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Abstract—In service-based industries, churn poses a significant
threat to the integrity of the user communities and profitability
of the service providers. As such, research on churn prediction
methods has been actively pursued, involving either intrinsic,
user profile factors or extrinsic, social factors. However, existing
approaches often address each type of factors separately, thus
lacking a comprehensive view of churn behaviors. In this paper,
we propose a new churn prediction approach based on collective
classification (CC), which accounts for both the intrinsic and ex-
trinsic factors by utilizing the local features of, and dependencies
among, individuals during prediction steps. We evaluate our CC
approach using real data provided by an established mobile social
networking site, with a primary focus on prediction of churn in
chat activities. Our results demonstrate that using CC and social
features derived from interaction records and network structure
yields substantially improved prediction in comparison to using
conventional classification and user profile features only.

I. INTRODUCTION

Churn, which broadly refers to the loss of customers, has
been a prominent issue in a variety of service-based industries
including telecommunication, banking, online gaming, and
social network service [1]–[4]. Threats arising from churn
have substantial impact on the profitability of service providers
as retaining an existing customer imposes significantly less
cost than acquiring a new one. Accordingly, many providers
are now shifting their focus from customer acquisition to
customer retention. Many research efforts have therefore been
directed toward accurately predicting churn in its early stage
to target potential churn customers and provide the appropriate
incentives to sustain their interest in the service.

Studies have shown that churn can be attributed to in-
trinsic and extrinsic factors [5], [6]; the former pertain to
the customer profiles and/or inherent features of the service
(such as customer’s membership age, pricing, service failure
rate, etc.), while the latter portray the service in terms of
the value it accrues through its social roles (e.g., community
opinion, word-of-mouth effects, etc). Conventional approaches
for churn prediction have been largely focused on intrinsic
factors, using (pure) feature-based modeling techniques which
treat individual users independently [1], [7]. However, these
approaches lack account for the role of social ties between
individuals in affecting the propensity to churn, which can be
examined from their interaction network.

On the other hand, several recent works have been reported
which model churn based on the social roles and influence of
individuals within a community. Typically, these approaches
use information diffusion models, the prime example being the
spreading activation (SPA) model [2], [3]. The SPA approach
suggests that churn propagates from one user to another, i.e.,

a user linked to other users who already churned is likely
to churn next, which relates to the notion of social ties
and importance. Although SPA can help improve prediction
accuracy, it suffers from several limitations. For instance,
SPA operates on a set of global parameters (e.g., spreading
factor) that may not accurately reflect the different roles of
individuals in the community. Also, it makes a rather simplistic
assumption that churn emerges only as the result of influence
from users who had churned, whereas the importance of other
intrinsic user features are not taken into account.

In this paper, we present a data-driven approach that exploits
both intrinsic (user profile) and extrinsic (social tie) factors
underlying churn behaviors. Deviating from the conventional
feature-based and diffusion-based models, we approach the
problem of churn prediction using the idea of collective
classification (CC) [8]–[10]. The CC approach explores the
local features of and dependencies among individuals during
each classification step, and infers the status (label) of a group
of inter-related individuals jointly rather than independently. In
this way, both intrinsic and extrinsic features can be accounted
for during prediction, leading to a more comprehensive view
of the factors underlying churn. We empirically evaluate the
efficacy of our CC approach using real data supplied by an es-
tablished mobile social networking service called myGamma.

To our best knowledge, there has been no work reported
on data-driven CC to predict churn. Perhaps the closest is the
Markov logic network described in [11], which employs first-
order logic and graphical model to simulate churn behaviors.
However, it requires extensive human intervention (e.g., hand-
coded graph structure) and its scalability is rather limited so
far. We summarize our main contributions as follows:

1) Through analysis of the social network data, we propose
a simple yet robust criterion for identifying churn users
based on the last period of inactivity. The application of
such a criterion can be generalized to cases whereby an
explicit definition of churn is not available.

2) We develop a mining framework for churn prediction
that incorporates traditional classification and iterative
CC techniques. Our framework also provides a method
to evaluate and compare various intrinsic, user profile
features and extrinsic, social features underlying churn
behaviors in a comprehensive manner.

3) We demonstrate empirically that using CC together with
extrinsic, social features derived from interaction records
and network structure can significantly improve the
churn prediction accuracy, as opposed to the conven-
tional approaches using intrinsic profile features only.



II. CHURN PREDICTION

A. Dataset

For our churn prediction task, we consider the data from
a mobile social networking site called myGamma that offers
a range of services for chatting/messaging, friendship linking,
application adoption, blogging, and user group formation. The
site has 4.8 million registered users, most of which are young
adults (aged 20-30) from developing countries. Our main
interest is to investigate churn of chat activity, which is one
of the most popular types of activity in the site. We have
maintained and analyzed a database containing more than 1
year’s worth of various chat activities (e.g., chat session, chat
messages, etc.) and user profile (e.g., age, country, language,
race, etc) in the social network. For our churn prediction task,
though, we focus on the 7-month data taken from 01 June 2011
to 31 December 2011. This would more accurately reflect the
recent trends that the service provider is interested in.

In our study, we consider only users who have chatted
at least once within a specified time period. A chat user is
typically involved in several chat sessions, each of which has
a unique session ID as well as a start and an end timestamp.
With this, we can measure social tie strength based on how
long a user chats with other user(s) in each session, or how
many sessions a user has engaged in. On average, there are
4.8K unique users chatting each month, and there are 1.36
million chat sessions in a month. Note also that a user need
not declare explicit friendship in order to chat with another
user. That is, chatting with strangers is possible, and in fact
there are many such cases in the data. Moreover, a chat session
can involve more than two users (i.e., a group chat), with slight
variation on the timing and chat duration for each user (e.g.,
a user may join the session later or go offline earlier).

B. Problem Formulation

To define our churn prediction problem, let us first denote
∆ti,s = ti,s − ti,s−1 as the time gap of inactivity between
two consecutive chat sessions (s− 1) and s that a user i has
engaged in, where s ∈ {1, . . . , Si}, Si is the total number
of sessions user i has, and ti,0 = 0. We next defined, for
each user i, the maximum time gap over all chat sessions
∆ti = maxs ∆ti,s. Fig. 1(a) plots the distribution of ∆ti (in
days), measured over the recent 1-year period. Interestingly, it
can be observed that the ∆ti between any consecutive sessions
never exceeds 30 days. This suggests that 30 days is a good
threshold to distinguish between churn and active (non-churn)
users. Thus, we define the label yi of a user i using (1):

yi =

{
churn if (tm − ti,Si) > φ
non-churn otherwise (1)

where the threshold φ is set to be 30 days as above, and
(tm − ti,Si) refers to the last inactivity period with respect to
time reference point tm ≥ ti,Si for a particular observation
month m. We have also cross-verified with our data provider
that φ = 30 days is a reasonable churn criterion.

It is also worth noting that our proposed churn definition
is simpler and more robust than the definition in [5], which
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Fig. 1. Key statistics of myGamma dataset

is based on two time windows: a previous activity window
and a churn window. That is, a user is labeled as churner if
her activity in the churn window drops to some extent relative
to the activity in the previous window. Using this definition,
however, a user who had churned may still return when her
current activity increases beyond some level. Moreover, such
definition requires specifying the lengths of the time windows
and the results greatly depend on the choice of the lengths.

With this criterion, we formulate the churn prediction prob-
lem as follows: Given profile and/or social features x⃗i(m) of
a user i, observed up to time reference point tm in month m,
we predict whether the user will churn by time tm+1 in the
next month (m + 1). That is, the observation period is one
month ahead of the churn period, which can provide insights
on the chat activities of a user before he/she decides to churn.
Here we choose tm to be the midnight of the second day of
month m (e.g., tJuly is 2 July 00:00am), so as to cater for users
who may chat pass midnight at the last day of the preceding
month. It should also be noted that there may be a few users
who have churned but are not captured in the dataset, simply
because they never chat during the observation period.

C. Social Influence

Another central question we seek to answer is whether the
decision of a user to churn depends on her social ties and
community effects. To gain insights on the social aspects of
churn behavior, we first need to find an evidence of whether
social influences on a user’s churn propensity to churn exist.
The basic premise here is that an user’s probability to adopt
a new behavior (i.e., churn) increases with the proportion of
his/her friends who already engaged in the behavior.

To this end, we compute from our social network database
the chat churn rate (probability) with respect to the proportion
of friends who previously churned. Our findings are summa-
rized in Fig. 1(b), i.e., the likelihood to churn increases as the
proportion of churn friends increases. An exception here is
when the churn friend proportion is zero. Our investigation
reveals that this corresponds to users who have no friend.
Hence, the high churn rate is reasonable, as a user who has
no friend would likely have no activity and be labeled as
churner by definition. We can also see that the churn friend
proportion fluctuates between 35% and 55%, suggesting that in
this range the proportion imposes little difference on the churn
propensity. However, the general trend remains that churn rate
increases with higher churn friend proportion.



III. PROPOSED METHODOLOGY

For churn prediction, we consider two classification ap-
proaches. The first is conventional (non-relational) classifica-
tion, which assumes that the data instances are independently
and identically distributed (i.i.d). That is, the prediction of
each instance is made separately, without regard to the inter-
dependencies among the instances. Our second, proposed
approach is to use iterative collective classification algorithm
(ICA) [8], [10]. ICA simultaneously classifies a set of inter-
linked users (nodes) by considering the correlations between
the label of node v and its observed features, between the
label of node v and the observed features of its neighbors, and
between the label of node v and labels of the unobserved nodes
in its neighborhood. We elaborate the non-relational classifier
and ICA methods in Sections III-B and III-C, respectively.

A. Chat Graph Construction

As our goal is prediction of chat-activity churn, we consider
in our study the construction of chat graph, extracted from the
chat session table in our database. The nodes in our chat graph
represent the chat users, and the directed edges indicate the
social ties between any two users. We create an edge between
node A and B only when the chat initiated by A is responded
by B (and vice versa), i.e., we only regard reciprocal edges
as a sign of social ties between two individuals.

In turn, the strength of social ties between two nodes are
encoded as edge weights. Formally, we calculate the weight
eA,B from node A to B according to (2):

eA,B =
∑
s∈SB

[
ds,A

Ns − 1

]
, N(s) ≥ 2 (2)

where ds,A is the duration of user A talking in a chat session
s, and Ns is the number of users involved in session s, and
SB is the set of chat sessions which involve user B. The
denominator term Ns − 1 is introduced to prevent excessive
updates of the edge weights due to the possibility of group
chats having Ns > 2. It must also be noted that, though the
edges are reciprocal, the edge weights eA,B and eB,A need
not be identical (as SB and SA are not necessarily the same).

B. Conventional Classification

As mentioned earlier, the traditional non-relational classifi-
cation approaches require an i.i.d assumption. Let x⃗i ∈ ℜd

be a feature vector in a d-dimensional space and X =
{x⃗1, . . . , x⃗i, . . . , x⃗N}. Also let yi ∈ {1,−1} be the (binary)
class label (1 for churn and -1 for non-churn), and Y =
{y1, . . . , yi, . . . , yN}. The i.i.d-based inference can then be
expressed in terms of the conditional probability (3):

P (Y |X) ∝
N∏
i=1

P (yi|x⃗i) (3)

As our non-relational i.i.d classifier, we employ the popular
support vector machine (SVM) algorithm. Specifically, we use
the linear SVM algorithm developed under the LIBLINEAR

Algorithm 1 ICA Inference Procedure
Input: G = (V,E,X, Y ): graph with nodes V , edges E,

features X and labels Y , Y K : labels of observed nodes
V K ⊂ V , LC and RC: local and relational classifiers,
Jmax: maximum iteration (default: Jmax = 10)

Output: Y U : labels of unobserved nodes in G
1: V U ← V − V K

2: for all nodes vi ∈ V U do
3: (yi, conf i)← LC(x⃗i) // bootstrapping
4: g⃗i ← computeLIRelationalFeatures(vi, V , E)
5: end for
6: for j = 1 to Jmax do
7: r ←

∣∣V U
∣∣× (j/J)

8: Y ′ ← Y K ∪
{
yi|vi ∈ V U ∧ rank(conf i) ≤ r

}
9: for all nodes vi ∈ V U do

10: f⃗i ← computeLDRelationalFeatures(vi, V , E, Y ′)
11: end for
12: for all nodes vi ∈ V U do
13: (yi, conf i)← RC(x⃗i ∪ f⃗i ∪ g⃗i)
14: end for
15: end for
16: Y U ←

∪
yi

framework [12], which is renowned for its competitive accu-
racy and efficiency. We also use SVM as a component in our
ICA approach, as described shortly in section III-C.

C. Collective Classification

In relational data or information networks, there are com-
plex dependencies among instances for which the i.i.d assump-
tion is not suitable. An effective model for relational data
should be able to consider the dependencies among the related
instances. The CC approach provides one such model, focused
on exploiting the inter-instance label dependencies to improve
classification performance [8], [10]. In particular, CC estimates
the conditional probability given in (4):

P (Y |X) ∝
N∏
i=1

P (yi|x⃗i, Yj∈Ni) (4)

where Ni is the set of neighbors of x⃗i

In this work, we employ a variant of CC approach called
the iterative CC algorithm (ICA) [8], [10]. In ICA, a local
classifier (LC) and a relational classifier (RC) are first trained
using local and relational features of the observed instances
(nodes), respectively. Each classifier can be implemented using
the SVM algorithm (cf. section III-B). The local features are
static, comprising user profile and/or interaction features. The
relational features stem from the structure of the chat graph,
and are dynamically computed using aggregation operators
such as count, proportion, or mode [8].

During ICA inference phase, the trained LC and RC are ap-
plied to unobserved instances whose class labels are unknown.
The process is outlined in Algorithm 1. In steps 1-4, the
prediction of the labels for unobserved instances are achieved
via bootstrapping using LC and local features. In steps 6-7,



label predictions made with highest confidence are deemed as
valid and included into data. Using the newly accepted labels,
the relational features are recomputed in steps 8-11, based on
which RC reclassifies the labels in steps 12-14. Note that, in
each inference iteration, a greater percentage of predictions
are accepted and new relational features are derived. This
constitutes a form of ”cautious” CC inference, as it sought to
preferentially exploit the more certain relational information.
Also, as the prediction is reevaluated each time, the label of
a node accepted in one iteration may be discarded in the next
if the prediction confidence is no longer sufficiently high.

The ICA method provides an effective means to improve
the classification accuracy on relational data. However, be-
cause of its dependence on label assignments, its performance
may degrade when a large fraction of neighboring nodes
are also unlabeled. To compensate for errors arising from
such uncertainty, we extend the ICA approach by leveraging
label-independent (LI) relational features g⃗i [9] in addition
to the label-dependent (LD) features f⃗i commonly used in
conventional CC algorithms. This corresponds to step 4 of
Algorithm 1. The LI features provides another source of
information that are derived from the network structure, but
not dependent on the current nodes’ label assignments. Thus,
unlike LD features, the LI features can be accurately computed
regardless of the availability of label information.

IV. CHURN PREDICTION EXPERIMENTS

A. Features Considered

In Section I, we mentioned several intrinsic and extrinsic
features that influence churn behavior in online communities.
In this study, we focus on two types of features: local and
relational features. The former refers to the set of features that
remain static over the course of prediction and can be used by
either conventional or collective classification. We then divide
the local features into two groups: user profile and interaction
features, portraying static intrinsic and extrinsic aspects of a
user, respectively. The interaction features are derived based
on multi-modal information, spanning such activities as chat,
mobile application, friend action, group, blog, and testimonial.
Table I lists the local features considered in this work.

We also take into account several relational features to be
exclusively used by our ICA algorithm, as given in Table
II. These features are dynamically recomputed during ICA
iterations and derived from users’ connectivity structure and
tie strengths. We can thus view the relational features as
different, extrinsic aspects of a user, complementing those
portrayed by the user’s interaction features. For our ICA-based
prediction, we incorporate two types of relational features:
label-dependent and label-independent, as already discussed in
Section III-C. The complete list of the relational features used
in our study is given in Table II. Among them are the Jaccard
and cosine similarity indices, defined as JAB = |NA∩NB |

|NA∪NB | and

CAB = |NA∩NB |√
|NA|×|NB |

respectively for node pair A and B, and

NA is the set of neighbors of node A. Chiefly, they reflect the
fraction of common neighbors between any two nodes.

TABLE I
LOCAL FEATURES FOR TRADITIONAL AND COLLECTIVE CLASSIFICATION

Category Feature
Profile Birth age of a user (in years)

Gender of a user (male or female)
Country at which a user resides)
Race or ethnic group that a user belongs to
Duration for which a user has joined the social network

Interaction Number of chat sessions a user has been involved in
Number of chat messages a user has sent
Number of applications a user has installed
Number of friends (positive friendships) a user has
Number of foes (negative friendships) a user has
Number of friend adding actions a user has done
Number of friend removal actions a user has done
Number of friend blocking actions a user has done
Number of groups/communities a user has joined in
Number of group messages a user has sent
Number of times a user joins a group/community
Number of times a user leaves a group/community
Number of blogs a user has posted
Number of blog comments a user has posted
Number of testimonials a user has posted

TABLE II
RELATIONAL FEATURES FOR COLLECTIVE CLASSIFICATION

Category Feature
Label- Number of neighbors of a node (i.e., degree)
independent Average in-weight of a node (as computed in (2))

Average out-weight of a node (as computed in (2))
Average number of 2-hop neighbors of a node
Average Jaccard similarity of a node and its neighbors
Average cosine similarity of a node and its neighbors

Label- Number of L-neighbors of a node (i.e., L-degree)
dependent Average weight of in-edges from L-neighbors of a node
(L = churn Average weight of out-edges to L-neighbors of a node
or non-churn) Average degree of the L-neighbors of a node

Average Jaccard similarity of a node and its L-neighbors
Average cosine similarity of a node and its L-neighbors
Fraction of L-neighbors of a node w.r.t. all its neighbors

B. Training and Testing

Fig. 2 illustrates the data instances and graphs generation
for training and testing over a 3 month period, from the
beginning of May to end of August 2011. Here our training
instances consist of users who chat in the recent 1 month
(1 June-2 July 0:00am), and their (ground-truth) labels are
derived based on the last inactivity up to the next month’s
time reference (2 August 0:00am). Meanwhile, the train graph
contains nodes corresponding to users who chat in the last 2
months (i.e., 1 May-2 July). We chose 2-month window in
order to distinguish between the past churners and the current
users under observation. This allows us to investigate on the
influence of past churners on the churn propensity of the
current users. Specifically, the past churners are users who
appear in the train graph but not in the training instances (i.e.,
they never chat for > 1 month). These users are also treated as
observed nodes V K in our ICA inference process. The same
instances and graph generation procedure applies to the test
case, except that the time window is shifted 1 month ahead.

C. Prediction Results

Using the training/testing setup in Section IV-B, we eval-
uate the performance of our churn prediction methods. Our
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performance evaluation involves four measures popularly used
for (binary) classification tasks, including: Accuracy =

TP+TN
TP+FN+TN+FP , Precision = TP

TP+FP , Recall = TP
TP+FN ,

and F1 = 2×Precision×Recall
Precision+Recall , where TP , TN , FP and FN

are the true positives, true negatives, false positives, and false
negatives respectively. Our particular interest is on the churn
case, hence we treat churn as the positive label in this study.

Our evaluations also involve comparisons along two dimen-
sions: using conventional (i.i.d) classification vs. collective
classification (ICA), and using profile vs. interaction features
as the local features (cf. Table I). We cross-validated our
results over 6 train and test trials, corresponding to June-
November 2011 and July-December 2011 data, respectively.
Tables III summarizes the testing performances, averaged over
6 trials. As our baseline, we consider a random classifier which
predicts the class label equally likely. The expected Accuracy
of random classifier would be equal to the proportion of
instances labeled as churn (53.79% for testing; see the footnote
of Table III). In this case, the expected Precision would be
the same as Accuracy, and we can assume that positive and
negative misclassifications are made at the same rate (i.e.,
FP = FN ), giving baseline F1 = Precision = Recall.

From the results in Table III, we can conclude that all
methods outperform the baseline, random classifier. Among
the four metrics, we are mainly concerned with the F1 score.
When only profile features are used, ICA is superior to the
conventional classifiers, i.e., ICA produces higher F1 and
Accuracy, with smaller standard deviations implying more
robust performance. When interaction features are used, how-
ever, the two approaches have marginal differences in perfor-
mance. This can be attributed to some correlation between (or
complementary role of) the interaction and relational features,
e.g., friend count in Table I is related to degree in Table II.
We also discovered that structural features such as as degree
and in/out-weight are generally the most predictive, but due to
space constraints we do not report the feature ranking results
here. All in all, using social features (interaction and relational
features) is a crucial facet for improved churn prediction, in
comparison to using profile features only.

V. CONCLUSION

This paper put forward a data-driven methodology for churn
prediction that facilitates exploration of intrinsic and extrinsic
factors underlying churn using collective classification (CC)
approach. We evaluated our CC approach on real data from
an established social networking site and compared it with the
conventional, non-relational classifiers using different feature

TABLE III
CONSOLIDATED TESTING PERFORMANCES (JULY-DECEMBER 2011)

Method Performance Feature type
metric Profile Interaction

Conventional Accuracy (%) 56.06± 3.19 68.96± 1.89
classification Precision (%) 58.13± 2.93 64.92± 2.78

Recall (%) 67.78± 22.51 91.89± 1.79
F1-score (%) 60.38± 13.3 76.06± 2.17

Iterative CC Accuracy (%) 58.70± 4.32 70.44± 1.86
algorithm (ICA) Precision (%) 58.41± 4.84 67.07± 2.99

Recall (%) 83.03± 4.88 88.46± 2.48
F1-score (%) 68.38± 2.96 76.25± 2.24

Baseline accuracy = baseline F1-score = 53.79%

combinations. The potential of the CC approach in combina-
tion with interaction and network structure features has been
exemplified in our experimental results. In our future work, we
would like to incorporate a richer set of social features derived
from graph theory and link analysis in order to capture more
complex dependencies underlying churn. Last but not least, we
plan to generalize our CC approach to simultaneously exploit
multiple graphs as different sources of information.
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