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Abstract Many code search techniques have been proposed to return relevant code for
a user query expressed as textual descriptions. However, source code is not mere text.
It contains dependency relations among various program elements. To leverage these
dependencies for more accurate code search results, techniques have been proposed to
allow user queries to be expressed as control and data dependency relationships among
program elements. Although such techniques have been shown to be effective for find-
ing relevant code, it remains a question whether appropriate queries can be generated
by average users. In this work, we address this concern by proposing a technique,
AutoQuery, that can automatically construct dependency queries from a set of code
snippets. We realize AutoQuery by the following major steps: firstly, code snippets
(that are not necessarily compilable) are converted into program dependence graphs
(PDGs); secondly, a new graph mining solution is built to return common structures in
the PDGs; thirdly, the common structures are converted to dependency queries, which
are used to retrieve results by using a dependence-based code search technique. We
have evaluated AutoQuery on real systems with 47 different code search tasks. The
results show that the automatically constructed dependency queries retrieve relevant
code with a precision, recall, and F-measure of 68.4, 72.1, and 70.2 %, respectively.
We have also performed a user study to compare the effectiveness of AutoQuery
with that of human generated queries. The results show that queries constructed by
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AutoQuery on average help to retrieve code fragments with comparable F-measures
to those retrieved by human constructed queries.

Keywords Code search · Dependency query · Query construction · Graph mining

1 Introduction

Many software projects today contain a large amount of source code. Searching
through this mass of source code manually would take much developer time and
resources. Many software engineering tasks can benefit from efficient and effective
automated code search. One scenario where code search can be employed is fixing a
bug during maintenance: developers often need to propagate a change to many other
similar locations; without the aid of a code search tool, developers may need to tap
on their experience to browse relevant source code files and manually find the code
fragments requiring changes. This is not only tedious but also error-prone. Some code
location requiring changes may be missed out, causing further bugs or even security
loop holes. To address the need of finding relevant code, a number of code search tools
have been proposed. These tools accept user queries and return code fragments that
match the query.

Many code search tools are text-based. They accept user queries as texts and search
code fragments that contain identifier names that match or are related to the words
in the query (Chan et al. 2012; McMillan et al. 2011). A comprehensive survey of
89 feature location and code search studies is presented by Dit et al. (2013). Quite
a few studies view source code more than just texts. It also contains structures and
dependency relations among program elements. To leverage these dependencies to
improve search accuracy, dependence-based code search techniques have been pro-
posed. They accept queries expressed as dependency relationships among program
elements of interest (Wang et al. 2010, 2011a), and return code fragments whose con-
stituent program elements satisfy the dependency relationships. It has been shown that
dependence-based code search could outperform text-based code search (Wang et al.
2011a).

However, there is one drawback that potentially hampers the usage of dependence-
based code search. Often it is hard to construct dependency queries. Users need to
be able to visualize the dependency relationships among program elements, select
relevant ones and express these as queries. This process might be daunting for many
potential users. In this work, we aim to address the drawback of dependence-based code
search by automatically constructing dependency queries from code examples. Using
our tool, developers could input a set of example code fragments, which correspond
to snippets of code that users need to change to address a particular need (e.g., new
feature implementation, bug fix, etc.). By taking multiple code fragments as input, our
tool can learn important dependencies shared by the examples and filter unimportant
dependencies that are peculiar to an individual example. Our tool eventually constructs
a dependency query, which can then be used to identify other code fragments that need
to be changed in a similar way (to address the same need) by leveraging a dependence-
based code search tool. Of course, if needed, users can make changes to the dependency
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query before inputting them to the code search tool. Our setting supports automation
while still allowing users to be in control in the code search process and thus important
domain knowledge can be leveraged for effective code search.

We propose a tool named AutoQuery. Our tool first converts a given set of code frag-
ments (not necessarily compilable) into program dependence graphs (PDGs). These
program dependence graphs are then analyzed and their commonalities are high-
lighted. We develop a new graph mining solution that could mine for these common-
alities from the PDGs expressed as multi-labeled graphs with textual and node type
labels. The resultant mined sub-graph is then converted to a dependency query. We
use the dependency search tool proposed by Wang et al. as the backend code search
tool (Wang et al. 2010). AutoQuery builds upon the dependence-based code search
tool (Wang et al. 2010) by automating the process of generating dependence queries
from sample code fragments. Previously, users of the dependence-based code search
tool needs to manually construct dependence queries.

Our tool can be used to help software engineers in various scenarios. For illustration
purpose, consider Alex a software engineer who is responsible to perform a corrective
maintenance task which may affect a number of files. Alex has localized two buggy
code fragments. However, it is likely that there are many other buggy code fragments
that are distributed across many source code files and need to be fixed in a similar
way. Our tool AutoQuery can be used to help Alex finds the remaining buggy code
fragments. Alex simply needs to input the buggy code fragments that he has localized
to AutoQuery and AutoQuery in turn will construct a DQL query and invoke an
underlying code search tool to return the other buggy code fragments. Alex can save
much time since he does not need to search for the buggy code fragments manually.

There are several challenges that we need to solve to build AutoQuery. First, the
code fragments are not necessarily compilable. Many tools that construct PDGs from
code, e.g., Codesurfer (2013), require compilable code. Thus, we need to process code
fragments into compilable code units. Next, most graph mining solutions, e.g., Yan
and Han (2002, 2003) and Zhu et al. (2011), only work on simple graphs whose
nodes and edges are labelled with simple types. PDGs are not simple graphs; each
node in a PDG is a program element and contains not only node type information and
also textual contents describing the fragment of the source code corresponding to the
program element. Thus we need to build a new graph mining solution that handles our
special graph representation that captures information in a PDG.

We evaluate our query generation approach on 47 realistic code search examples
we extract from repositories of four software projects (Apache Http Server, Inkscape,
Apache Subversion, and Libmpeg2). We show that using AutoQuery we can generate
good queries that could be used to retrieve relevant code with precision, recall, and
F-measure of 68.4, 72.1 and 70.2 % respectively. We have also conducted a user study
to compare automatically generated queries with manually generated queries. We find
that our automatically generated queries can perform as well as human generated
queries.

Our contributions are as follows:

1. We are the first to propose an approach that can automatically generate dependency
queries from several code examples.
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2. We generate PDGs from non-compilable code fragments and propose a new graph
mining technique that could search for common substructures in specialized multi-
label graphs with nodes containing both node type information and textual con-
tents.

3. We have experimented our approach on 47 realistic code search scenarios. We
show that AutoQuery plus dependence based code search tool could return relevant
codes with precision, recall, and F-measure of 68.4, 72.1, and 70.2 %. We have
performed a user study that shows that our generated queries are comparably as
good as human generated queries in returning relevant code.

The structure of this paper is as follows. In Sect. 2, we present PDG and dependence-
based code search in more details. In Sect. 3, we describe our overall framework at
high level. We zoom-in into the PDG generation engine of our framework in Sect. 4.
We elaborate our query generation engine of our framework in Sect. 5. We present
our experiments that evaluate the effectiveness of AutoQuery in Sect. 6. We discuss
related studies in Sect. 7. We conclude and mention future work in Sect. 8.

2 Preliminaries

In this section, we give a brief description of program dependence graphs. We also
describe dependence-based code search briefly.

2.1 Program dependence graphs

A code base comprises of program elements (e.g., expressions, statements, and decla-
rations) that are related to one another via control and data dependencies. An element
is control dependent on another if the execution result of the latter determines if the
former is executed or not. An element is data dependent on another if the former may
use a variable whose value is determined by the latter. A program dependence graph
(PDG) captures all these dependencies, including call relations. Each node in the graph
corresponds to a program element in the code. Each edge corresponds to either data or
control dependence. Program dependence graph has been shown to represent certain
semantic aspects of code and useful for various purposes (Liu et al. 2006; Gabel et al.
2008).

In this paper, we represent a PDG as a graph G = (N , E), where N is a set of
nodes and E is a set of edges. N is defined as the set {n1 = (ntype1, text1), . . . ni =
(ntypei , texti ), . . .}. Each node has two labels: ntypei which is the node type,1

and texti which is the textual representations of the corresponding program ele-
ment in a piece of source code. Let ni .ntype and ni .text denote the node type
and text label of node ni . E is defined as the set {e1 = (nL

1 , nR
1 , etype1), . . . , ei =

(nL
i , nR

i , etypei ), . . .}. Each edge contains two nodes nL
i and nR

i ; these are the nodes
connected by the edge. Each edge also has a type etype, etype can either be data

1 We use the node types defined by CodeSurfer. There are 33 different node types for C/C++, e.g., function
call, expression, etc.
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Table 1 DQL syntax
query ::= (ndecl)*; (ndesc)*; (rdesc)*; target ;

ndecl ::= tlist id

tlist ::= tlist | t ype

type ::= f unc | var | assgn | decl | ctrl Point | stmt

ndesc ::= id (cond)*

cond ::= [not] ucond

ucond ::= contains string | inFile string |
inFunc string | atLine number |
ofControlType ctype | ofType string |
ofType native

ctype ::= for | while | switch | if

rdesc ::= id op id

op ::= [oneStep] depend Op

depend Op ::= dataDepends | controls

target ::= (id)*

id ::= string

string ::= (A–Z, a–z, 0–9)+

number ::= (0–9)+

dependency or control dependency (i.e., etype ∈ {data, control}). Most graph min-
ing algorithms, only accept simple graphs, i.e., graphs with one categorical label per
node (edge). We create a simple graph representation of a PDG G by dropping the
text information from the node labels. We denote the resultant simple graph Gnotext.

2.2 Dependence-based code search

Dependence-based code search accepts as input queries expressing dependencies
among various program elements (Wang et al. 2010, 2011a). To help users formulate
queries and provide inputs for dependence-based code search, the Dependence Query
Language (DQL) was proposed in Wang et al. (2010). Its syntax is shown in Table 1.

DQL has four parts: node declaration (ndecl), node description (ndesc), relation-
ship description (rdesc), and targets (target). Ndecl declares node variables and their
types. Ndesc specifies constraints on declared node variables. Rdesc specifies con-
straints on the relations among declared node variables. T arget specifies the variables
specified in ndecl that are desired search targets. When a DQL query is processed
on a PDG, nodes in the PDG that match the node variables specified in target and
satisfy the constraints specified in ndecl, ndesc and rdesc would be returned.

Node declaration This part of a query is to declare some node variables that are to
be mapped to nodes in a PDG. We assign types to node variables; each type is a PDG
node type, e.g., function call, expression, declaration, etc.

Node description This part of the query specifies further constraints on declared node
variables (cond and ucond). To specify constraints, developers can use the following
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unary operators: contains, inFile, inFunc, at Line, of ControlT ype, and of T ype.
The operator contains allow developers to specify that a particular node needs to
contain a particular text. The operators inFile and inFunc allow developers to specify
a node that is located inside a particular file or function respectively. The operator
of ControlT ype allows user to specify a control node of a particular type (i.e., for,
while, switch, or if). The operator of T ype allows user to specify a node of a particular
type. If the type is specified as native it corresponds to built-in types of a programming
language, e.g., “char”, “float”, “int”, etc.

Relationship description This part of the query specifies constraints governing the
dependency relationships (data and control) between two declared node variables.
They are expressed as operators: dataDepends, controls, and onestep. Onestep
can be used together with either dataDepends or controls; it specifies that a node is
directly data or control dependent on another node.

Targets This part of a DQL query specifies the target node variables that would be
returned as the output of the query. This set of variables is a subset of all declared
variables. The other variables serve as contexts for the target nodes.

Example An example DQL query which has been shown useful to find code fragments
of interest in a real code search task by Wang et al. (2010) is shown below:

Node declarations: decl A, ctrlPoint B;
Node descriptions: A not ofType native;
Relationship descriptions: B oneStep dataDepends A;
Targets: B;

The DQL query specifies a declaration A and a control point B. The declaration
must not be one of the built-in types. B is directly data dependent on A, and we are
interested to find all such Bs.

3 Overall framework

In this section, we present the overall framework of our automatic query generation
approach. In Sects. 4 and 5, we elaborate the core components of our approach.

The structure of our automatic query generation approach is shown in Fig. 1. It con-
sists of two major processing components (shown as big rounded rectangles) namely
PDGs generation engine and query generation engine. The outputs of the PDGs gen-
eration engine, which are the PDGs of the code fragments given by a user, is feeded
to the query generation engine. The sequence of interactions among the user and the
various components of the framework is described in the following paragraphs.

First, a user posts several code snippets to the PDGs generation engine. Inside it,
the non-compilable code fragments would be extended to compilable code by adding
missing type definitions, missing variables, and missing methods. We support non-
compilable code as users could find examples online (e.g., from question and answer
sites, from software forums, etc.); these examples are often only code fragments which
cannot be compiled by itself. Next, the PDGs generation engine uses Codesurfer
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Fig. 1 Overall framework

(2013) to convert the compilable codes to their corresponding program dependence
graphs. Each PDG node corresponds to a program element and contains two pieces
of information: node type, and textual representation of the program element in the
source code.

Next, the PDGs generated by the PDGs generation engine would be sent to the
query generation engine. The query generation engine would first transforms PDGs to
simple graphs by dropping the textual representation information from the nodes. A
maximal common subgraph is then mined from these simple graphs using an existing
graph mining algorithm. Then, each node in the mined simple subgraph would be
mapped to its original node in the PDGs generated by the PDG generation engine, to
extract corresponding textual representation information. A node in a subgraph could
be mapped to many nodes in the original PDGs. We develop a heuristics to decide
the most appropriate node. After getting a common subgraph and text information for
each node in the subgraph, the engine converts the subgraph to a dependency query
acceptable by the dependence-based code search tool developed by Wang et al. (2010)
(see Sect. 2).

4 PDGs generation engine

In this section, we present the steps to generate PDGs for given code fragments (or
incomplete lines of code). Code fragments given by a user might not be compilable
due to various reasons, e.g., missing type definitions, missing method declarations,
etc. Many examples, especially those available in software forums and question and
answer sites, are in this format. In this work, we are able to add the missing type
definitions, variable declarations, and function definitions to make a non-compilable
code fragment compilable. There have been studies in literature (cf. the Related Work
Sect. 7.1) that make incomplete code compilable, but our goal is not to preserve the
full semantics of the code; rather, we just would like to preserve the dependencies
among the various program elements in the code fragment. Our implementation and
evaluation focuses on C/C++ code.
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4.1 Code extension

Algorithm 1 Code extension algorithm
1: CodeExtension(R PT )
2: Input:
3: R PT : Root of the parse tree of a code fragment
4: Output: Extended compilable code
5: Method:
6: Initialize DV , U V , U F , U T , E X , RV to {}
7: Traverse(R PT , DV , U V , U F , U T , E X ,RV )
8: Let M AP = Mappings from m in (DV

⋃
U V

⋃
E X) to its type

9: repeat
10: if s1 and s2 in M AP in a type-equivalence relation in RV then
11: Union s1 and s2 into M AP
12: end if
13: until No more change in M AP
14: Replace Unknown type in M AP with int
15: Add necessary (global) variable declarations based on U V
16: Add necessary function definitions based on U F
17: Add necessary classes based on U T
18: Add other necessary code (e.g., include statements, etc.)

To infer the types of variables and signatures of invoked functions in a code frag-
ment, we first obtain the parse tree of the code fragment. We create this parse tree by
using a python library called pycparser.2 From this parse tree we infer the types of
undeclared variables and the signatures of invoked functions (including information
of their parameters and return types). Undefined types appearing in the code fragment
are inferred as well. We would infer relevant data fields and functions of an undefined
type that are used in the code fragment. After the above information is gathered, we
extend the code fragment by adding:

1. Declarations of undeclared variables
2. Definitions of undefined functions
3. New classes (data types) that specify undefined types

Our code extension algorithm is shown in Algorithm 1. It takes a parse tree as
an input and outputs a piece of compilable code. The major task of the algorithm
is to infer a list of undeclared/undefined variables, function arguments, and function
return values along with their inferred types, a list of undefined functions along with
their signatures, and a list of undefined types along with their relevant attributes and
functions.

We first initialize several sets to store a list of declared variables and constants (i.e.,
DV ), a list of undeclared/undefined variables, function arguments, and return val-
ues (i.e., U V ), a list of undefined functions (i.e., U F), a list of undefined types (i.e.,
U T ), a list of expressions (i.e., E X ), and a list of type-equivalence relations among
variables and expressions (i.e., RV ) (line 6). Note that each expression could be of
various types, e.g., function invocation, operator, variable reference, etc. The heuris-
tics in Table 2 are used to infer type-equivalence relations and update the RV list.
For example, a variable/expression at the left side of an assignment has “assignment”

2 https://bitbucket.org/eliben/pycparser.
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Table 2 Inference heuristics

Name Heuristic

Assignment If two expressions are on the two sides of an assignment, then
they are of the same type

Operator If two expressions are connected with an operator in an
expression, then they are of the same type

Switch-case condition If two expressions are either the condition expression of a
switch statement or the expression in a case statement of the
same switch statement, then they are of the same type

Function definition and invocation A parameter of a function must be of the same type as the
corresponding argument of its invocation. The return type of a
function must be of the same type as the corresponding return
value of its invocation

relationship with a variable/expression at the right side of the assignment. We then
update, add or remove items into these lists by traversing the parse tree using the
procedure Traverse defined in Algorithm 2 (Line 7). The Traverse procedure
walks each node in a parse tree to discover (un)declared/(un)defined variables, expres-
sions, functions, types and store them in corresponding lists. During the traversal, all
type-equivalence relations between among variables and expressions are stored for
type inference later. We elaborate procedure Traverse in latter paragraphs. After
the lists are initialized, we create a set M AP that contains mappings from a set of
variables, arguments, return values, and expressions to their type (line 8). M AP is
initialized as follows:

M AP = {{m} �→ m′s type|m ∈ DV } ∪ {{m} �→ Unknown|m ∈ U V } ∪ {{e}
�→ Unknown|e ∈ E X} (1)

For each member of DV, we have its type, and thus we can insert a mapping between
itself and its type in M AP . For each member of U V , initially we set its type in M AP
to Unknown. Next, we try to infer variables, arguments, return types, and expressions
stored in M AP that have the same type (lines 9–13). If two members of M AP have a
type-equivalence relation, we combine their corresponding mappings in M AP (lines
10–12). Note that we consider two members, which have a type-equivalence relation
if there is type-equivalence relation between two elements from each member (i.e.,
s1, s2), as type-equivalence. We perform this unification iteratively by subsequent
applications of the inference heuristics Milner (1978). We try to put all variables of the
same type together and infer the types of undeclared/undefined variables, arguments,
and return values based on variables of known types. As the unification proceeds, the
number of remaining mappings reduces. The unification process ends when the number
of mappings does not change anymore (i.e., a fixed point is reached) (line 13). Note that
this fixed point would eventually be reached since every time line 11 is executed, we
would reduce the number of mappings in M AP by one. Since there is a finite number of
mappings in M AP , the repeat-until structure (lines 9–14) would eventually terminate.
When this happen, a fixed point is reached. At the end of the process, we have inferred
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switch(x){
case 1:

return true;
default:

return false;
}

Fig. 2 An example code snippet for the switch-case condition

equivalence classes of variables, arguments, and return values that must be of the same
type. For some of these equivalence classes, we can infer the type since one member
of the class is defined in the code fragment. For other equivalence classes, the type
is still Unknown. For these equivalence classes, we replace Unknown with int (line
14). This operation (replacing Unknown with int) does not affect the compilability
of the resultant code as there is no conflicting type assignment. Please note that we
are only interested in recovering dependency relationships among program elements
in the code fragment and not the full semantics of the code fragment.

At the end of the above steps, we would be able to infer the types of all variables,
function arguments and return values. We also know the signatures of the missing
function (including types of arguments and return value.) and the type definition (e.g.,
name of attribute, member function, and their corresponding types, etc.) . Using these
pieces of information, we then add necessary code (e.g., variable declarations, function
definitions, new classes, include library, etc.) to make the code fragment compile (lines
15–18).

In Algorithm 2, we traverse the parse tree node by node starting from its root. The
goal is to update a list of declared variables and constants (DV ), undeclared/undefined
variables, arguments, return values (U V ), undefined functions (U F), undefined types
(U T ) and relations of variables and expressions (RV ) based on the parse tree. We
consider several cases where we need to update our lists: start of a local block (e.g.,
if, for, while, switch-case blocks, etc.), variable declaration or constant, expression,
assignment, operator, function invocation, and undeclared variable reference. When
we encounter a start of a local block, we might find a set of declared variables defined
locally for that block in the parse tree (line 17). We add all these local variables to DV
when we enter the local block. We then recursively call the procedure Traverse
to visit the children of the local block’s start node in the parse tree (line 18). We
remove these local variables from DV when we exit the local block (line 19). If the
local block is a switch-case block, we update RV with “switch-case condition” (cf.
Table 2) relationship of expressions in switch statement and case statement (lines 14–
16). For example, in Fig. 2, we assign “switch-case condition” relation to variable x
and constant 1 and store it in RV.

When we visit a variable declaration or constant node, we update our list of declared
variables DV (lines 22–24). When we visit a reference to an undeclared variable, we
update U V (lines 26–27). If the undeclared variable is an attribute of an object, we
also update U T , including updating the attribute for the object (lines 28–30). When
we visit an expression node, we add it to E X and perform Traverse procedure
recursively (lines 33–37).

When we visit an assignment node, we update RV with “assignment” relation-
ship of the return value of expressions at left and right sides (line 39). Next, the left
side and right side of the assignment will be traversed recursively (lines 40–41). For
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Algorithm 2 Traverse procedure
1: Traverse(R PT , DV, U V , U F , U T , E X , RV )
2: Inputs:
3: R PT : Root of the parse tree of a code fragment
4: DV : List of declared variables and constants
5: U V : List of undeclared/undefined variables, arguments, return values
6: U F : List of undefined functions
7: U T : List of undefined types
8: E X : List of expressions
9: RV : List of relations of variables and expressions
10: Outputs: DV, U V , U F , U T , E X , RV
11: Method:
12: for each child c of R PT do
13: if c is a start of a local block then
14: if c is a switch case condition block then
15: Add into RV the type-equivalence relations between the expressions in the switch statement and the

expressions in the case statements based on heuristic in Table 2
16: end if
17: Add locally declared variables into DV
18: Traverse(c, DV, U V , U F , U T , RV )
19: Remove locally declared variables from DV
20: Continue
21: end if
22: if c is a declared variable or a constant then
23: Add into DV the variable/constant with its type
24: Continue
25: end if
26: if c is an undeclared variable reference then
27: Add into U V this new variable
28: if c is an attribute of an object then
29: Add into U T this new type with its member
30: end if
31: Continue
32: end if
33: if c is an expression then
34: Add into E X this new expression
35: Traverse(c’s left side, DV, U V , U F , U T , E X , RV )
36: Continue
37: end if
38: if c is an assignment then
39: Add into RV the type-equivalence relations between the expressions of c’s left side and c’s right side

based on heuristic in Table 2
40: Traverse(c’s left side, DV, U V , U F , U T , E X , RV )
41: Traverse(c’s right side, DV, U V , U F , U T , E X , RV )
42: Continue
43: end if
44: if c is an operator then
45: Add into RV the type-equivalence relations between the expressions connected with the operator based

on heuristic in Table 2
46: Traverse(c’s left side, DV, U V , U F , U T , E X , RV )
47: Traverse(c’s right side, DV, U V , U F , U T , E X , RV )
48: Continue
49: end if
50: if c is a function invocation then
51: Update U F
52: for each argument of its invocation a of c do
53: Add into RV the type-equivalence relations between the argument expression a and its corresponding

parameter of c based on heuristic in Table 2
54: Traverse(a, DV, U V , U F , U T , E X , RV )
55: end for
56: Add into RV the type-equivalence relations between the return expression a and of c’s return type based

on heuristic in Table 2
57: Traverse(c’s return, DV, U V , U F , U T , E X , RV )
58: if c is called from an object then
59: Update U T
60: end if
61: Continue
62: end if
63: Traverse(c, DV, U V , U F , U T , E X , RV )
64: end for
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if(tag ->check(a,b,c)){
tag ->a = a;
b = 0;
c = b + tag ->getSize ();
tag1 = tag;
d = tag1 ->getSize ();

}else{
return a;

}

Fig. 3 An example code fragment

example, for an assignment c = b+ tag → get Si ze() in Fig. 3, we apply the “assign-
ment” relationship to variable c and expression b + tag → get Si ze() and update
it to RV. After the Traverse procedure, with this information, we can infer c and
b + tag → get Si ze() have the same type (see step 6 in Table 4). When we visit an
operator node, similarly to assignment nodes, we update RV with “operator” relation-
ship of expressions connected with the operator and call the procedure Traverse to
visit the two expression nodes recursively (lines 45–47). For example, operator node
b + tag → get Si ze() in above example, we assign “operator” relationship to the
variable b and the expression tag → get Si ze() and store it in RV and used it for
inference (see step 4 in Table 4).

When we visit a function invocation node, we also consider the arguments and return
values of the function invocations. First, we update RV with “function definition and
invocation” relationship of expressions in argument nodes and the parameter of a
function (line 52). Second, we invoke the procedure Traverse to visit the argument
nodes (line 53). We deal with the return value of the function in the same way as
argument nodes (lines 55–56). For example, for tag → check(a, b, c), variable a and
argument checkarg1

3 are assigned the same type based on the “function definition and
invocation” heuristics in Table 2 (see step 1 in Table 4). Furthermore, if the function
is called from an object, we also add the object variable to U V , update the list of
undefined types (U T ), and revise the set of member functions of the object (lines
57–59). For example, for tag → get Si ze(), we add tag to U T as T AG,4 meanwhile
we add the function get Si ze() as T AG’s member function. We also assign “function
definition and invocation” relationship to the expression tag → get Si ze() and the
return value of function T AG → get Si ze() and update it to RV.

Example We use an example to illustrate how the overall code extension algorithm
works. Consider a code fragment shown in Fig. 3.

We would like to extend the code fragment and make it compile. First, we gen-
erate a parse tree for it and traverse the tree to find the undeclared/undefined types,
functions, variables, expressions, and type-equivalence relations. We present the lists
of undefined types (UT), undefined functions (UF), undefined variables (UV), and
expressions (EX) that can be found from the example code fragment in Table 3.

We notice that tag is an object, thus we create a class named TAG and it has a as
an attribute and two methods check and get Si ze. We simply name a type by using its
corresponding variable’s name in uppercase letters. We deal with tag1 in the same way.

3 First argument of function tag → check().
4 We simply name a type by using its corresponding variable name in uppercase letters.
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Table 3 Lists U T , U F , U V , and E X for the code fragment in Fig. 3

List name Items in list

U T T AGa, T AG1

U F T AG → check()b, T AG → get Si ze(), T AG1 → get Si ze()

U V tag, a, b, c, d, tag → a, tag → check(), T AG → checkc
return , checkd

arg1,
checkarg2, checkarg3, T AG → get Si zereturn , T AG1 → get Si zereturn

E X tag → get Si ze(), tag1 → get Si ze(), b + tag → get Si ze()

a The signature of the type of variable tag
b The member function of T AG
c The return value of T AG → check()
d The first argument of T AG → check()

If during type inference, we find two objects are the same, we merge the corresponding
types into one, and keep the attribute (i.e., signature and type) and member functions
(i.e., signature, types of arguments and return value) of the new type consistent with
older ones. For example, in step 7 in Table 5, we infer that the types of tag and tag1
are the same. We merge the two corresponding classes and make sure the types of
function get Si ze() in both of them are consistent. In this case, the type of return
values T AG → get Si zereturn and T AG1 → get Si zereturn is the same. Next, we
infer the types of the variables, arguments, and return values.

The inference process proceeds following the steps listed in Tables 4 and 5. Ini-
tially, each variable, arguments, and return values either declared or undeclared has its
own mapping. So far, we only know the type of tag, tag1, and 0. In step 1, the return
value T AG → checkreturn and expression tag → check(), a and checkarg1, b and
checkarg2, and c and checkarg3 are merged by following function definition and invo-
cation heuristic (see Table 2). In step 2, the mappings for a and tag → a are merged
following the assignment heuristic. However, their types are still unknown since the
types of a and tag → a are both unknown. The same heuristic is applied in step 3.
Next, the function definition and invocation heuristic is applied. In step 5, the operator
heuristic is applied and we merge b and tag → get Si ze(). The assignment heuristic
is applied again in step 6 and 7. In the following step, the function definition and invo-
cation heuristic is applied. Next, after the final application of the assignment heuristic,
we are able to infer the types of d, b, check(arg2), checkarg3, 0, c, tag → get Si ze(),
T AG → get Si zereturn ,tag1 → get Si ze() are all int since the type of 0 is int. We
can not merge any other mappings. Finally, we replace all unknown types with int.

After the above steps, we have the needed information to add variable declarations,
a new class, and other needed pieces of code. The code fragment (in gray background)
is extended to the compilable code (excluding #include part) in Fig. 4.

Finally, we feed the extended code to CodeSurfer and get a PDG. We then remove
some nodes from the PDG that correspond to the added code and only keep those that
correspond to the input code fragment.

5 Query generation engine

In this section, we present how we find commonalities among multiple PDGs gen-
erated from a set of example code fragments, and convert these commonalities into
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Table 4 Illustration of our type inference process: part I (steps 1–5)

Step Mappings Inference heuristic

1 {tag} �→ T AG, {a, checkarg1} �→ Unknown
{tag → a} �→ Unknown, {b, checkarg2} �→ Unknown,
{d} �→ Unknown, {c, checkarg3} �→ Unknown,
{T AG → checkreturn , tag → check()} �→ Unknown,
{0} �→ int , {tag1} �→ T AG1,
{tag → get Si ze()} �→ Unknown,
{tag1 → get Si ze()} �→ Unknown,
{T AG → get Si zereturn} �→ Unknown,
{T AG1 → get Si zereturn} �→ Unknown,
{b + tag → get Si ze()} �→ Unknown

Function definition and
invocation
(tag→check(a,b,c))

2 {tag} �→ T AG, {checkarg1, a, tag → a} �→ Unknown,
{b, checkarg2} �→ Unknown, {d} �→ Unknown,
{c, checkarg2} �→ Unknown,
{T AG → checkreturn , tag → check()} �→ Unknown,
{0} �→ int , {tag1} �→ T AG1,
{tag → get Si ze()} �→ Unknown,
{tag1 → get Si ze()} �→ Unknown,
{T AG → get Si zereturn} �→ Unknown,
{T AG1 → get Si zereturn} �→ Unknown,
{b + tag → get Si ze()} �→ Unknown

Assignment (tag→a = a)

3 {tag} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{b, checkarg2, 0} �→ int , {d} �→ Unknown,
{c, checkarg3} �→ Unknown,
{T AG → checkreturn , tag → check()} �→ Unknown,
{tag1} �→ T AG1, {tag → get Si ze()} �→ Unknown,
{tag1 → get Si ze()} �→ Unknown,
{T AG → get Si zereturn} �→ Unknown,
{T AG1 → get Si zereturn} �→ Unknown,
{b + tag → get Si ze()} �→ Unknown

Assignment (b = 0)

4 {tag} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{b, checkarg2, 0} �→ int , {tag → get Si ze(),
T AG → get Si zereturn} �→ Unknown, {d} �→ Unknown,
{c, checkarg3} �→ Unknown,
{T AG → checkreturn , tag → check()} �→ Unknown,
{tag1} �→ T AG1, {tag1 → get Si ze()} �→ Unknown,
{T AG1 → get Si zereturn} �→ Unknown,
{b + tag → get Si ze()} �→ Unknown

Function definition and
invocation
(tag→getSize())

5 {tag} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{b, checkarg2, 0, tag → get Si ze(),
T AG → get Si zereturn} �→ int , {d} �→ Unknown,
{c, checkarg3} �→ Unknown,
{T AG → checkreturn , tag → check()} �→ Unknown,
{tag1} �→ T AG1, {tag1 → get Si ze()} �→ Unknown,
{T AG1 → get Si zereturn} �→ Unknown,
{b + tag → get Si ze()} �→ Unknown

Operator (b +
tag→getSize())

a dependency query. As Fig. 1 shows, there are three steps in our query generation
process:

1. Mine simple subgraphs from a set of PDGs
2. Recover text information for each node in the common subgraphs
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Table 5 Illustration of our type inference process: part II (steps 6–9)

Step Mappings Inference heuristic

6 {tag} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{checkarg2, checkarg3, b, 0, c, tag → get Si ze(),
T AG → get Si zereturn , b + tag → get Si ze()} �→ int ,
{T AG → checkreturn , tag → check()} �→ Unknown,
{d} �→ Unknown, {tag1} �→ T AG1,
{tag1 → get Si ze()} �→ Unknown,
{T AG1 → get Si zereturn} �→ Unknown

Assignment (c = b +
tag→getSize())

7 {tag, tag1} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{b, checkarg2, checkarg3, 0, c, tag → get Si ze(),
T AG → get Si zereturn , b + tag → get Si ze()} �→ int ,
{T AG → checkreturn , tag → check()} �→ Unknown,
{tag1 → get Si ze(), T AG → get Si zereturn} �→ Unknown,
{d} �→ Unknown

Assignment (tag1 = tag )

8 {tag, tag1} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{b, checkarg2, checkarg3, 0, c, tag → get Si ze(),
T AG → get Si zereturn , tag1 → get Si ze(), b + tag →
get Si ze()} �→ int ,
{T AG → checkreturn , tag → check()} �→ Unknown,
{d} �→ Unknown

Function definition and
invocation
(tag→getSize())

9 {tag, tag1} �→ T AG, {a, checkarg1, tag → a} �→ Unknown,
{d, b, checkarg2, checkarg3, 0, c, tag → get Si ze(),
T AG → get Si zereturn , tag1 → get Si ze(), b + tag →
get Si ze()} �→ int ,
{T AG → checkreturn , tag → check()} �→ Unknown

Assignment (d =
tag→getSize())

class test{
int testmain (){

int a, b, c, d;
TAG* tag , tag1;

if(tag ->check(a,b,c)){
tag ->a = a;
b = 0;
c = b + tag ->getSize ();
tag1 = tag;
d = tag1 ->getSize ();

}else{
return a;

}

return 0;
}
static void main (){

test *t = new test ();
t->testmain ();

}
}

class TAG{
public int check(int a0, int a1, int a2){}
public int getSize (){}
public int a;
TAG (){}

}

Fig. 4 Compilable code extended from a code snippet
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3. Construct a query from text-enriched subgraphs

We describe the first, second, and third steps in Sects. 5.1, 5.2, and 5.3 respectively.

5.1 Mine simple maximal common subgraph

First, we just focus on the node and edge types, i.e., ntype and etype. We convert
each PDG G into their simple graph representation Gnotext. Next we mine for maxi-
mal subgraphs that appear on all Gnotext. We get one such simple maximal common
subgraph. We mine this maximal common subgraph using an existing graph mining
tool called Gaston.5

5.2 Recover textual information

At this step, we have a simple subgraph Snotext that is common for the set of all PDGs
P DGSet . Our next job is to recover textual information for each node of this subgraph.
The textual information of a node captures semantic and structural information. If the
ntype of a node is function, its textual information represents the name of the function.
If the ntype of a node is control statement, its textual information represents the type
of the control statement (e.g., if, while, etc). We extract the textual information to
create “contain string” constraints for a node in a DQL query. This makes the query
more specific and accurate.

Note that this step is not trivial since each node in Snotext can match multiple nodes
containing different textual information in a particular PDG, and thus there is a need to
choose the best matching node. The best matching nodes among different PDGs may
contain different textual information, and thus there is a need to unify these textual
information together by removing peculiar information specific to a matching node of
a PDG.

High-level description The algorithm performing textual content recovery is shown in
Algorithm 3. The idea is to perform graph matching operation. We match each simple
subgraph Snotext to each PDG G j in PDGSet based on the labels ntype and etype
(we ignore the textual labels) (lines 8–11). The graph matching operation returns a set
of candidate nodes in G j that potentially match each node of Snotext

i . Notation-wise,

given a node n in Snotext
i , we denote its set of candidate nodes in G j as Cand

G j
n . We

select one representative candidate per PDG and extract its textual label (lines 12–28).
A candidate node of a PDG can only represent one node in Snotext. Thus we delete
the representative nodes from the sets of candidate nodes of other nodes in Snotext

(line 29). We then unify this set of labels to recover the label for node n (line 30). We
elaborate our approach to select representative candidates and unify text labels in the
following paragraphs.

5 http://www.liacs.nl/~snijssen/gaston/.
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Algorithm 3 Textual information recovery procedure
1: recoverText(P DGSet , Gnotext

sub ,Candidate)
2: Input:
3: P DGSet : A set of PDGs
4: Snotext : A common subgraph of PDGs in P DGSet ignoring text labels
5: Output: Text enriched Snotext (i.e., S)
6: Method:
7: Let Cand = Pool = {}
8: for each Gi in P DGSet do
9: Perform a graph matching operation between Snotext and Gi

10: Let Cand
Gi
n stores all candidates for node n in Snotext

11: end for
12: for each node n in Snotext do
13: Let Rep = {} // Representative nodes from each PDGs

14: if ∀Gi ∈ P DGSet.|Cand
Gi
n | = 1 then

15: Rep = {c|∃Gi ∈P DGSet .c ∈ Cand
Gi
n }

16: else
17: Let Ref erence = {} //First representative node
18: Let Others = {} //Candidates from other PDGs

19: if ∃Gi ∈ P DGSet.|Cand
Gi
n | = 1 then

20: Ref erence = {c ∈ Cand
Gi
n | |Cand

Gi
n | = 1}

21: Others = {Cand
Gi
n |Gi ∈ P DGSet ∧ |Cand

Gi
n | > 1}

22: else
23: Ref erence = an arbitrary Cand

Gi
n

24: Others = {Cand
Gi
n |Gi ∈ P DGSet} \ Ref erence

25: Delete all but (random) node node in Ref erence
26: end if
27: Let Rep = selectRepCand(Re f erence,Others)
28: end if
29: Remove nodes in Rep from Cand

Gi
n′ , n′ 
= n and Gi ∈ P DGSet

30: n.T ext = Unify text labels of nodes in Rep
31: end for

Selecting representative candidates We would like to select one representative can-
didate per PDG for a node n. If all candidate sets are of size 1, then we simply take
all candidate nodes as the representative nodes (lines 14–15). Otherwise, we would
like to pick representative nodes such that they are similar to one another. The ratio-
nale for this would be explained further by an example described in Sect. 5.4. To
pick similar representative nodes, first we pick a set of reference nodes (lines 20,
23, and 25). If there are candidate set of size 1, we take the nodes in these sets as
the reference nodes (lines 19–20). Otherwise, we pick an arbitrary candidate node
as a reference node (lines 23, 25). Next we pick representative nodes from other
PDGs that are similar to the reference nodes (line 27). Algorithm 4 describe this
last step in more detail. In Algorithm 4, we first take the input reference nodes as
the representative nodes (line 7). Next, we visit each candidate node set of the other
PDGs and pick a node that is the most similar to the selected representative nodes
(lines 8–12).

At line 9 of Algorithm 4, we need to measure the similarity between nodes. We
measure the similarity between nodes by considering their text labels. Each node is
represented by one vector which captures its textual information. Each element of
the vector corresponds to a word token that appears in the corresponding node’s text
label. In our dataset, the sizes of these vectors are from 1 to 11 with a mean of 4.2.
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Algorithm 4 Selection of representative candidates
1: selectRepCand(Re f erence, Others)
2: Input:
3: Ref erence: Selected representative candidates
4: Others: Candidates from other PDGs
5: Output: All representative candidates
6: Method:
7: Let Rep = {n|n ∈ Ref erence}
8: for each set Cand

Gi
n in Others do

9: Select a node n′ in Cand
Gi
n which is the most similar to all nodes in Ref erence

10: Rep = Rep
⋃ {n′}

11: Others = Others \ Cand
Gi
n

12: end for
13: return Rep

The vocabulary of these vectors contains all words that appear in the textual labels
of all nodes in the PDGs. We then weigh each word by using a TF-IDF weighting
scheme (Manning et al. 2008). Here, the term frequency (TF) of a word refers to
the number of times the word appear in the text label. Inverse document frequency
(IDF) refers to 1/DF (document frequency), where DF is the number of representative
nodes with text labels containing the word. Each node is then represented as a vector
of weights. Similarity between two nodes n1 and n2 could then be measured by the
similarity between their corresponding weight vectors v1 and v2. We use standard
cosine similarity for this purpose (Manning et al. 2008):

cos(v1, v2) =
∑

i∈(v1∪v2)
v1[i] × v2[i]

√∑
i∈v1

v1[i]2 ×
√∑

i∈v2
v2[i]2

Finally, we take an average on the similarity scores of the node n in CandGi
n and each

node in Ref erence and select the node with the highest score as the most similar one.

Unifying textual labels For this process, for a node n in a subgraph Snotext , we have as
input a set of representative nodes with their text labels. Our goal is to create a single
unified textual label for n (line 30). To do this, we perform the following steps:

1. For each representative node text label, we pre-process it as follows: If n.ntype =
function call, arguments (including parentheses) are removed and the name of the
function is kept. If n.ntype = expression, only keep the right side of the expression.
For all other types, all text is kept.

2. Get the longest common text from the pre-processed text labels. In this step, we
find the longest consecutive sequence of characters (Gusfield 1997) (we don’t
consider case-sensitivity) that appears in all the text labels.

3. Split the resultant text and remove special symbols. We first split the resultant text
with white space. We then perform Camel Case splitting on each token to split
the consecutive identifier (Antoniol et al. 2002). For example, we split “getString”
to “get” and “string”. We also split each token with some special symbols (i.e.,
operators, number). At last, we remove some special symbols (i.e., operators,
number).

123



Autom Softw Eng

Fig. 5 Query generation example

Example Assume two representative nodes n1 and n2 with labels “a = getExtString
(para1) + 123 + var12” and “b = ExtString(para2) + 123 + var13” respectively. We first
perform step 1 on these two nodes. This step removes “para1” from n1 and “para2”
for n2 as their ntype = function call. We also remove “a =” and “b =” as we only
keep the right hand side of an expression. After step 1, we get “getExtString + 123 +
var12” and “ExtString + 123 + var13” for n1 and n2, respectively. Following step 2,
we get the longest common text “ExtString + 123 + var1” from “getExtString + 123 +
var12” and “ExtString + 123 + var13”. At the last step, we split the longest common
text “ExtString + 123 + var1” to “ext”, “string”, “+”, “123”, “+”, “var”, and “1” and
then remove “+”, “123” and “1”. Finally, we get “ext”, “string” and “var”.

5.3 Construct query from enriched subgraphs

For this step, we have as input a text-enriched common maximal subgraph S. We
create a dependency query (expressed in DQL which is described in Sect. 2) from this
subgraph by following these steps:

1. Output the nodes in S and their types as node declarations of the query
2. Output the edges in S as relationship descriptions of the query
3. Output the text labels of nodes in S as node descriptions of the query
4. Identify all nodes defined in the query as target nodes

5.4 Example

We use Fig. 5 to illustrate the query generation process. PDGs G A and G B are the
inputs and a query written in DQL is the output. First, we perform graph mining on
G A and G B to get a simple maximal common subgraph which is S.
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Table 6 Programs analyzed in this study

Name Description Size (KLOC) #Versions

Apache Http Server HTTP Web Server 264.5 12

Apache Subversion Open source version control system 483.5 8

Inkscape Open source vector graphics editor 458.2 9

Libmpeg2 Library for decoding MPEG-2
and MPEG-1 video streams

37.3 3

Next, we run Algorithm 3 on G A, G B , and S to recover the textual information
for the nodes in S. For node s1, its representative nodes in G A and G B can be easily
identified as there is only one candidate node for each PDG; They are nodes a1 and
b1. After we unify the text labels of a1 and b1, we get “if” as the text label of s1.
For node s2, there are two candidate nodes in G A (i.e., nodes a2 and a3), and one
candidate node in G B (i.e., node b2). For this case, our algorithm first selects node b2
as a representative node. It then finds the node in {a2,a3} which is the most similar to
b2. It selects a3 as it is more similar to b2 than a2. After we unify the text labels of a3
and b2, we obtain “ext” by getting the longest common text “ext()” and then removing
the parentheses.

Finally, we convert the text-enriched S to a dependency query expressed in DQL.
The resultant query is as follows:

Node declarations: ctrlPoint A, func B;
Node descriptions: A contains if, B contains ext;
Relationship descriptions: A oneStep controls B;
Targets: A,B;

6 Evaluation

6.1 Experimental settings

To evaluate our proposed approach, we extract code search scenarios from repositories
of real software systems. We are especially interested on recovering real-life changes
that need to be applied to various locations in a code base. We use these changes
to simulate code search scenarios. Developers might know some of these locations
but would like to know other relevant locations. Code search could help developers
to find these other locations. This experimental setting follows the setting described
in Wang et al. (2010). The code bases that we use for our experiments are from four
realistic programs written in C and C++ namely Apache Http Server (12 versions),
Inkscape (9 versions), Apache Subversion (8 versions), and Libmpeg (3 versions),
which have undergone at least thirteen years of continuous development, improvement,
and optimization. The details of these programs are shown in Table 6.

In Wang et al. (2013), we perform an empirical study on widespread changes. To
identify widespread changes, we look for commits that touch many files and these
files are modified in a similar way structurally and semantically. Files involved in a
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widespread change are modified for the same purpose, e.g., fixing the same bug, etc.
To check whether the files are modified in a semantically similar way, we manually
inspect the files to find whether they are indeed changed for the same purpose. We
follow this procedure to identify widespread changes on the 4 programs that we use in
this study. Applying the procedure, we get 47 widespread changes. Each widespread
change involves 5–53 code locations, with an average of 10 locations. Let us refer
to the code requiring change at each location as a fragment. In total, we have 478
fragments. Each fragment is of 2–20 lines of code. To simulate code search scenarios,
for each widespread change, we randomly pick two fragments as the input to a code
search task. We test the effectiveness of the code search task using the remaining
fragments, i.e., the remaining fragments become the gold set or standard. Since we
have 47 widespread changes, we simulate 47 code search tasks.

We implement our AutoQuery approach in Python and Java. AutoQuery converts
code examples into dependency queries. We use the approach by Wang et al. (2010) as
the backend code search engine that would process the dependency queries and return
relevant pieces of code. We use a desktop with an Intel Core i5 3.2GHz CPU installed
with 4GiB of memory and 2TiB of hard disks to run experiments.

We compare the performance of AutoQuery with manually constructed queries (we
refer to them as UserQuery). We perform a user study involving 10 participants and the
47 code search tasks. Among the 10 participants, 9 of them are PhD students who have
at least two years of C and C++ programming experience. One of them is a professional
software engineer who has three years of C and C++ programming experience. All
of them know are familiar with Program Dependency Graph (PDG)—many of them
have taken a course on program analysis.

We give each participant tasks in the following format: given a set of code fragments,
generate a DQL query that can capture the code fragments in this set. Each participant
is assigned four or five tasks. For each task, a participant is given two fragments (i.e.,
code examples) along with the corresponding PDGs of the fragments. Note that we
give users PDGs to ease the tasks for users. A participant needs to look at the code
fragments as well as their corresponding PDGs, and construct a dependency query
expressed in DQL to find other similar codes. We record the queries users created and
the time each of them takes to complete the construction of a query. Before users start
with the tasks, each of them is given a 20 min tutorial about dependence-based code
search and DQL. They are also given a 10 min exercise to construct a query from
simple code fragments. These tutorial and exercise are meant to familiarize users with
the tasks.

6.2 Experiment results

We aim to answer the following research questions:

RQ1 Can AutoQuery generate good dependency queries that can retrieve relevant
search results?

RQ2 Can AutoQuery perform comparably well as developers in constructing good
dependency queries?

RQ3 Can AutoQuery improve the time it takes to construct queries?
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The first research question investigates the overall effectiveness of our proposed
approach. The second research question investigates the effectiveness of AutoQuery as
compared to manually constructed queries (UserQuery). The third research question
investigates the efficiency of our approach as compared to UserQuery.

6.2.1 RQ1: effectiveness of AutoQuery

To answer this research question, for each of the 47 tasks, we run the dependency query
generated by AutoQuery on the dependence-based code search engine of Wang et al.
(2010). We count the number of code fragments in the gold set that are retrieved. Based
on this, we compute the average precision, recall, and F-measure which are standard
information retrieval measures (Manning et al. 2008). For a given task, precision,
recall, and F-measures are defined as follows:

precision = # retrieved code fragments in the gold set

# retrieved code fragments

recall = # retrieved code fragments in the gold set

# code fragments in the gold set

F-measure = 2 × precision × recall

precision + recall

F-measure is the harmonic mean of precision and recall and it is often used as a
summary measure. It quantifies if an increase in precision outweighs a decrease in
recall (and vice versa). Table 7 shows the result. The average precision, recall, and F-
measure for the 47 tasks are 68.4, 72.1, and 70.2 %, respectively. For 25 automatically
constructed queries, we are able to find all fragments in the gold set (recall = 1).
For 21 automatically constructed queries, all retrieved fragments are in the gold set
(precision = 1). For 12 automatically constructed queries, all fragments in the gold set
are retrieved and all retrieved fragments are in the gold set (F-measure = 1).

In the default setting, for each task, AutoQuery is given two code fragments to
generate a query. We would like to test the effectiveness of AutoQuery with different
numbers of code fragments as input. In this experiment, we give k randomly selected
code fragments to AutoQuery. Since the number of relevant code fragments for each
task ranges from 5 to 53, we vary the value of k in set {1, 2, 3, 4} and measure
effectiveness in terms of recall, precision and F-measure. In Fig. 6, we present the
effectiveness of AutoQuery for different numbers of code fragments. We notice that
the recall value increases as the number of code fragments increases, and the precision
value decreases as the number of code fragments increases. As more code fragments
are used to generate a query, a more general query is generated. Searching using a
more general query returns a larger number of code fragments. As the number of
code fragments increases, more false positives are introduced, which leads to a lower
precision value. On other hand, as the number of code fragments increases, less false
negatives are introduced, which leads to a higher recall value. In terms of F-measure,
the harmonic mean of precision and recall, AutoQuery performs the best when three
code fragments are given.
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Fig. 6 Results (y axis) vary as the number of code fragments (x axis) increase

Table 7 AutoQuery versus
UserQuery: precision, recall,
and F-measure

AutoQuery UserQuery

Precision 0.684 0.584

Recall 0.721 0.767

F-measure 0.702 0.664

We also perform a fivefold cross validation like experiment to evaluate AutoQuery.
We randomly split 1/5 of the code fragments in each gold set of our code search tasks
into 5 buckets. We then perform 5 iterations. In each iteration, we use fragments in one
of the buckets to generate a query and use the other four buckets to test the effective-
ness of AutoQuery. For this experiment, AutoQuery achieves a recall, precision, and
F-measure of 0.861, 0.64, and 0.734, respectively.

6.2.2 RQ2: AutoQuery versus UserQuery

To answer this research question, we compare the results of AutoQuery with those
of UserQuery. For each of the 47 code search tasks, we use the same pairs of code
fragments as input to AutoQuery and UserQuery.

As shown in Table 7, the precision, recall, and F-measure of UserQuery are 58.4,
76.7, and 66.4 %, respectively. In general, users’ queries are more general (contain less
constraints), while queries generated by AutoQuery are more specific (contain more
constraints). This makes the results obtained from the queries generated by AutoQuery
more precise (resulting in higher precision). However, some relevant results are missed
(resulting in lower recall) because of the more specific queries. It is a trade-off between
precision and recall. To measure the trade-off between precision and recall, we also
compute F-measure which is a summary measure of precision and recall. In terms of
F-measure, AutoQuery achieves a 5.7 % improvement over UserQuery.

We also perform a Wilcoxon signed-rank test Wilcoxon (1945) to check the signifi-
cance of the differences in the performance of AutoQuery and UserQuery measured in
terms of recall, precision and F-measure. The results show that the differences in terms
of F-measure (p value = 0.49) and recall (p value = 0.17) are not significant, while
the difference in terms of precision is significant (p value = 0.02). This shows that
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Table 8 AutoQuery versus
UserQuery: number of winning
queries

AutoQuery wins User Query wins

Precision 18 7

Recall 4 5

F-measure 16 9

Fig. 7 AutoQuery versus UserQuery: precision per task

Fig. 8 AutoQuery versus UserQuery: recall per task

AutoQuery is comparably as good as developers in constructing dependency queries
in terms of recall and F-measure, and the improvement in terms of precision achieved
by AutoQuery in constructing dependency queries over developers is statistically sig-
nificant.

Table 8 presents the number of tasks where AutoQuery outperforms UserQuery
(and vice versa). In terms of precision, AutoQuery wins on 18 queries and loses on
7 queries. In terms or recall, AutoQuery wins on 4 queries and loses on 5 queries. In
terms of F-measure, which is the harmonic mean of precision and recall, AutoQuery
wins on 16 queries and loses on 9 queries. AutoQuery and UserQuery do not produce
the exact same search results for the remaining queries, however their precision (or
recall, or F-measure) values for these queries are the same. Figures 7, 8, and 9 present
precision, recall, and F-measure of AutoQuery and UserQuery for each of the 47
tasks. The above results show that AutoQuery is comparably as good as developers in
constructing dependency queries.

We can notice that for Query 20 in Fig. 7, AutoQuery achieves a precision value
of 1, while UserQuery can not find any correct results, which leads to poor precision.
We manually check the query generated by the user, and we notice that the user
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Fig. 9 AutoQuery vs. UserQuery: F-measure per task

misses important constraints which make the query ineffective to find relevant code
fragments. The precisions of queries formed by users for tasks 13, 18–21 are low. We
have checked the queries we got from the participants that perform tasks 13, 18–21. We
find that they are generated by participants that are able to create relatively good queries
for other tasks. In Fig. 8, for some queries (e.g., Query 41) UserQuery outperforms
AutoQuery. We check the queries generated by both of them, we find that queries
generated by users are more general with less constraints, while queries obtained from
AutoQuery are more specific with more constraints. More general queries return more
results which lead to UserQuery achieving higher recall than AutoQuery. Based on
this observation, in the future, to improve the effectiveness of AutoQuery, we plan
to extend it by developing a machine learning technique that can remove or weaken
some of the generated constraints automatically.

6.2.3 RQ3: efficiency of AutoQuery compared with UserQuery

Static analysis and data mining techniques can take much time and resource to run
to completion. Some static analysis and data mining techniques can run for hours.
Our approach makes use of both static analysis and data mining. Graph mining in
particular can be a time consuming operation. Thus, in this research question we want
to investigate whether our approach is efficient enough as compared to the time it
takes for developers to manually construct queries. If our approach is slower than the
time developers take to manually construct queries, then it might not be practical.
Another side goal of this research question is to investigate the effort developers need
to construct queries as measured by the time they take to construct them.

To answer this question, we compare the time it takes for AutoQuery to construct
queries with that of UserQuery. The total time it takes for AutoQuery to construct the
47 queries is 27.5 s. Thus, the average time per query is 0.6 s which is reasonable short.
The total time for developers (UserQuery) to construct the 47 queries is 10,509 s, with
an average of 223.6 s. Compared with the time it takes for developers to construct
query, our approach is much more efficient. Many developers are likely to be reluctant
to use a code search tool if they need to think hard for 3–4 min to construct a query.
AutoQuery addresses this concern.

Figure 10 shows the time it takes for AutoQuery and a developer to construct
each of the 47 queries. Almost all queries can by constructed by AutoQuery in less
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Fig. 10 AutoQuery versus UserQuery: efficiency

than a second except for two queries: one of them costs 3.9 s and another costs 19.8
seconds. For these two most complicated queries, developers spend 521 and 723 s,
respectively. From these experiment results, we can see that AutoQuery is able to save
much developer time.

In Figs. 11 and 12, we present the code fragments for those two queries, which
contain 19 and 10 lines, respectively. Correspondingly, their dependence graphs are
bigger and more complex (they have 23 nodes and 10 edges, and 21 nodes and 27
edges, respectively). Thus, for these fragments, because AutoQuery needs to perform
graph extraction from the PDGs, whose complexity is dependent on the size of the
PDGs (i.e., number of nodes and edges in the PDGs), it takes more time to generate
queries. Correspondingly, it is also more difficult for users to formulate queries from
these code fragments. One way to alleviate this problem, which we plan to investigate
in the future, is to compress the dependence graph by removing some unimportant
nodes and edges.

6.2.4 Threats to validity

Threats to internal validity include experimenter bias. There might be subjectivity
in the queries that a participant formulates. Similar to past studies, e.g., McMillan et
al. (2011), Wang et al. (2012) and Tian et al. (2014), we do not have a large pool of
participants such that each query can be formulated by many people. It could be the
case that some participants may have formulated very bad queries, which may not
be representative of a typical/trained user. Still, we consider 47 widespread changes
and take averages, and we believe averaging would help reduce the threats. Also, we
have given user study participants a 20 min tutorial and 10 min exercise (the exercises
we gave to the users are similar to the actual tasks) to familiarize them with writing
queries in DQL. We have also provided helps and hints when users faced difficulties
during the tasks. The results that we get may be different if we train them much more.

Threats to external validity relate to the generalizability of our approach. We have
investigated 47 widespread changes and experimented on four realistic programs writ-
ten in C and C++. Admittedly, our programs are just a fraction of the collection of all
programs out there. Also, our tasks do not cover all kinds of widespread changes. In
the future, we plan to reduce the threats to external validity further by investigating
more widespread changes and more programs written in other languages.
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(1)
if (!type) {

GTypeInfo info = {
sizeof(SPAttributeTableClass),
0, // base_init
0, // base_finalize
(GClassInitFunc)sp_attribute_table_class_init ,
0, // class_finalize
0, // class_data
sizeof(SPAttributeTable),
0, // n_preallocs
(GInstanceInitFunc)sp_attribute_table_init ,
0 // value_table

};
type = g_type_register_static(GTK_TYPE_VBOX ,

"SPAttributeTable",
&info ,
static_cast <GTypeFlags >(0));

}
return type;

(2)
static GType type = 0;

if (!type) {
GTypeInfo info = {

sizeof(SPCtrlRectClass),
0, // base_init
0, // base_finalize
(GClassInitFunc)sp_ctrlrect_class_init ,
0, // class_finalize
0, // class_data
sizeof(CtrlRect),
0, // n_preallocs
(GInstanceInitFunc)sp_ctrlrect_init ,
0 // value_table

};
type = g_type_register_static(SP_TYPE_CANVAS_ITEM ,

"SPCtrlRect",
&info ,
static_cast <GTypeFlags >(0));

}
return type;

Fig. 11 Two complex code fragments—example I

7 Related work

In this section, we describe closely related studies on type inference and code com-
prehension for incomplete code fragments, code search, program dependence graphs,
and graph mining for software engineering.

7.1 Type inference and code comprehension for incomplete code fragments

Studies in the literature have addressed many of the issues related to type inference and
code comprehension for incomplete code fragments in various languages. For example,
Milner’s unification algorithm and variants have been widely used to assign types to
program elements and facilitate program comprehension (Baker 1990; O’Callahan
and Jackson 1997). Dagenais and Hendren’s work (2008) uses heuristics to enable
partial type inference and more accurate static analysis for Java programs. They focus
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(1)
if (item) {

ec->shape_knot_holder = sp_item_knot_holder(item , ec->desktop );
Node *shape_repr;
shape_repr= SP_OBJECT_REPR(item);
if (shape_repr) {

ec->shape_repr = shape_repr;
sp_repr_ref(shape_repr );
sp_repr_add_listener(shape_repr , &ec_shape_repr_events , ec);
sp_repr_synthesize_events(shape_repr , &ec_shape_repr_events , ec);

}
(2)

if (item) {
ec->shape_knot_holder = sp_item_knot_holder(item , ec->desktop );
Node *shape_repr;
shape_repr= SP_OBJECT_REPR(item);
if (shape_repr) {

ec->shape_repr = shape_repr;
sp_repr_ref(shape_repr );
sp_repr_add_listener(shape_repr , &ec_shape_repr_events , ec);
sp_repr_synthesize_events(shape_repr , &ec_shape_repr_events , ec);

}

Fig. 12 Two complex code fragments—example II

on low error rates during the type inference. Parseweb by Thummalapenta and Xie
(2007) also uses partial type inference for Java programs to facilitate the construction
of code examples that can convert an object from one type to another. Partial type
inference also helps EqMiner Jiang and Su (2009) to make code fragments in C
language compilable and executable for the purpose of semantic code clone detection.
In this paper, we focus on preserving program dependencies for dependency queries
and are less concerned with accurate semantic preservation. We adapt similar, but
more lightweight, heuristic-based dataflow analysis and type inference for making C
and C++ code fragments compilable so that we can easily construct PDGs for code
search.

7.2 Code search

Many code search techniques accept user queries in the form of free text (Chan et al.
2012; McMillan et al. 2011). There are also related studies on feature localization and
bug localization that takes a description of a feature or a bug and return source code files
that implement the feature or need to be fixed to address the bug (Dit et al. 2013; Wang
et al. 2011b). Dit et al. present a systematic literature survey of 89 feature location and
code search articles from 25 venues published between November 1992 and February
2011 (Dit et al. 2013). They provide a comprehensive, structured overview of those
articles based on various dimensions, such as the types of the analysis techniques
(e.g., static, dynamic, textual, historical change analyses), the types of user inputs
(e.g., natural language queries, execution scenarios, source code artifacts), the types
of derived inputs (e.g., dependence graphs, execution traces), the types of outputs (e.g.,
code fragments, ranked lists, visualization), among others. The idea of our approach
may also be applied to studies that would take source code artifacts and dependence
graphs as input.
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Source code contains more than identifiers. It also contains data and control depen-
dencies among the identifiers. To leverage dependency relationships among program
elements, dependence-based code search technique was proposed by Wang et al.
(2010). The approach is further extended by the incorporation of topic modeling to
dependence-based code search (Wang et al. 2011a). It has been shown that dependence
queries can outperform text queries (Wang et al. 2010). Different from text queries
where relationships between terms in the queries are unspecified, in a dependence
queries relationships between terms (i.e., program elements) can be specified in terms
of control and data dependencies. Although, dependence-based code search has been
shown to be accurate if good dependency queries are given, it is not clear if users could
construct good dependency queries. Indeed, some dependencies queries require users
to visualize dependence relations among program elements of interest and this might
be a daunting task to many users. AutoQuery addresses this problem by automatically
recovering dependency queries from some code examples.

There are other techniques that accept a code example and returns other similar code
examples (Li and Ernst 2012; Lee et al. 2010). These techniques are often based on
code clone mining (Jiang et al. 2007; Roy et al. 2009; Kim et al. 2010; Jang et al. 2012).
Wang et al. has shown that dependence-based code search could outperform clone-
based code search as users could specify dependencies of interest (Wang et al. 2010).
With AutoQuery, dependencies of interest could be inferred from a set of program
examples. Furthermore, different from those code-clone-based studies, our approach
unifies multiple example code snippets into a single query. By analyzing multiple
code snippets, AutoQuery can differentiate relevant dependencies that are observed
in multiple code snippets from peculiar dependencies that are only observed in an
individual code snippet. By producing a human-readable query (rather than directly
searching the code base using the common subgraph of the PDGs), AutoQuery allows
developers to retain control in the code search process. Developers can modify and
tweak the generated query based on their domain knowledge to result in more effective
code search.

7.3 Program dependence graph, its construction and usages

Program dependence graphs was proposed by Horwitz and Reps (1992). Data and
control dependencies can be detected more accurately with better pointer analysis and
string analysis algorithms. Many studies propose new algorithms for pointer analy-
sis (Hardekopf and Lin 2007; Lattner et al. 2007) and string analysis (Ganesh et
al. 2011). In this work, we generate program dependence graphs from code frag-
ments. We address the challenge of generating PDGs from non-compilable code
fragments.

PDGs have been utilized by many past studies. Komondoor and Horwitz use PDGs
for detecting duplicated code, aka. clones (Komondoor and Horwitz 2001). Baah et
al. build a probabilistic PDG and use it to localize bugs in programs given a set of
failing and correct executions (Baah et al. 2010). In this work, we focus on the usage
of PDGs for automatic construction of queries for dependence-based code search.
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7.4 Graph mining for software engineering

In this work, we make use of graph mining to capture the commonalities between the
PDGs. There are many other studies that also make use of graph mining algorithms.

Tien et al. investigate the use of graph mining for software specification min-
ing Nguyen et al. (2009). They characterize usages of an API as a graph and mine for
frequent graphs. Hong et al. create graphs from failing and correct program execution
traces Cheng et al. (2009). They then extract discriminative graphs that differentiate
failing from correct program executions. Chang et al. use graph mining to detect for
implicit programming rules from system dependence graphs and use these rules to
find bugs which correspond to violations of the rules Chang et al. (2008). In a latter
work, Sun et al. improve the above work by incorporating supervised learning algo-
rithm Sun et al. (2010). In this work, we employ graph mining for a different problem.
We also extend existing graph mining algorithm to support a unique graph where each
node contains multiple labels: node type information (categorical), and textual con-
tent information (text). Past graph mining algorithms, e.g., Yan and Han (2002), only
support simple graphs that contain one categorical label per node.

7.5 Program transformation

There are also some studies on program transformation that are related to our
work (Meng et al. 2011a, b; Andersen et al. 2012; Andersen and Lawall 2010). Ander-
sen et al. propose generic patch inference (Andersen and Lawall 2010). Their approach
take a set of example program transformations and generate a simple patch (aka.
generic patch) from it. A patch specifies changes that need to be made given a context.
The expressiveness of generic patch is not high though, and thus they extend their study
further in Andersen et al. (2012) to infer semantic patch. These studies of Andersen et
al. only focus on API usage changes and context information can only be expressed
as API method invocations and dependencies among them. Meng et al. (2011a) gen-
eralize the work by Andersen et al. to support more than API usage changes. In Meng
et al. (2011a), they are only able to generalize from one example. In their later work,
Meng et al. are able to generalize from multiple examples (Meng et al. 2013).

In this work, similar to the past studies by Meng et al., we can also handle more
than API usage changes. The closest work of Meng et al. with ours is their latest
work, i.e., Meng et al. (2013), which generalizes from a set of examples. Meng et
al.’s work generalize transformation examples, while we generalize code examples.
In their work, Meng et al. find commonalities among transformation examples by
running a token-based clone mining algorithm, i.e., CCFinder. Token-based clone
mining algorithm treats code as a set of tokens with no dependency relationships
among them. In our work, since we are supporting dependence-based code search, we
need to capture commonalities in dependency relationships among program elements
of interest. While they analyze a set of tokens, in our work, we analyze a set of graphs.
We develop a new graph mining solution that is able to handle multi-label graphs with
categorical and textual node labels to do this.
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8 Conclusion and future work

Searching through a large base of source code is common activities performed by
developers. Without the aid of automated code search tools, developers need to tap
on their experience to browse relevant source code files and manually find the code
fragments that are related to their tasks at hand. This is not only be time consuming but
also error-prone. A number of code search tools have been proposed to address this
problem. Many of them accept textual descriptions as user queries and return relevant
code fragments.

Source code contains not only text but also dependencies. Dependence-based code
search tools accept queries expressed as dependency relationships among program
elements of interest and return code fragments whose constituent program elements
satisfy the dependency relationships. Dependence-based code search tools have been
shown to be effective and improve the accuracy of search results than text-based
code search tools. However, there is one drawback that potentially hampers the usage
of dependence-based code search. It may be hard for users who have no or little
knowledge of PDGs to construct queries.

To address this drawback, we propose an automatic approach to construct a query
based on common dependency structures and textual information extracted from a
set of sample code fragments. We have evaluated our approach with 47 realistic code
search tasks on 4 real systems, and show that the automatically constructed dependency
queries recover relevant code with a precision, recall, and F-measure of 68.4, 72.1,
and 70.2 %, respectively. We have also performed a user study that shows that our
automatically constructed queries are comparable to human constructed queries in
retrieving relevant codes.

In the future, we plan to experiment with more code search tasks and systems. We
also plan to support other programming languages besides C and C++ and to publicly
release the tool.
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