There are 286
threads returned and some threads contain as many as 30 posts. Developers would
then need to manually investigate and filter returned results to finally recover posts
that answer the question. This could be very time consuming. Thus, we need a more
advanced solution to help find relevant posts from software forums.

Fig. 6.5: Search results (268 of them) from Oracle forum for query: “ How to get values from
arraylist?”

Approach. Our proposed approach first labels posts in software forums with prede-
fined tags; it then uses these tags to return relevant answers from threads in software
forums. It utilizes two main components: tag inference engine and semantic search
engine. Our tag inference engine automatically classifies posts in software forums
with one of the following categories: answers, clarifying questions, clarifying an-
swers20, positive feedback, negative feedback, and junk (e.g., “today is Friday”).
With the inferred tags, developers could focus on the answers that can be hidden
deep inside long threads rather than investigating all the posts. With the inferred
tags, questions with correct answers (identified based on the corresponding posi-
tive feedback) can also be identified. Our semantic search engine enhances standard
search engine by making use of the inferred semantic tags to return more relevant
answers.

To build a tag inference engine that classifies posts into the seven categories, we
follow these steps:

1. We represent each post as a feature vector. To do this, we extract the text in the
post and record the author of the post. The textual content of the post is then sub-
jected to the following pre-processing steps: stopword removal (i.e., removal of

20 Answers to clarifying questions.

176 Yuan Tian and David Lo

non-descriptive words) and stemming (i.e., reduction of a word to its root form).
For example, the words “reads” and “reading” are reduced to “read”. The resul-
tant words are then weighted based on their term frequency (i.e., the number of
times the words appear in the post). These together with the author information
are used as features (a.k.a. a feature vector) that represent a post.

2. Given a set of posts and their labels, we train a machine learning model that dis-
criminates posts belonging to each of the 7 categories using Hidden Markov Sup-
port Vector Machine SV MHM) [443]. We take the representative feature vectors
that characterize the training set of posts to train this machine learning model.
SV MHM classifies a post not only based on its content and author but also the
previous few posts. This is particularly effective as the category of a post is often
dependent on the category of the previous few posts, e.g., if the previous post is
a question, the next post is likely to be an answer or a clarifying question rather
than a feedback.

The learned categories could be used to help conventional search engines. A
conventional search engine takes in a set of documents (i.e., forum posts in our
settings), pre-processes each document into a bag of words, and indexes each doc-
ument. When a user enters a query, the index is used for fast retrieval of relevant
documents in the document corpus. We enrich conventional search engines by lever-
aging the semantic information available from the inferred tags. To create this se-
mantic search engine, we embed our tag inference engine to infer tags of the posts
in the document corpus. These tags are then used to filter irrelevant posts, e.g., junk.
Only documents that are potentially relevant would be returned.
Experiments. Three different forums are analyzed in our experiments: SoftwareTip-
sandTricks21, DZone22, and Oracle23. We infer the labels of 6068 posts from the
forums manually - 4020, 680, and 1368 posts are from SoftwareTipsandTricks,
DZone, and Oracle, respectively. Approximately half of the posts are used for train-
ing (i.e., 2000, 300, 620 posts from SoftwareTipsandTricks, DZone, and Oracle,
respectively) and the remaining posts are used for testing. We build a search engine
corpus using the same sets of posts and consider a set of 17 software queries.24 We
compare our semantic search engine with a standard information retrieval toolkit 25.
We consolidate results returned by the standard information retrieval toolkit and
our semantic search engine. The consolidated results are then given to five human
evaluators who would give a rating of 2, for correct answers, 1, for partially correct
answers, and 0, for irrelevant answers.

We first evaluate the accuracy of our tag inference engine in terms of precision,
recall, and F-measure (i.e., the harmonic mean of precision and recall) [557]. We use
the manually inferred tags as the ground truth. The results are tabulated in Table 6.1.
We can achieve an F-measure of 64-72%. Next, we evaluate the usefulness of our

21 www.softwaretipsandtricks.com
22 forums.dzone.com
23 forums.sun.com/index.jspa
24 E.g., “How to read files in Java?”, please refer to [343] for detail.
25 www.lemurproject.org

http://www.softwaretipsandtricks.com
http://www.lemurproject.org
http://forums.dzone.com
http://forums.sun.com/index.jspa

6 Leveraging Web 2.0 for software evolution 177

semantic search engine that leverages inferred tags. We compare our approach with
a conventional search engine in terms of mean average precision (MAP) over a set
of 17 queries [557]. The mean average precision a the set of queries is the mean
of the average precision per query; the average precision of a query is computed
by averaging the precision at the top-k positions, for different values of k. With
our semantic search engine we can accomplish an MAP score of 71%, while the
conventional search engine can only achieve an MAP score of 18%.

Table 6.1: Precision, Recall, and F-measure Results of Our Proposed Tag Inference Engine

Dataset Precision Recall F-measure
SoftwareTipsandTricks 73% 71% 72%
DZone 68% 61% 64%
Oracle 71% 67% 69%

6.4.2 Searching for Similar Applications in Software Forges

Motivation. Web search engines allow users to search for similar webpages (or doc-
uments in the Web). Similarly, developers might want to find similar applications
(i.e., applications that serve similar purposes). Finding similar applications could
help various software engineering tasks including rapid prototyping, program un-
derstanding, plagiarism identification, etc. There have been a number of approaches
that could retrieve applications that are similar to a target application [455, 581].
McMillan et al. proposed JavaClan [581] which has been shown to outperform
MUDABlue [455]. JavaClan leverages similarities of API calls to identify similar
applications. API calls within applications are treated as semantic anchors which
are used to identify similar applications to a target application. However, the accu-
racy of these approaches can still be improved. In their user study, JavaClan only
achieved a mean confidence score of around 2.5 out of 4.

Recently, many developers tag various resources with labels. This phenomenon
is referred to as collaborative tagging. Many software forges allow users to tag var-
ious applications based on their perceived functionalities. In this study, we leverage
collaborative tagging to find similar applications. Our goal is to improve the accu-
racy of the state-of-the-art approach.
Approach. Our approach, shown in Figure 6.6, consists of several steps including:
data gathering, importance weighting, and similar application retrieval. We describe
these steps as follows:

1. Data Gathering. We download a large number of applications as the base corpus
to detect similar applications. In this study we invoke the API that comes with

178 Yuan Tian and David Lo

Data

Gathering

Importance

Weighting

Similar

Application

Retrieval

User Query

Similar

Applications

Fig. 6.6: Similar Application Retrieval: Block Diagram

Fig. 6.7: Example Tags from SourceForge

SourceForge26 to collect tags from a large number of applications hosted there.
An example of tags given to an application in SourceForge is shown in Figure 6.7.
In this study, we treat each tag as a distinct entity and we ignore the semantic
relationships between tags.

2. Importance Weighting. Not all tags are equally important. Some tags are very
general and are used to label a large number of applications. These tags are not
very useful for the retrieval of similar applications as otherwise all applications

26 sourceforge.net/apps/trac/sourceforge/wiki/API

http://sourceforge.net/apps/trac/sourceforge/wiki/API

6 Leveraging Web 2.0 for software evolution 179

would be considered similar. On the other hand, tags that are only used by a few
applications are more important for retrieval as they can help to differentiate one
application from the others.
Based on the above rationale, we assign importance weights to tags based on
applications tagged by them. If a tag is used by many different applications,
it is assigned a low weight. On the other hand, if a tag is used by only a few
applications, it is assigned a high weight. We use the concept of inverse document
frequency first proposed in the information retrieval community [557] to assign
weights to tags. Formally, the weight of a tag T is given by Equation 6.1 where
Applications(T) refers to the size of the application set tagged by T .

weight(T) =
1

Applications(T)
(6.1)

3. Similar Application Retrieval. Each application is represented as a vector of its
tags’ weights. The similarity between two applications can then be measured
based on the similarities of their representative vectors. Various similarity mea-
sures can be used. We use cosine similarity which is a standard similarity metrics
in information retrieval [557]. The cosine similarity of two applications A and B
is given by Equation 6.2 where A.Tags and B.Tags refer to the tags for applica-
tion A and B respectively. From the numerator of the above formula, the cosine
similarity of A and B is higher if they share many common tags that have high
importance weights. The denominator of the formula normalizes cosine similar-
ity to the range of zero to one. If an application is tagged with many tags, the
chance for it to coincidentally share tags with other applications is higher. To
address this, the denominator considers the number and weights of the tags that
are given to each application.

CosSim(A,B) =
ΣT∈(A.Tags

⋂
B.Tags).weight(T)2√

ΣT∈A.Tags.weight(T)2×
√

ΣT∈B.Tags.weight(T)2
(6.2)

Given a target application A, our system returns the top-n applications in our
corpus that are most similar to A based on their cosine similarities.

Experiments. To investigate the effectiveness of our approach, in our data gather-
ing step we collect 164,535 applications (i.e., projects) from SourceForge. These
applications form our corpus to recommend similar applications. We use the fol-
lowing 20 queries: bcel, bigzip, certforge, chiselgroup, classgen, color-studio, con-
fab, drawswf, genesys-mw, javum, jazilla, jsresources, opensymphony, psychopath,
qform, redpos, sqlshell, tyrex, xflows, and yapoolman. Each of the above queries is
an application. The 20 queries were also used in evaluating JavaClan which is the
state-of-the-art approach to recommend similar applications [581].

We compare our approach with JavaClan. We use our approach and JavaClan to
recommend 10 applications. We then perform a user study to evaluate the quality
of the recommendations. We ask users to rate each recommendation using a 5-point

180 Yuan Tian and David Lo

Likert scale [19]: 1. strongly disagree (i.e., the query and recommended applications
are very dissimilar), 2. disagree, 3. neither agree or disagree, 4. agree, and 5. strongly
agree (i.e., the query and recommended applications are very similar). Based on
user ratings, we use the following three metrics to measure the effectiveness of our
approach and JavaClan (the last two metrics have been used to evaluate JavaClan):

1. Success Rate. We deem a top-10 recommendation to be successful if at least one
of the recommendations is given a rating 3 or above. The success rate is given by
the proportion of top-10 recommendations that are successful for the queries.

2. Confidence. The confidence of a participant to a recommendation is reflected by
his/her rating. We measure the average confidence which is the average of the
ratings given by the participants for the top-10 recommendations.

3. Precision. The precision of a top-10 recommendation is the proportion of recom-
mendations in the top-10 recommendation that are given ratings 4 or 5. We mea-
sure the average precision across the top-10 recommendations for the queries.

Table 6.2 shows the success rate, average confidence, and average precision of
our proposed approach and JavaClan. In terms of success rate, our approach outper-
forms JavaClan: the success rate is increased by 23.08%. Our approach also achieves
a higher average confidence than JavaClan. A Mann-Whitney U test, which is a non-
parametric test to check the significance of a difference in means, shows that the dif-
ference in average confidence is significant (with a p-value of 0.001). Furthermore,
out of the 20 queries, in terms of average confidence per query, our approach out-
performs JavaClan in 13 queries and is equally as effective as JavaClan in 5 queries.
Furthermore, our approach achieves a higher average precision score than JavaClan.
We have also performed a A Mann-Whitney U test. The result shows that the dif-
ference in mean is not significant (with a p-value of 0.488). Furthermore, out of the
20 queries, in terms of precision per query, our approach outperforms JavaClan in 7
queries and is equally effective as JavaClan in 8 queries.

Table 6.2: Effectiveness of Our Proposed Approach and JavaClan: Success Rate,
Confidence, and Precision

Approach Success Rate Avg. Confidence Avg. Precision
Proposed Approach 80% 2.02 0.115
JavaClan 65% 1.715 0.095

6.4.3 Other studies

Aside from our studies, there are a number of other studies that also leverage Web
2.0 resources to help various software evolution activities. We highlight some of
these studies in brief in the following paragraphs.

6 Leveraging Web 2.0 for software evolution 181

Thummalapenta and Xie proposed Parseweb which helps developers to reuse
open source code [839]. Parseweb accepts as input a source object type and a des-
tination object type. It then generates a sequence of method invocations that can
convert the source object type to the destination object type. To realize its function,
Parseweb interacts with a software forge namely Google Code and leverages the
search utility available in it.

Thummalapenta and Xie proposed a technique named SpotWeb that detects
hotspots and coldspots in a framework or API [838]. Hotspots refer to parts of the
framework or API that are frequently used. Coldspots refer to parts of the framework
or API that are rarely used. Their proposed technique works on top of Google Code
search. It works by analyzing framework code and the framework usages among the
projects in Google Code software forge. Experiments were conducted on a number
of frameworks with promising results.

McMillan et al. proposed Portfolio which is a search engine that finds functions
in a large code base containing numerous projects [582]. Their proposed search
engine takes in user inputs in the form of free form natural language descriptions
and returns relevant functions in the code base. Two information retrieval solutions
are used to realize the proposed approach namely page rank and spreading activa-
tion network. Their search engine analyzes a software forge containing hundreds of
projects from FreeBSD.

McMillan et al. proposed a tool named Exemplar (EXEcutable exaMPLes ARchi-
ve) which takes high-level concepts or descriptions and returns applications that re-
alize these concepts [579]. The proposed approach ranked applications in a large
application pool by considering several sources of information. These include tex-
tual description of the application, list of API methods that the application calls, and
dataflow relations among the API method calls. Examplar had been evaluated on a
set of 8,000 projects containing more than 400,000 files that are hosted in Source-
Forge with promising results.

Ponzanelli et al. proposed a technique that leverages crowd knowledge to recom-
mend code snippets to developers [690]. Their tool named Seahawk is integrated to
the Eclipse IDE and recommends code snippets based on the context that a devel-
oper is working on. To achieve this, Seahawk generates a query from the current
context in the IDE, mines information from StackOverflow question-and-answer
site, and recommends a list of code snippets to developers.

6.5 Supporting Information Discovery

In this section, we describe studies that develop tools that facilitate developers in
discovering new information from Web 2.0 resources. We first highlight our visual
analytics tool that supports developers in navigating through the mass of software-
related microblogs in Twitter [3]. We also present our analytics tool that can auto-
matically categorize microblogs to support information discovery [703]. We then
highlight other studies.

182 Yuan Tian and David Lo

6.5.1 Visual Analytics Tool for Software Microblogs

Motivation. Although microblogging is becoming a popular means to disseminate
information, it is challenging to manually discover interesting software related in-
formation from microblogs. The first challenge comes from the sheer size of mi-
croblogs that are produced daily. Storing all microblogs is not an option. Second,
many microbloggers do not microblog about software related topics. Indeed only
a minority of microbloggers are software developers. Thus there is a need to filter
many unrelated microblogs to recover those that are relevant to software develop-
ment. Third, the large number of microblogs might make it hard for developers to
“see” trends in the data. Motivated by these challenges, there is a need to develop an
approach that can harvest and aggregate thousands or even millions of microblogs.
It should also allow developers to perform visual analytics such that various kinds
of trends and nuggets of knowledge can be discovered from the mass of microblogs.
In this study, we propose such an approach.
Approach. We propose a visual analytics platform that filters and aggregates soft-
ware related microblogs from Twitter. Our proposed platform identifies topical and
longitudinal trends. Topical trends capture relative popularity of similar topics, e.g.,
relative popularity of various libraries. Longitudinal trends capture the popularity of
a topic at various time points, e.g., the number of times people microblog about PHP
at various time points. These trends can provide insight to developers, e.g., devel-
opers can discover popular programming languages to learn, or discover interesting
events (e.g., notification of important security holes, etc.) in the past 24 hours.

Fig. 6.8: Proposed Approach: Visual Analytics Platform

Our platform, illustrated in Figure 6.8, has 3 blocks: User Base Creator, Mi-
croblog Processor, and User Interface. User Base Creator recovers microbloggers
that are likely to microblog about software related topics. Microblog Processor
downloads and pre-processes microblogs from Twitter. It also identifies topical and
longitudinal trends from the microblogs. User Interface presents the trends to end
users as a web interface which allows users to analyze the trends and the underlying
microblogs.

1. User Base Creator first processes a set of seed users which are well-known mi-
crobloggers that often microblog about software topics. We take the list of seed
users available in [43]. In Twitter, a user can follow other users and receive up-

6 Leveraging Web 2.0 for software evolution 183

dates on microblogs made by the other users. Using these follow links, we expand
the seed users to include microbloggers that follow at least n seed users (by de-
fault we set the value n to 5). We consider this user base as those that are likely
to microblog about software related topics.

2. Microblog Processor uses Twitter REST API to continually download microblogs.
We then perform standard text pre-processing including tokenization, stopword
removal, and stemming. Some technical jargons, e.g., C#, C++, etc. are manually
identified. These jargons are not stemmed. Since the identification of jargons is
done manually, we focus on jargons corresponding to topics whose trends we
would like to visualize. There are jargons that we do not identify and they are
treated as regular words and are stemmed. We then index the resultant set of
microblogs using Apache Solr.27

Next, we perform trend analysis and compute both topical and longitudinal
trends. To compute topical trend, we manually select a set of 100 software-related
topics, e.g., JavaScript, Scrum, etc., from relevant Wikipedia pages and popular
StackOverflow’s tags. We then compute for each topic the number of microblogs
mentioning the topic at a specific time period. Topics that are more frequently
mentioned are more popular than others. To compute the longitudinal trend of a
particular topic or keyword, we compute the number of tweets containing it at
various points in time. We thus could compute the popularity of various topics
and the popularity of a topic at various time points.

3. User Interface presents the resultant topical and longitudinal trends. To present
topical trends, we display various topics using fonts of various sizes. The size
of the font depends on the popularity (i.e., frequency) of the corresponding topic
in the microblogs. To present longitudinal trends, for each topic, we plot a line
graph that shows the popularity of the topic at various time points.

Experiments. Our dataset consists of approximately 58,000 microbloggers, 76 mil-
lion microblogs, and 18 million follow links.

With topical trend analysis, popular topics of interest can be highlighted to users.
Figure 6.9 shows our topical trend user interface. It shows the relative popularity
of various topics. From the interface, users can find out that JavaScript, Ruby, and
Java are the most popular programming language topics in the microblogs that we
collected in a 24-hour period ending on the 25th of November 2011. For framework,
libraries, and systems, Apple, COM, and JQuery are the most popular topics.

With longitudinal trend analysis, the popularity of a topic across different time
points can be captured and shown to users. Figure 6.10 shows our longitudinal trend
user interface for “JavaScript”. We can notice that the number of microblogs related
to JavaScript varies over time. We also notice a number of peaks. The highest peak is
for the 10th of October 2011. At this date, Google released a new programming lan-
guage called Dart [829]. Programs written in Dart can be compiled into JavaScript.
We also notice that the number of microblogs related to JavaScript changes period-
ically - people tend to microblog more about JavaScript on some days than other

27 lucene.apache.org/solr

http://lucene.apache.org/solr

184 Yuan Tian and David Lo

days. Figure 6.11 shows another longitudinal trend for “Scrum”. We note that, sim-
ilar to the popularity of JavaScript, the popularity of Scrum is also periodic. We do
not notice much anomaly in the Scrum longitudinal trend though. In the future, it
is interesting to develop approaches that can automatically highlight anomalies and
recover important events.

Fig. 6.9: Topical Trend User Interface

Fig. 6.10: Longitudinal Trend User Interface for “JavaScript”

6.5.2 Categorizing Software Microblogs

To leverage microblogging in software evolution tasks, we need to first understand
how microblogging is currently used in software related contexts. One way to do
this is to categorize software related microblogs. We present our machine learning
approach that automatically assigns category labels to microblogs.
Motivation. By subscribing to and reading microblogs written by other developers,
a developer can discover much information, e.g., a new programming trick, a new

6 Leveraging Web 2.0 for software evolution 185

Fig. 6.11: Longitudinal Trend User Interface for “Scrum”

API, etc. Unfortunately, most of the microblogs are not informative [629]. Even if
they are informative, they might not be relevant to engineering software systems.
Our manual investigation on a few hundreds microblogs tagged with software re-
lated hashtags (see Section 6.3.2) shows that most of the microblogs belong to the
category: jobs. They are job advertisements and are not relevant to engineering soft-
ware systems. Thus, many interesting microblogs relevant to engineering software
systems are buried in the mass of other irrelevant microblogs. In this work, we build
a machine learning solution that can automatically differentiate relevant and irrele-
vant microblogs.
Approach. The framework of our proposed approach is shown in Figure 6.12. It
works in two phases: training and deployment. In the training phase, the goal is to
build a machine learning model (i.e., a discriminative model) that can discriminate
relevant and irrelevant microblogs. In the deployment phase, this model is used to
classify an unknown microblog as relevant or irrelevant. Our framework consists
of 3 main blocks: webpage crawler, text processor, and classifier. A microblog can
contain a URL; for such microblogs the webpage crawler block downloads the con-
tent of the webpage pointed by the URL. Our text processor block converts textual
content in the microblogs and downloaded webpages’ titles into word tokens after
standard information retrieval pre-processing steps. These word tokens become fea-
tures for our classifier which constructs a discriminative model. The model is then
used to predict if a microblog is relevant or not.

We elaborate the webpage crawler, text processor, and classifier blocks as fol-
lows:

1. Webpage Crawler. A microblog in Twitter contains a maximum of 140 charac-
ters. To express longer contents, microbloggers often include a URL to a web-
page, containing expanded content, in the microblog. Services like bit.ly are of-
ten used to shorten the URL. Information contained in the webpages pointed by
these URLs can help to classify the relevance of the microblog. Thus, we want
to download these external webpages. Our webpage crawler block performs this
step by first checking if a microblog contains a URL. It uses a regular expres-
sion to detect this. It then expands any shortened URL into the original URL by
checking the HTTP header. Finally, it downloads the webpages. It then extracts
the titles of these webpages as they provide succinct yet very informative con-

186 Yuan Tian and David Lo

Training

Data

Text Processor

Classifier

Test Data

Webpage Crawler

Discriminative

Model
Prediction

Training Phase Deployment Phase

Fig. 6.12: Proposed Approach: Microblog Relevancy Categorization

tents. The body of a webpage is often long and contain extraneous information
(e.g., advertisements, navigation links, etc.).

2. Text Processor. This block processes the text contents of the microblogs and
webpage titles. It first removes stop words based on Natural Language Toolkit
(NLTK)’s stopword list.28 Next, it reduces each word to its root form (i.e., stem-
ming) by using Porter stemmer [692]. Finally, each pre-processed word is treated
as a feature and we combine these words to form a feature set that characterize a
given microblog.

3. Classifier. This block takes in the feature sets, produced by the text processor
block, of a set of microblogs whose relevancy label is known (i.e., relevant or
irrelevant). It then constructs a discriminative model that differentiates relevant
from irrelevant microblogs. We make use of support vector machine (SVM) [612]
to construct the discriminative model. SVM has been widely used in past studies
on software mining [489, 802]. SVM views a microblog as a point in a multi-
dimensional space where each feature is a dimension. It then creates a hyper-
plane that best separates feature sets of the relevant microblogs with those of the
irrelevant microblogs. This hyperplane is the discriminative model which is used
in the deployment phase to assign relevancy labels to other microblogs.

Experiments. We use a dataset consisting of 300 microblogs which are tagged with
either one of the following 9 hashtags: #csharp, #java, #javascript, #.net, #jquery,
#azure, #scrum, #testing, and #opensource. Although the dataset does not cover all
kinds of microblogs and hashtags, it is a good starting point to test the effectiveness
of our proposed approach. These microblogs have been grouped into 10 categories

28 nltk.org

http://nltk.org

6 Leveraging Web 2.0 for software evolution 187

listed in Table 6.3 (see [845]). Here, to create the ground truth data to evaluate
the effectiveness of our approach, we manually re-categorize these 300 microblogs
into 2 classes: relevant and irrelevant. The distribution of relevant and irrelevant
microblogs across the 10 categories is shown in Table 6.4.

Table 6.3: Microblog Categories

Category Details
1. Commercials Advertisements about a commercial product or a company
2. News Objective reports
3. Tools & Code Sharing of code and/or links to open source tools
4. Q&A Questions or links to questions in Q&A sites
5. Events Notification of particular events or gatherings
6. Personal Personal messages, e.g., ramblings about programming, etc.
7. Opinions Subjective expressions of likes or dislikes
8. Tips Advice about a particular problem, e.g., how to do a particular

programming task, etc.
9. Jobs Job advertisements
10. Misc. Other kinds of microblogs. This includes microblogs whose con-

tents are unclear.

Table 6.4: Relevance Per Microblog Category

Category Proportion of Relevant Microblogs
Tools & Code 100%
Tips 100%
Q&A 86.4%
Events 45.5%
Opinions 42.9%
Commercials 40%
News 29.5%
Personal 0%
Jobs 0%
Misc. 0%

Using the above data, we perform a 10-fold cross validation, and measure the
precision, recall and F-measure of our proposed approach. In 10-fold cross valida-
tion, 90% of the data is used for training and only 10% is used for testing. We would
like to investigate the sensitivity of our approach on the amount of training data.The
experiment shows that we can predict the relevancy of a microblog with 74.67%
accuracy, 76% precision, 67.38% recall, and 71.43% F-Measure.

Next, we investigate the effectiveness of our approach for each of the ten mi-
croblog categories. The result is shown in Table 6.5. It shows that we can more ac-
curately predict relevancy labels of jobs, personal, Q & A, tools & code, opinions,
and misc categories. Our approach needs to be further improved for tips category

188 Yuan Tian and David Lo

(low precision), and events category (low precision and recall). For the events cate-
gory, the microblogs are more ambiguous and it is harder to predict if a microblog
is relevant or not. In the future, we plan to use other approaches including sentiment
analysis [677] to improve the accuracy of our proposed approach.

Table 6.5: Effectiveness Per Microblog Category

Category Accuracy Precision Recall F-Measure
Jobs 100% 0% 0% 0%
Personal 93.8% 0% 0% 0%
Q&A 79.6% 84.2% 91.4% 87.7%
Tools & Code 79.5% 79.5% 100% 88.6%
Opinions 76.2% 55.6% 83.3% 66.7%
Misc. 72% 0% 0% 0%
Tips 48.5% 48.5% 100% 65.3%
Commercials 60% 50% 50% 50%
News 54.5% 61.5% 34.8% 44.4%
Events 45.5% 20% 33.3% 25%

For the above results, we make use of 10-fold cross validation. Then we would
like to investigate the sensitivity of our approach on the amount of training data. For
this, we perform k-fold cross validation, where k is less than 10. We vary k from 2 to
9 and show the resulting accuracy, precision, recall, and F-measure for these values
of k in Table 6.6. We notice that the F-measure scores do not vary much, this shows
that our framework is effective enough on different amount of training data.

Table 6.6: Results using Different Amount of Training Data

k Accuracy Precision Recall F-Measure
9 75.43% 75.19% 70.92% 72.99%
8 74.29% 74.62% 68.79% 71.59%
7 73.98% 74.05% 68.79% 71.32%
6 74.33% 73.88% 70.21% 72%
5 73.67% 74.22% 67.38% 70.63%
4 75% 75.78% 68.79% 72.12%
3 74.67% 74.44% 70.21% 72.26%
2 75% 75.78% 68.79% 72.11%

6.5.3 Other studies

There are a number of other studies that leverage Web 2.0 resources for information
discovery. We highlight a few of them in brief in the following paragraphs.

6 Leveraging Web 2.0 for software evolution 189

Hens et al. extracted frequently asked questions (FAQs) from mailing lists and
software forums [389]. They employed a text mining approach that utilizes text
pre-processing techniques and Latent Dirichlet Allocation (LDA) which is a topic
modeling technique. After a topic model was learned from the mailing lists and
software forums, several processing phases were employed to identify question and
answer pairs that are associated with a topic, discard topics that are unfocused, and
process the remaining question and answer pairs to improve their readability. They
had investigated their proposed approach on mailing lists of 50 popular projects
listed in ohloh.net.

Lungu et al. proposed a visualization tool named Small Project Observatory that
analyzes projects in a software forge [548]. With their visualization tool, developers
can investigate the evolution of project size (in terms of the number of classes), the
level of activity (in terms of the number of commits) occurring within a repository
over time, the dependencies among projects, the collaborations among developers,
and many more. They have deployed their visualization tool on a software forge
owned by Soops b.v, which is a Dutch software company, with promising results.

Sarma et al. proposed Tesseract which is a visualization tool that enables one to
explore socio-technical relationships in a software project [746]. Tesseract simul-
taneously shows various pieces of information to users including: developers, their
communications, code, and bugs. Tesseract also supports interactive explorations -
it allows users to change various settings, filter information, highlight information,
and link information in various ways. Tesseract had been evaluated on the GNOME
project via a user study and the result is promising.

6.6 Supporting Project Management

In this section, we highlight how Web 2.0 resources could be leveraged to aid project
management activities. Project management activities (e.g., planning, organizing,
and managing resources) need to be performed repeatedly as software evolves over
time. We first highlight studies that leverage software forges for the recommendation
of developers to a project [805] and prediction of project success [806]. We also
describe other related studies.

6.6.1 Recommendation of Developers

Motivation. It is a challenge to find compatible developers as not everyone works
equally well with everyone else. Often there are hundreds or even thousands of de-
velopers. It is hard for a manager to know everyone well enough to make good rec-
ommendations. Past studies only recommend developers from a single project to fix
a particular bug report [819]. Thus there is a need for a tool that can help recommend

190 Yuan Tian and David Lo

developers based on their past socio-technical behaviors and skills. In this work we
focus on recommending developers from a software forges (i.e., SourceForge).
Approach. Our approach consists of 2 main steps: Developer-Project-Property
(DPP) graph construction, and compatibility scores computation. In the first step,
we represent the past history of developer interactions as a special Developer-
Project-Property (DPP) graph. In the second step, given a developer we compute
compatibility scores of the developer with other developers in the DPP graph. We
propose a new compatibility metric based on random walk with restart (RWR). We
elaborate the above two steps in the following paragraphs.

Given a set of developers, their past projects, and the project properties, we con-
struct a DPP graph. There are three node types in a DPP graph: developers, projects,
and project properties. We consider two project properties: project categories and
project programming languages. There are two types of edges in a DPP graph:
one type links developers and projects that the developers have participated in be-
fore, another links projects and their properties. A developer can work on multiple
projects. A project can have multiple properties: it can be associated with multi-
ple categories and/or multiple programming languages. For forges where only one
programming language is supported, other properties aside from programming lan-
guage can be considered, e.g., tags [855], libraries used, etc.. Figure 6.13 gives an
example of a DPP graph which is a tripartite graph.

D1

D2

D3

D4

P1

P2

P3

P4

C1

C2

L1

L2

L3

Developers Projects Properties

Categories

Programming

Languages

Fig. 6.13: Example Developer-Project-Property (DPP) Graph

After a DPP graph is constructed, we can compute compatibility scores between
each pair of developers. A more compatible pair of developers should be assigned
a higher score than a less compatible pair. Intuitively, a good compatibility metric
should satisfy the following:

6 Leveraging Web 2.0 for software evolution 191

1. A pair of developers that have worked together in many joint projects are more
likely to be compatible than another pair that have not worked together before.

2. A project is characterized by its properties: categories and programming lan-
guages. Intuitively, developers that have worked on similar projects (i.e., differ-
ent projects of the same/similar properties) are more likely to be more compatible
than those that have worked on completely unrelated projects.

3. Developers might not have worked together before. However, they might have a
common collaborator. Developers with many common collaborators developing
similar projects are more likely to be more compatible than “complete strangers”.
The same is true for collaborators of collaborators, albeit with lower impact on
compatibility.

The above describes three qualitative criteria for a good compatibility metric. We
find that computing node similarity using random walk with restart (RWR), which
was first proposed for web search engines in 1998 [676], fits the three criteria. Given
a developer node d in the DPP, by performing many random walks with restart start-
ing from developer node d, many nodes are visited. Some nodes are visited more
often than other nodes. RWR assigns scores to these other nodes based on the prob-
ability that these nodes are visited during RWR starting from node d. After RWR,
developers with higher scores are more likely to have worked with developer d on
many common projects, or they have worked on projects with similar properties,
or they share many common collaborators or collaborators of collaborators. Given
the target developer d, we sort the other developers based on their RWR scores, and
return the top-k most compatible developers.
Experiments. To evaluate the effectiveness of our proposed developer recommenda-
tion approach, we analyze projects in SourceForge. We make use of the curated data
collected by Van Antwerp et al. [40].29 We analyze the curated data collected from
May 2008 until May 2010. Each month, Antwerp et al. release a snapshot of the cu-
rated data in the form of SQL tables. From these snapshots, we extract information
about developers, projects that these developers work on, and project categories as
well as programming languages. To recommend developers, we need sufficient in-
formation of developers’ past activities. Thus, we only include developers that have
worked on at least p projects. SourceForge contains many trivial projects; to filter
these projects, we only include projects that have at least n developers. In this study,
we set the value of p and n to be 7 and 3 respectively.

A good recommendation eventually leads to a collaboration. To evaluate our ap-
proach, we take multiple consecutive monthly snapshots of SourceForge. We con-
sider new collaborations created between these consecutive snapshots. We then ap-
ply our approach and investigate if we can accurately predict these new collabo-
rations. We consider a recommendation is successful if at least one of the recom-
mended developer collaborates in the next snapshot. The accuracy of our approach
is defined as the proportion of recommendations that are successful. If many new
collaborations do not follow our recommendations then the accuracy would be low.
This measure is also often referred to as recall-rate@k and has been used in many

29 www3.nd.edu/˜oss/Data/data.html

http://www3.nd.edu/%CB%9Coss/Data/data.html

192 Yuan Tian and David Lo

past studies [645, 737, 800]. This is a lower bound of the accuracy of our proposed
approach. In practice, our approach would actively recommend developers and more
collaborations could have been created.

Given a target developer d, our approach would recommend k developers with the
highest RWR scores. Using k equals to 20, for the new collaborations created from
May 2008 to May 2010, we find that our recommendation success rate is 83.33%.
We also vary the value k and investigate the behavior of our approach. We find that
the success rate (or accuracy) varies from 78.79% to 83.33% when k is varied from
5 to 20. Thus there is only a minimal change in accuracy (i.e., 4.54% reduction)
when we drop k from 20 to 5. This shows that our top few recommendations are
accurate. The runtime of our approach is 0.03 seconds for training (i.e., creating
DPP and pre-computing internal data structures) and less than a second for query
(i.e., running RWR with the pre-computed internal data structures). This shows that
our approach is efficient and could be used to support interactive query.

6.6.2 Prediction of Project Success

Motivation. Project success is the eventual goal of software development efforts, be
it open source or industrial. There are many projects that are successful - they get
released, distributed, and used by many users. These projects bring much benefit
in one form or another to the developers. However, many other projects are unsuc-
cessful, they do not get completed, not used by many (if any at all), and bring little
benefit to the developers despite their hard work. Investigating failed and success-
ful projects could shed light on factors that affect project outcome. These factors
can in turn be used to build an automated machine learning solution to predict the
likelihood of a project to fail or be successful. Predicting project outcome is impor-
tant for various reasons including planning, mitigation of risks, and management of
resources.

With the adoption of Web 2.0, much data is available to be analyzed. We can
collect information on various successful and failed projects. We can trace various
projects that developers have worked on before. In this work, we leverage socio-
technical information to differentiate successful and failed projects. Our goal is to
find relevant socio-technical patterns and use them to predict project outcome.
Approach. Figure 6.14 illustrates the framework of our proposed approach. It has
two phases: training and deployment. In the training phase, our framework pro-
cesses a set of projects along with developers that work in them. The goal of the
training phase is to build a discriminative model that can differentiate successful
and failed projects. This model is then passed to the deployment phase to predict the
outcomes of other projects. It has several processing blocks: socio-technical infor-
mation extraction, discriminative graph mining, discriminative model construction,
and outcome prediction. The following elaborates each of these processing blocks:

6 Leveraging Web 2.0 for software evolution 193

Training

Data

Test

Data

Socio-Technical

Information

Extraction

Socio-Technical

Information

Extraction

Discriminative

Graph Mining

Outcome

Prediction

Discriminative

Model

Construction

Predicted

Outcome

Training Phase

Deployment Phase

Fig. 6.14: Overall Framework

1. The socio-technical information extraction block processes each of the projects
and for each of them extracts socio-technical information in the form of a rich
(i.e., multi-labeled) graphs. The nodes in the graph are developers that work on
the project. The edges in the graph correspond to the relationships among the
various developers. Multiple labels are attached to the nodes and edges to capture
the socio-technical information about the developers and their relationships. For
each node, we attach the following pieces of information:

a. Past Successful Projects. This is the number of successful projects that a de-
veloper has participated before he joins the current project.

b. Past Failed Projects. This is the number of failed projects that a developer has
participated before he joins the current project.

c. Length of Membership. This is the period of time that has passed since a
developer has joined the software forges before he joins the current project.

For each edge that links two developers, we attach the following pieces of infor-
mation:

a. Past Successful Collaborations. This is the number of successful projects that
the two developers have worked together before.

b. Past Failed Collaborations. This is the number of failed projects that the two
developers have worked together before.

c. Length of Collaboration History. This is the period of time that has passed
since the two developers collaborated for the first time to the time they collab-
orate in the current project.

2. The discriminative graph mining block takes as input the graphs capturing the
socio-technical information of the successful and failed projects. The goal of the
block is to extract subgraphs that appear often in the socio-technical graphs of
the successful projects but rarely in the graphs of the failed projects (or vice
versa). These discriminative graphs highlight peculiar socio-technical patterns

194 Yuan Tian and David Lo

that differentiate successful from failed projects. We propose a new discrimina-
tive subgraph mining algorithm that analyzes rich graph where each node and
edge have multiple labels. We can assign a score S(g) to evaluate the discrimina-
tiveness of a subgraph g. The goal of a discriminative graph mining algorithm is
then to return top-k subgraphs g that have the highest S(g) scores. Variosus mea-
sures of discriminativeness have been proposed in the literature. In this work, we
make use of information gain [612]. Our algorithm extends the work by Cheng et
al. [179] that works on a set of simple graphs (i.e., graphs where nodes and edges
have one label each) by a translation-and-reverse-translation based approach:

a. We translate the set of rich graphs to their equivalent simple graph represen-
tations.

b. We mine discriminative subgraphs from the simple graphs using the algorithm
proposed by Cheng et al. [179].

c. We reverse translate the resultant discriminative simple subgraphs back to
their corresponding rich graphs.

3. The discriminative model construction block takes as input the set of discrimina-
tive subgraphs. Each of the subgraphs form a binary feature. A socio-technical
graph is then represented by a vector of binary features. Each binary feature is as-
signed a score of 1 if a discriminative subgraph appears in it. The score would be
0 otherwise. Using this representation the successful and failed projects become
points in a multi-dimensional space. We use support vector machine (SVM) to
create a discriminative model which is a hyperplane that best separates the two
sets of points.

4. The outcome prediction block takes as input the discriminative model learned in
the training phase and vector representations of projects whose outcomes are to
be predicted. These vector representations are generated by first extracting socio-
technical graphs. Each of these graphs are then compared with the discriminative
subgraph patterns extracted during the training phase. Each of the patterns form
a binary feature that collectively characterize each of the socio-technical graphs.
These features are then input to the discriminative model and a prediction would
be outputted.

Experiments. We analyze successful and failed projects in SourceForge. We use the
monthly database dumps created by Antwerp et al. [40] from February 2005 to May
2010. Projects that have been downloaded more than 100,000 times are deemed to
be successful. On the other hand, those that have been downloaded less than 100
times are considered to have failed. Other definitions of success and failure can also
be considered; we only investigate one definition in this work. We extract 224 suc-
cessful projects and 3,826 failed projects. Using this dataset, we want to investigate
if socio-technical information of participating developers (which could be gathered
even when a project is at its inception) could be used to predict project success using
our proposed approach. In the experiments, we first analyze the efficiency, followed
by the effectiveness of our approach.

6 Leveraging Web 2.0 for software evolution 195

We find that our translation and reverse translation processes can complete in a
short amount of time. The translation process only takes less than 15 seconds to
translate the successful and failed projects. After translation the sizes of the graphs
grow, however their growth is linear to the number of node labels and edge labels.
The average sizes of the translated graphs are 31.54 nodes and 287.25 edges (for
successful graphs) and 23.93 nodes and 204.68 edges (for failed graphs). The most
expensive operation in our framework is to run the algorithm of Cheng et al. [179]
which completes within 4 hours. We mine the top-20 most discriminative rich sub-
graph patterns.

To measure the effectiveness of our approach we use two measures: accuracy
and area under the ROC curve (AUC) [362]. The ROC curve (Receiver Operating
Characteristic) plots the false positive rate (x-axis) against the true positive rate (y-
axis) at various settings. AUC is more suitable to be used than accuracy for skewed
datasets. For our problem, we have a skewed dataset as there are more failed projects
than successful projects. The maximum AUC score is 1.0. Using ten-fold cross val-
idation, our proposed approach can achieve an accuracy of 94.99% and an AUC of
0.86.

6.6.3 Other studies

There are a number of other studies that leverage Web 2.0 resources for software
project management to reduce the amount of wasted effort, to better manage re-
sources (i.e., developer time and effort), and to coordinate activities. We highlight a
few of them in brief in the following paragraphs.

Guzzi et al. combined microblogging with IDE interactions to support devel-
opers in their activities [356]. Guzzi et al. noted that developers often need to go
through program understanding phase many times. This is a time consuming activ-
ity. To address this problem Guzzi et al. proposed a tool named James that integrates
microblogging with interaction information that is automatically collected from an
IDE. Developers can then share their program understanding experience to their col-
leagues using James. Thus with James, wasted effort can be reduced and developer
resources can be better spent on more useful activities.

Ibrahim et al. investigated factors that encourage developers to contribute to a
mailing list discussion [418]. There are numerous threads in a mailing list and de-
velopers can easily miss relevant threads to which he/she can contribute ideas and
expertise. To address this problem, Ibrahim et al. proposed a personalized tool that
recommends threads that a developer is likely to contribute to based on the devel-
oper past behaviors. The proposed tool combines two machine learning algorithms
namely: Naive Bayes and Decision Tree. The proposed tool has been evaluated on
mailing lists of three open source projects, Apache, PostgreSQL and Python, with
promising results.

Carter and Dewan proposed a tool that is integrated with Google Talk [167].
This tool could highlight remote team members in a distributed development team

196 Yuan Tian and David Lo

who are having difficulty in their tasks, and thus foster more collaborations among
developers. Expert developers or project managers could be aware of team members
that require help. The proposed tool logs developer interactions with a development
environment. A classification algorithm was then employed to infer a developer
status based on his/her interaction log. A user study was conducted to evaluate the
effectiveness of the proposed approach with promising results.

6.7 Open Problems and Future Work

In the previous sections, we have highlighted a number of studies that analyze how
developers use Web 2.0 resources and how automated tools can leverage these re-
sources for information search, information discovery and project management. Al-
beit the many existing work in this area, we believe much more work can be done to
better leverage Web 2.0 resources for software evolution. We highlight some of the
open problems and potential future work in this section.

There are many Web 2.0 resources that have not been tapped to improve soft-
ware evolution. In Section 6.2 we highlighted resources such as directories of de-
velopers in LinkedIn, public profiles of developers in Facebook, definitions of soft-
ware engineering terms in Wikipedia and geolocation coordinates of developers in
Foursquare. To the best of our knowledge, there have not been any study that uti-
lize these resources to help software evolution. Furthermore, various web systems
evolve (see Chapter 7); thus, many additional functionalities and services are in-
troduced to existing Web 2.0 resources regularly. Many innovative applications can
potentially be built leveraging these resources and additional functionalities. For ex-
ample, one can imagine a tool that enables one to search for a potential employee
by leveraging information in LinkedIn and Facebook and correlating the informa-
tion with the kinds of software evolution tasks that the future employee is sup-
posed to perform. One could also better enhance many information retrieval based
tools, e.g., [800, 846, 906, 949], by leveraging domain specific knowledge stored
in Wikipedia. One can also imagine an application that tries to recommend more
interactions among developers that live in a nearby area by leveraging geolocation
coordinates in Foursquare. Thus there is plenty of room for future work.

Combining many different sources of information and leveraging them to im-
prove software evolution activities is another interesting direction for future work.
Most studies so far only focus on one or two Web 2.0 resources. Each Web 2.0
resources provides an incomplete picture of an entity (e.g., a developer). By com-
bining these Web 2.0 resources, one can get a bigger picture of an entity and use
this bigger picture to support various software evolution activities, e.g., recommend
a fix/a developer to a bug in a corrective software evolution activities by leverag-
ing information in multiple software forums, question-and-answer sites, software
forges, etc.

Another interesting avenue for future work is to improve the effectiveness and ef-
ficiency of machine learning solutions that analyze and leverage Web 2.0 resources.

6 Leveraging Web 2.0 for software evolution 197

As highlighted in previous sections, the accuracy of existing techniques is not per-
fect yet. Often the accuracy (measured either in terms of precision, recall, accuracy,
or ROC) is lower than 80%. Thus there is much room for improvement. Many new
advances in machine learning research can be leveraged to improve the accuracy of
these existing techniques. One can also design a new machine learning solution that
is aware of the domain specific constraints and characteristics of software engineer-
ing data and thus could perform better than off-the-shelf or standard solutions. It
is also interesting to investigate how search-based algorithms (described in Chap-
ter 4) and information retrieval techniques (mentioned in Chapter 5) can be utilized
to improve the accuracy of existing techniques that leverage Web 2.0 resources.

6.8 Conclusions

Web 2.0 provides rich sources of information that can be leveraged to improve soft-
ware evolution activities. There are many Web 2.0 resources including software
forums, mailing lists, question-and-answer sites, blogs, microblogs, and software
forges. A number of empirical studies have investigated how developers contribute
information to and use these resources. Automated tools can also be built to leverage
these resources for information search, information discovery, and project manage-
ment which are crucial activities during software evolution. For information search,
we have highlighted some examples how Web 2.0 resources can be leveraged: tags
in software forums can be used to build a semantic search engine, tags can also
be used to recover similar applications, code fragments of interest can be extracted
from Web 2.0 sites, etc.. For information discovery, we have also highlighted some
examples how Web 2.0 resources can be leveraged: users can find interesting events
by navigating through the mass of software microblogs using a visual analytics so-
lution, users can be notified of relevant microblogs using a classification-based so-
lution, frequently asked questions can be extracted from Web 2.0 sites, etc.. For
supporting project management activities, Web 2.0 resources can also be leveraged
in several ways: appropriate developers can be recommended to a project based on
their socio-technical information stored in software forges, potentially unsuccess-
ful projects can be highlighted early using developer socio-technical information
stored in software forges, better collaboration among developers can be achieved
by integrating microblogging with IDEs, etc.. Much more future work can be done
to better leverage Web 2.0 and even Web 3.0 resources in various ways to improve
many software evolution activities.

	Chapter 6 Leveraging Web 2.0 for software evolution
	6.1 Introduction
	6.2 Web 2.0 Resources
	6.2.1 Software Forums, Mailing Lists and Q&A Sites
	6.2.2 Software Blogs & Microblogs
	6.2.3 Software Forges
	6.2.4 Other Resources

	6.3 Empirical Studies
	6.3.1 Software Forums, Mailing Lists and Q&A Sites
	6.3.2 Software Blogs & Microblogs
	6.3.3 Software Forges

	6.4 Supporting Information Search
	6.4.1 Searching for Answers in Software Forums
	6.4.2 Searching for Similar Applications in Software Forges
	6.4.3 Other studies

	6.5 Supporting Information Discovery
	6.5.1 Visual Analytics Tool for Software Microblogs
	6.5.2 Categorizing Software Microblogs
	6.5.3 Other studies

	6.6 Supporting Project Management
	6.6.1 Recommendation of Developers
	6.6.2 Prediction of Project Success
	6.6.3 Other studies

	6.7 Open Problems and Future Work
	6.8 Conclusions

