
Semantic Patch Inference

Jesper Andersen∗
DIKU

University of Copenhagen
jespera@diku.dk

Anh Cuong Nguyen
Dept. of Computer Science

National University of Singapore
anhcuong@comp.nus.edu.sg

David Lo
School of Information Systems

Singapore Management University
davidlo@smu.edu.sg

Julia Lawall
INRIA/LIP6-Regal

Julia.Lawall@lip6.fr

Siau-Cheng Khoo
Dept. of Computer Science

National University of Singapore
khoosc@comp.nus.edu.sg

ABSTRACT
We propose a tool for inferring transformation specifica-
tions from a few examples of original and updated code.
These transformation specifications may contain multiple
code fragments from within a single function, all of which
must be present for the transformation to apply. This makes
the inferred transformations context sensitive. Our algo-
rithm is based on depth-first search, with pruning. Because
it is applied locally to a collection of functions that contain
related changes, it is efficient in practice. We illustrate the
approach on an example drawn from recent changes to the
Linux kernel.

1. INTRODUCTION
Software frequently makes use of libraries in order to im-

plement common tasks. When a library is updated, the
interface that it exposes may change as well. A change in
the interface may in turn necessitate updates in all code
that uses the library. Such updates have been given the
name collateral evolutions [16], and have been studied in
the context of Linux code. They involve changes such as
renaming called functions, adding and removing arguments,
reorganizing structures, and changing usage protocols. To
perform a collateral evolution, a software maintainer must
first understand the evolution and then consider how it ap-
plies to his code. Collateral evolutions thus entail a major
software maintenance burden.

To ease the task of understanding and applying collateral
evolutions, Padioleau et al. have proposed a notion of se-
mantic patches [15]. A standard patch is a description of
how to transform a piece of software, in terms of the lines
to add and remove [12]. Such patches can be generated au-
tomatically from the original and updated versions of each
modified source file. They are simple, immediately applica-

∗Current address: Endomondo ApS
jesper.andersen@endomondo.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

ble, and familiar to software developers. Nevertheless, they
are limited to describing a change at specific lines in the
software. Semantic patches generalize standard patches by
abstracting over details such as comments and whitespace,
as well as over irrelevant subterms. A single semantic patch
can thus be used to update many code sites. As such, a se-
mantic patch can be used both to provide formal documen-
tation of the transformations needed in a collateral evolution
and to implement the collateral evolutions itself.

Despite their advantages, constructing a semantic patch
may be a stumbling block for the developer who makes a
change in a library interface, because it requires that the
developer think about code changes in an abstract way. To
reduce this burden, we have developed the tool spdiff to
infer some kinds of semantic patches from a small collec-
tion of manually performed modifications in the source code.
spdiff thus supports the current development process, but
requires the developer only to perform the collateral evo-
lution in a few typical files. The inferred semantic patch
can then be applied to the remaining files, and published
for use by other developers whose code may be affected by
the collateral evolution. Previous work on spdiff is limited
to inferring semantic patches that amount to a sequence
of context-free atomic transformations, which we refer to
as generic patches [1]. Since then, we have extended this
approach to generate a larger class of semantic patches,
describing the relationship between multiple disjoint terms
that determines how the overall transformation should be
performed.

We present the extension in this demo. After giving an
overview of the principles behind spdiff (Section 2), we
present an example (Section 3). We next briefly assess the
relationship to related work (Section 4), and then conclude
(Section 5).

2. PRINCIPLES
Semantic patches generalize patches by using metavari-

ables to represent arbitrary subterms and dots (“. . . ”) to
represent arbitrary code sequences. Conceptually, our se-
mantic patch inference process raises the level of abstraction
of a collection of standard patches, by introducing metavari-
ables and dots in order to obtain semantic patches that sat-
isfy the following properties. Given a change set, CS =
{(t1, t′1), ..., (tn, t

′
n)}, consisting of a set of pairs of terms,

the resulting semantic patches should be:

• Safe, in that the resulting semantic patches can be ap-

1

plied to all left hand side terms {ti | (ti, t′i) ∈ CS} such
that the result for each ti is related to the correspond-
ing right hand side term t′i.

• Concise, in that the resulting semantic patches should
capture as much of the common changes across all of
the pairs of terms in CS as possible.

These properties are designed to account for the fact that it
may not be possible to find concise semantic patches that
completely and safely implement all of the transformations
indicated by CS . In this case, the transformations expressed
by the resulting semantic patches may be partial.

We have previously shown how to infer safe and con-
cise semantic patches that perform only atomic transfor-
mations [1]. In this work, we extend these results to in-
fer transformations that depend on the presence of multiple
code fragments that are connected by paths in a function’s
control-flow graph. The inference algorithm is divided into
two steps: 1) Find maximal patterns than are common to the
source terms ti, and 2) Integrate transformation specifica-
tions into these semantic patterns, such that the resulting se-
mantic patches implement the transformations represented
by the change set CS.

2.1 Finding maximal semantic patterns
A semantic pattern is a term in which subterms and se-

quences of subterms may be abstracted as metavariables and
dots (“. . . ”), respectively. A semantic pattern is thus like a
semantic patch but with no added or removed lines. Se-
mantic patterns are ordered such that a semantic pattern is
related to all semantic patterns that have the same structure
but are possibly more abstract.

The inferred semantic patterns all have the form Pt(. . .Pt)∗,
where Pt is a fragment of code that may contain metavari-
ables. The length of such a semantic pattern is the number
of terms Pt. The inference of semantic patterns proceeds
in three steps: 1) Incrementally infer the Pt1 . . .Ptn, start-
ing from length 1 and increasing to longer lengths; in these
semantic patterns all metavariables are unique, 2) Remove
non-maximal patterns according to the above ordering, and
3) Merge metavariables within the inferred maximal pat-
terns to express common subterms. Resulting patterns are
required to match at least th terms ti in the given changeset
CS , where the threshold th is provided by the user.

Pattern extension involves concatenating length 1 pat-
terns to the end of an existing semantic pattern. Several
pruning strategies are employed to ensure termination and
reduce complexity. If a pattern does not match at least th
fragments in the source code, it is not extended further, as
any extension would also have insufficient matches. A pat-
tern is also not extended if a super-pattern matching the
same fragments of code has been considered before. If a
pattern cannot be extended further, we add it to the set of
candidate patterns, R. Because patterns are extended by
concatenation at the end, R may end up containing pat-
terns that are suffixes of other patterns in R. Removing
these suffixes yields the set of maximal patterns Rmax.

Finally, the metavariables of the elements of Rmax are
merged as much as possible, by assigning a common variable
name to the maximal set of metavariables that always map
to the same terms in the change set CS under consideration.
The result is then fed into the next step: patch construction.

2.2 Constructing patches from patterns
Once a set of maximal semantic patterns has been found,

the next step is to extend them with transformation infor-
mation to construct semantic patches. In order to do so, we
first extract small bits of change information, referred to as
chunks, from the change set by considering the differences
between the control flow graphs of each pair of terms in the
change set. A chunk basically indicates whether a partic-
ular node of a control flow graph of a term was removed
or if code was added before or after the node in the corre-
sponding control flow graph of the updated term. Given a
set of chunks and semantic patterns, we construct semantic
patches by iteratively trying to pair a chunk with a seman-
tic pattern to see whether the resulting semantic patch is
common to enough pairs in the change set. If this is the
case, the resulting semantic patch is added to a work-queue
to allow it to be extended with further chunks. A seman-
tic patch containment relation allows the algorithm to re-
turn only the maximal semantic patches. These maximal
semantic patches satisfy the safety and conciseness proper-
ties mentioned above.

3. REAL-WORLD USAGE
Spdiff is most useful when a developer wishes to extract

a context-sensitive semantic patch from the result of apply-
ing a single collateral evolution of a set of code fragments.
The developer can then use the patch to upgrade other code
that is affected by the same collateral evolution. We simu-
late this scenario by using spdiff to derive a semantic patch
from a few pairs in a given change set. We then apply the
patch to the rest of the change set and assess the correctness
of the results.

The original commit. The commit with git SHA1 iden-
tification code 01f2705daf5a36208e69d7cf95db9c330f843af61

was the first in a series of standard patches committed to
Linux starting in May 2007 that implemented a refactoring
of a commonly occurring pattern for clearing pages found
in filesystem code. This pattern consisted of the follow-
ing operations: 1) map a page into the kernel virtual mem-
ory using kmap_atomic, 2) clear this page using memset, 3)
call flush_dcache_page to ensure that the cleared mem-
ory gets written to disk, and 4) unmap the memory region
using kunmap_atomic. The refactoring introduced a new
macro, zero_user_page, that does all of these operations.
In the above commit, core kernel functions where memory
was cleared in this way were modified to use the new macro.
In subsequent commits, the remaining functions were up-
dated similarly.

The inferred semantic patch. We focus on 8 pairs of
original and updated functions that were modified by the
above commit. We first randomly selected 4 pairs of original
and updated functions from the commit to create a change
set. The selected functions are do_direct_IO, xip_trunca-
te_page, memclear_highpage_flush and do_lo_send_aops.
Running spdiff with the above change set produces the
semantic patch shown below.

@@
expression X0, X1;
struct page *X2;

1http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git

2

char *X3;
@@
- X3 = kmap_atomic(X2, KM_USER0);

...
- memset(X3 + X0, 0, X1);
...

- kunmap_atomic(X3, KM_USER0);
+ zero_user_page(X2, X0, X1, KM_USER0);

Note that the generated semantic patch does not include
the call to flush_dcache_page. This call occurs in varying
positions relative to the call to kunmap_atomic, and is even
absent in one case, and thus it is excluded from the initial
semantic pattern. Thus, it does not occur in the generated
semantic patch.

Applying this semantic patch to the files mentioned in
the original commit causes it to perform a safe part of the
changes that were made by hand, in 7 out of 8 cases. The
remaining case is represented by the following excerpt of the
standard patch:

@@ -2108,10 +2100,8 @@ int cont_prepare_write(

- kaddr = kmap_atomic(new_page, KM_USER0);
- memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
- flush_dcache_page(new_page);
- kunmap_atomic(kaddr, KM_USER0);
+ zero_user_page(page, zerofrom, PAGE_CACHE_SIZE - zerofrom,
+ KM_USER0);

In this standard patch, the developer has introduced a bug.
The error is that in the added code at the end of the standard
patch, the first argument to zero_user_page is page, while,
as shown by the other calls, it should have been new_page.
The updated function can indeed still be compiled because
the variable page is a parameter of the function being mod-
ified. At run-time, however a file system corruption occurs.
This fault is described and fixed in the commit ff1be9ad61-
e3e17ba83702d8ed0b534e5b8ee15c, which was submitted by
another developer, 11 days after the bug was introduced.

This error would have been avoided if the change were
made using the semantic patch, because the semantic patch
specifies that the first argument to the newly inserted func-
tion call should be the same as the first argument to the
call to kmap_atomic. Since in all other updated functions
the name of the variable given as the first argument to
kmap_atomic is indeed page, the bug is probably resulted
from careless copy-paste editing [9]. Linux code indeed fre-
quently, but not always, uses stereotypical names for values
of a given type, and thus there is a high potential for this
sort of error.

This example also demonstrates that the inferred seman-
tic patch can be much more concise than the corresponding
standard patch derived from manual changes. First, by us-
ing a semantic patch, the developer needs to derive only one
patch for the entire collection of files, rather than making
the change in every file in the collection. In addition, the
semantic patch captures only the changes that are common
across all the pairs in the change set. In this example, the
complete inferred semantic patch consists of only 6 lines of
code, while every change in the original commit is repre-
sented by at least 10 lines.

4. RELATED WORK
Our inference of semantic patterns is closely related to

clone detection [4, 6, 7, 8, 10], as has become widely available

in refactoring tools. A clone is a contiguous or nearly con-
tiguous block of code found to occur, often modulo inessen-
tial elements such as constants or variable names, at least
twice in a program. Much of the work on clone detection
has focused on introducing approximations to improve per-
formance, in order to allow the approach to scale to very
large programs. Our inference of semantic patterns on the
other hand, cannot use such approximations, because the
result is intended to be used directly as part of a transfor-
mation specification. The complexity of our semantic pat-
tern detection is thus greater than that of scalable clone
detection, but this is compensated for by the fact that the
data size is much smaller, as the intended usage scenario is
that it is given only the functions in which the developer has
manually made some changes of interest. While most clone
detection strategies focus on contiguous terms in the pro-
gram syntax, Gabel et al. [4] consider contiguous subgraphs
of a program dependence graph (PDG). Their approach can
skip over auxiliary code such as debugging statements that is
mixed with the clone code at the source code level. Spdiff,
in contrast, finds arbitrarily separated fragments of common
code, regardless of dependencies between the common code
and the intervening code.

There are a number of works on a pattern-mining based
approach to inferring specifications from a piece of software
or a set of clients accessing a common library [5, 11, 17].
Spdiff, does not identify common patterns within a single
version of the software, but instead extracts a description
of the differences between two versions of the software, to
produce patches.

Chawathe et al. [2] describe a method to detect changes
in structured information based on a ordered tree represen-
tation of the original and update version. Their goal is to
derive a compact description of the changes between the
original and updated tree. To this end, a notion of a mini-
mum cost edit script is defined. An edit script is a sequence
of operations where each operation has an associated cost
determined by some measure of structural similarities be-
tween the trees. As such, the minimum cost edit script will
be the most compact description of the changes made to
the original tree with respect to the edit operations possi-
ble. Edit operations, however, always explicitly denote the
node to transform and thus the approach is not sufficient for
our context where we would like one transformation specifi-
cation that applies to many programs and potentially even
unknown code.

Neamtiu et al. infer changes, additions and deletions of
various elements of C programs based on structural match-
ing of syntax trees [14]. Two trees that are structurally
identical but have differences in their nodes are considered
to represent matching program fragments. In contrast to the
work by Chawathe et al. [2], each simple change (e.g. renam-
ing of a variable) is only reported once. Thus, the descrip-
tion of the changes made can be more compact than what is
possible with the minimum cost edit scripts of Chawathe et
al. However, similarities in changes involving larger trees are
not detected, and consequently very similar changes made
across all functions are reported as separate changes, whereas
spdiff generalizes descriptions of changes.
Sydit [13] infers change rules from a single example of

original and updated code. Code on which the changed
terms are control or data dependent can optionally be in-
cluded, according to various strategies, to make the resulting

3

rules context sensitive. Nevertheless, because only one ex-
ample of the change is provided, the abstraction and context-
inclusion strategies are necessarily fixed a priori, and with-
out awareness of the actual requirements of the transfor-
mation. Thus, it was found that including more context
was often detrimental, because rules became overspecified,
reducing their applicability. In contrast, spdiff has avail-
able several examples of a change, and thus can adapt the
degree of abstraction and the amount of included context
information according to the needs of each provided change
set, taking into account the safety and conciseness properties
presented in Section 2.

5. CONCLUSION
Much effort in program differencing has been devoted to

the detection of changes between different versions of the
same program [2, 3, 14]. In contrast, our spdiff tool de-
tects common changes in a collection of program fragments
resulting from one collateral evolution. As a result, the se-
mantic patch generated by spdiff can be used to upgrade
other code that is affected by the same collateral evolution.
As illustrated by our example, an inferred semantic patch
can be much more concise than the corresponding standard
patch. Semantic patches are also useful to reason about
common changes.

The full semantic patch language makes it possible to
express multiple interdependent rules that can affect code
scattered across multiple functions. We leave the problem
of inferring such rules to future work.

Availability. spdiff is available at:
http://www.diku.dk/hjemmesider/ansatte/jespera.

6. REFERENCES
[1] J. Andersen and J. L. Lawall. Generic patch inference.

In 23rd IEEE/ACM International Conference on
Automated Software Engineering, pages 337–346,
L’Aquila, Italy, sep 2008. IEEE.

[2] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In SIGMOD ’96: Proceedings
of the 1996 ACM SIGMOD international conference
on Management of data, pages 493–504, New York,
NY, USA, 1996. ACM.

[3] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall.
Change distilling: Tree differencing for fine-grained
source code change extraction. Software Engineering,
IEEE Transactions on, 33(11):725–743, November
2007.

[4] M. Gabel, L. Jiang, and Z. Su. Scalable detection of
semantic clones. In Proceedings of the 30th
international conference on Software engineering
(ICSE’08), pages 321–330, Leipzig, Germany, 2008.

[5] L. Z. Hao Zhong and H. Mei. Inferring specifications
of object oriented APIs from API source code. In
Proceedings of 15th Asia-Pacific Software Engineering
Conference (APSEC’08), pages 221–228, 2008.

[6] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: Scalable and accurate tree-based
detection of code clones. In Proceedings of the 29th
international conference on Software Engineering
(ICSE’07), pages 96–105, Minneapolis, MN, May 2007.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28(7):654–670, 2002.

[8] H. Li and S. Thompson. Clone detection and removal
for Erlang/OTP within a refactoring environment. In
Proceedings of the 2009 ACM SIGPLAN workshop on
Partial evaluation and program manipulation
(PEPM’09), pages 169–178, Savannah, GA, USA,
2009.

[9] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In Proceedings of the Sixth
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 289–302, San
Francisco, CA, Dec. 2004.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: a
tool for finding copy-paste and related bugs in
operating system code. In OSDI’04: Proceedings of the
6th conference on Symposium on Opearting Systems
Design & Implementation, pages 20–20, Berkeley, CA,
USA, 2004. USENIX Association.

[11] D. Lo, S. C. Khoo, and C. Liu. Efficient mining of
iterative patterns for software specification discovery.
In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 460–469, San Jose, California,
USA, 2007.

[12] D. MacKenzie, P. Eggert, and R. Stallman.
Comparing and Merging Files With Gnu Diff and
Patch. Network Theory Ltd, Jan. 2003. Unified
Format section, http://www.gnu.org/software/
diffutils/manual/html_node/Unified-Format.html.

[13] N. Meng, M. Kim, and K. S. McKinley. Systematic
editing: generating program transformations from an
example. In PLDI, pages 329–342, San Jose, CA,
USA, June 2011.

[14] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree
matching. SIGSOFT Softw. Eng. Notes, 30(4):1–5,
2005.

[15] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
Linux device drivers. In Eurosys 2008, pages 247–260,
Glasgow, Scotland, Mar. 2008.

[16] Y. Padioleau, J. L. Lawall, and G. Muller.
Understanding collateral evolution in Linux device
drivers. In The first ACM SIGOPS EuroSys
conference (EuroSys 2006), pages 59–71, Leuven,
Belgium, Apr. 2006.

[17] H. Safyallah and K. Sartipi. Dynamic analysis of
software systems using execution pattern mining. In
Proceedings of the 14th IEEE International
Conference on Program Comprehension (ICPC’06),
pages 84–88, 2006.

APPENDIX
A. DEMONSTRATION PROCEDURE

To demonstrate the usability of Spdiff, we will use four
change sets extracted from Linux kernel. During the demon-
stration, we will show by examples how these change sets

4

can be converted into semantic patches. We highlight some
possible examples that will be presented in the demonstra-
tion in the following paragraphs. In each of these examples,
Spdiff infers a semantic patch within one second.

The first change set adds ata_pad_free before kfree. We
have three pairs of code in the change set as shown in Fig-
ure 1. Spdiff infers a semantic patch as shown in Figure 2.

@@ -3,7 +3,6 @@
struct device *dev = ap->host->dev;
struct sil24_port_priv *pp = ap->private_data;
sil24_cblk_free(pp, dev);

-ata_pad_free(ap, dev);
kfree(pp);
}
static void mv_port_stop(struct ata_port *ap)

@@ -15,7 +14,6 @@
mv_stop_dma(ap);
spin_unlock_irqrestore(&ap->host->lock, flags);
ap->private_data = NULL;

-ata_pad_free(ap, dev);
mv_priv_free(pp, dev);
kfree(pp);
}
@@ -34,7 +32,6 @@
ap->private_data = NULL;
dma_free_coherent(dev, AHCI_PORT_PRIV_DMA_SZ,

pp->cmd_slot, pp->cmd_slot_dma);
-ata_pad_free(ap, dev);

kfree(pp);
}

Figure 1: Change Set 1

[Main] *REAL* semantic patches inferred: 1
[spatch:]
@@
X0 * X1;
struct device * X3;
expression X1;
X0;
expression X3;
struct ata_port * X2;
X9;
X2;
@@

head:def[void X9 (struct ata_port * X2) {};]
...
struct device * X3 = X2->host->dev;
...
X0 * X1 = X2->private_data;
...

- ata_pad_free(X2,X3);
...
kfree(X1);

supporting functions (3/3)
< sil24_port_stop mv_port_stop ahci_port_stop >

Figure 2: Spdiff Result 1

The second change set adds cm_cleanup_timewait be-
cause timewait_info is overwritten. We have two pairs of
code in the change set as shown in Figure 3. Spdiff infers
a semantic patch as shown in Figure 4.

The third change set upgrades the code with new function
devm_kzalloc. We have four pairs of code in the change set
as shown in Figure 5. Spdiff infers a semantic patch as
shown in Figure 6.

@@ -3,7 +3,6 @@
int wait_time;
unsigned long flags;
spin_lock_irqsave(&cm.lock, flags);

-cm_cleanup_timewait(cm_id_priv->timewait_info);
list_add_tail(&cm_id_priv->timewait_info->list,

&cm.timewait_list);
spin_unlock_irqrestore(&cm.lock, flags);
cm_id_priv->id.state = IB_CM_TIMEWAIT;

@@ -19,7 +18,6 @@
cm_id_priv->id.state = IB_CM_IDLE;
if (cm_id_priv->timewait_info) {
spin_lock_irqsave(&cm.lock, flags);

-cm_cleanup_timewait(cm_id_priv->timewait_info);
spin_unlock_irqrestore(&cm.lock, flags);
kfree(cm_id_priv->timewait_info);
cm_id_priv->timewait_info = NULL;

Figure 3: Change Set 2

[Main] *REAL* semantic patches inferred: 1
[spatch:]
@@
struct cm_id_private * X8;
unsigned long X5;
expression X5;
X0;
X8;
@@
head:def[void X0 (struct cm_id_private * X8) {};]
...
unsigned long X5;
...
spin_lock_irqsave(&cm.lock,X5);
...

- cm_cleanup_timewait(X8->timewait_info);
...
spin_unlock_irqrestore(&cm.lock,X5);
...
X8->timewait_info=NULL;

supporting functions (2/2)
< cm_enter_timewait cm_reset_to_idle >

Figure 4: Spdiff Result 2

The fourth change set adds mthca_array_cleanup before
mthca_alloc_cleanup. We have three pairs of code in the
change set as shown in Figure 7. Spdiff infers a semantic
patch as shown in Figure 8.

5

@@ -4,7 +4,7 @@
struct fimc_md *fmd;
int ret;

-fmd = kzalloc(sizeof(struct fimc_md),
GFP_KERNEL);
+ fmd = devm_kzalloc(&pdev->dev, sizeof(struct fimc_md),
GFP_KERNEL);

if (!fmd)
return -ENOMEM;

@@ -68,6 +68,5 @@
err2:
v4l2_device_unregister(&fmd->v4l2_dev);
err1:
-kfree(fmd);

return ret;
}
@@ -8,7 +8,7 @@

/* mdev does not exist yet so no mxr_dbg is used */
dev_info(dev, "probe start\n");

-mdev = kzalloc(sizeof *mdev,
GFP_KERNEL);
+ mdev = devm_kzalloc(&pdev->dev, sizeof *mdev,
GFP_KERNEL);

if (!mdev) {
mxr_err(mdev, "not enough memory.\n");
ret = -ENOMEM;

@@ -50,7 +50,6 @@
mxr_release_resources(mdev);
fail_mem:
-kfree(mdev);
fail:
dev_info(dev, "probe failed\n");

@@ -13,7 +13,7 @@
if (!pdata->encoder.module_name)
dev_info(&pdev->dev, "Running without decoder\n");

-lw = kzalloc(sizeof(*lw), GFP_KERNEL);
+ lw = devm_kzalloc(&pdev->dev, sizeof(*lw),
GFP_KERNEL);

if (!lw) {
err = -ENOMEM;
goto err;

@@ -53,7 +53,6 @@
platform_set_drvdata(pdev, NULL);
v4l2_device_unregister(&lw->v4l2_dev);
err_register:
-kfree(lw);
err:
dev_err(&pdev->dev, "Failed to register: %d\n", err);

@@ -18,7 +18,7 @@
return ret;
}

-vpbe_dev = kzalloc(sizeof(*vpbe_dev),
GFP_KERNEL);
+ vpbe_dev = devm_kzalloc(&pdev->dev, sizeof(*vpbe_dev),
GFP_KERNEL);

if (vpbe_dev == NULL) {
v4l2_err(pdev->dev.driver, "Unable to allocate memory"
" for vpbe_device\n");

@@ -31,7 +31,6 @@
if (cfg->outputs->num_modes > 0)
vpbe_dev->current_timings = vpbe_dev->cfg->

outputs[0].modes[0];
else {

-kfree(vpbe_dev);
return -ENODEV;
}

Figure 5: Change Set 3

[Main] *REAL* semantic patches inferred: 1
[spatch:]
@@
identifier X8;
X9;
struct platform_device * X1;
X10 * X11;
expression X5;
X0;
X1;
@@
head:def[signed int X0 (struct platform_device * X1) {;]
...
- X11=kzalloc(X5,GFP_KERNEL);
+ X11=devm_kzalloc(&X1->dev,X5,GFP_KERNEL);
...
X11->X8=X9;

...
- kfree(X11);
supporting functions (4/4)
< vpbe_probe fimc_md_probe mxr_probe timblogiw_probe >

Figure 6: Spdiff Result 3

@@ -1,6 +1,5 @@
void mthca_cleanup_cq_table(struct mthca_dev *dev)
{

-mthca_array_cleanup(&dev->cq_table.cq, dev->limits.num_cqs);
mthca_alloc_cleanup(&dev->cq_table.alloc);
}
void mthca_cleanup_qp_table(struct mthca_dev *dev)

@@ -11,14 +10,12 @@
for (i = 0; i < 2; ++i)
mthca_CONF_SPECIAL_QP(dev, i, 0, &status);

-mthca_array_cleanup(&dev->qp_table.qp, dev->limits.num_qps);
mthca_alloc_cleanup(&dev->qp_table.alloc);
}
void mthca_cleanup_srq_table(struct mthca_dev *dev)
{
if (!(dev->mthca_flags & MTHCA_FLAG_SRQ))
return;

-mthca_array_cleanup(&dev->srq_table.srq, dev->limits.num_srqs);
mthca_alloc_cleanup(&dev->srq_table.alloc);
}

Figure 7: Change Set 4

[Main] *REAL* semantic patches inferred: 1
[spatch:]
@@
identifier X4;
identifier X1;
struct mthca_dev * X0;
identifier X6;
X7;
X0;
@@
head:def[void X7 (struct mthca_dev * X0) {};]
...

- mthca_array_cleanup(&X0->X1.X4,X0->limits.X6);
...
mthca_alloc_cleanup(&X0->X1.alloc);

supporting functions (3/3)
< mthca_cleanup_cq_table mthca_cleanup_qp_table
mthca_cleanup_srq_table >

Figure 8: Spdiff Result 4

6

