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ABSTRACT
Fault localization is useful for reducing debugging effort.
However, many fault localization techniques require non-
trivial number of test cases with oracles, which can deter-
mine whether a program behaves correctly for every test
input. Test oracle creation is expensive because it can take
much manual labeling effort. Given a number of test cases
to be executed, it is challenging to minimize the number of
test cases requiring manual labeling and in the meantime
achieve good fault localization accuracy.

To address this challenge, this paper presents a novel
test case selection strategy based on Diversity Maximization
Speedup (Dms). Dms orders a set of unlabeled test cases in a
way that maximizes the effectiveness of a fault localization
technique. Developers are only expected to label a much
smaller number of test cases along this ordering to achieve
good fault localization results. Our experiments with more
than 250 bugs from the Software-artifact Infrastructure
Repository show (1) that Dms can help existing fault
localization techniques to achieve comparable accuracy with
on average 67% fewer labeled test cases than previously
best test case prioritization techniques, and (2) that given a
labeling budget (i.e., a fixed number of labeled test cases),
Dms can help existing fault localization techniques reduce
their debugging cost (in terms of the amount of code needed
to be inspected to locate faults). We conduct hypothesis test
and show that the saving of the debugging cost we achieve
for the real C programs are statistically significant.
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1. INTRODUCTION
Software testing and debugging activities are often labor-

intensive, accounting for 30% to 90% of labor spent for a
project [7]. Establishing sufficient testing and debugging
infrastructure can help reduce software errors that cost the
US economy 59.5 billion dollars (0.6% of 2002’s GDP) [23].
Many automated testing and debugging techniques have
been proposed to reduce the high cost in such activities.

Spectrum-based fault localization (e.g., [19, 1, 5]) is an
automated debugging techniques that can narrow down
the possible locations of software faults and help save
developers’ debugging time. Many spectrum-based fault
localization techniques take a set of executions and labels as
input, compare between failed and passed executions, and
statistically locate faulty program entities. Such techniques
require each execution to be labeled as a failure or a success,
which often needs human interpretation of an execution
result and may not be easy to determine when a failure
is not as obvious as a program crash or invalid output
formats. Labeling all executions or test cases for a program
can require much manual effort and is often tedious, and
thus, the effectiveness of existing spectrum-based fault
localization techniques may be potentially hampered due
to the unavailability of labeled test cases. With test case
generation techniques [11, 29], we may be less concerned
with lacking test cases. However, we still face the same
problem of lacking test oracles that can determine whether
a program behaves correctly for an input. Note that
many software failures do not have obvious symptoms, such
as crashes or violation of predefined specifications; they
may simply produce a wrong number or display a widget
in an inappropriate place, and they still need human to
decide whether the results are good or not, which could
be a laborious and error prone activity. Recently, Artzi
et al. propose a directed test case generation approach for
fault localization [3]. They however only handle two kinds
of errors in web applications that automated test oracles
can be constructed: program crashes and invalid HTML
documents. In general programs, constructing automated
test oracles is much more complicated and still requires much
manual effort.

The key research question for this paper is as follows:
How can we minimize the number of test cases requiring
human labeling while achieving comparable fault localiza-
tion effectiveness as when all test cases are labeled?
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main(){ s1
  int let, dig, c; s2
  let = dig = 0; s3
  while(c=getchar()){ s4

    if('A'<=c && 'Z'>=c) s5 ● ● ● ● ● ● ● ● ● ● ● 3 8 0 1 0.522 0.529 0.273

      let += 1; s6 ● ● ● ● ● ● ● ● 2 6 1 3 0.408 0.500 0.222

    else if('a'<=c && 'z'>c) /*FAULT*/ s7 ● ● ● ● ● ● ● 3 4 0 5 0.655 0.692 0.429

      let += 1; s8 ● ● ● ● ● 2 3 1 6 0.516 0.667 0.333

    else if('0'<=c && '9'>=c) s9 ● ● ● ● ● ● 2 4 1 5 0.471 0.600 0.286

      dig += 1; s10 ● ● ● ● ● 2 3 1 6 0.516 0.667 0.333

    printf("%d %d\n",let,dig);} s11 ● ● ● ● ● ● ● ● ● ● ● ● 3 9 0 0 0.500 0.500 0.250
pass/fail P F P F P P P P F P P P

Statement Test case Suspiciousness Metrics

● ● ● ● ● ● ● ● ● ● ● ● 3 9 0 0 0.500 0.500 0.250

(a) Fault Localization with All Test Cases

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10s11 p/f s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

{s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11} t2 1 1 1 1 1 1 1 1 1 1 1 F 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909

{s5,s6,s7,s8,s9,s10},{s1,s2,s3,s4,s11} t8 1 1 1 1 0 0 0 0 0 0 1 P 0.0742 0.0742 0.0742 0.0742 0.1049 0.1049 0.1049 0.1049 0.1049 0.1049 0.0742

{s7,s8,s9,s10},{s5,s6},{s1,s2,s3,s4,s11} t6 1 1 1 1 1 1 0 0 0 0 1 P 0.0696 0.0696 0.0696 0.0696 0.0852 0.0852 0.1205 0.1205 0.1205 0.1205 0.0696

{s7,s8},{s5,s6},{s1,s2,s3,s4,s9,s10,s11} t4 1 1 1 1 1 1 1 1 0 0 1 F 0.0824 0.0824 0.0824 0.0824 0.0951 0.0951 0.1165 0.1165 0.0824 0.0824 0.0824

{s7},{s5},{s8,s9,s10},{s1,s2,s3,s4,s11},{s6} t9 1 1 1 1 1 0 1 0 1 1 1 F 0.0875 0.0875 0.0875 0.0875 0.0978 0.0753 0.1129 0.0922 0.0922 0.0922 0.0875

Suspicious Group
(the groups are ordered according to their suspiciousness)

Selected
Test Case

Program Spectra Normalized Ochiai  Score

(b) Evolution of Suspiciousness Scores with Test Cases Selected by our approach

Figure 1: Running Example

In this paper, we propose the concept of diversity maxi-
mization speedup (Dms) and an associated test case prioriti-
zation strategy to minimize the human effort needed to label
test cases while maintaining the effectiveness of existing
spectrum-based fault localization techniques. The concept
is based on our observation that when given sufficient test
cases, an effective fault localization technique would assign a
unique suspiciousness score to most program elements (e.g.,
a function, a statement, a branch, or a predicate), and high
scores to faulty elements and low scores to non-faulty ones.
We thus design Dms to speedup the changing process of
the suspiciousness scores generated by a fault localization
technique by using as few test cases as possible.

1.1 Running Example
Figure 1(a) and 1(b) illustrate how our concept helps re-

duce the number of test cases for effective fault localization.
There are 11 statements s1...s11 in the program in Fig-

ure 1(a) (adapted from previous papers [13, 16]), where
s7 is faulty. Suppose the program has 12 test cases
t1...t12. A dot for a statement under a test case means
the corresponding statement is executed (or hit) in the
corresponding test case. The collection of such dots (or
represented as sequences of 1 and 0 as shown in Figure 1(b))
are called program spectra. With the spectra for all of the
test cases and their pass/fail information, fault localization
techniques may calculate various suspiciousness scores for
each of the statements and rank them differently. In this
case, three well-known techniques, Ochiai [1], Tarantula [18],
and Jaccard [1] all rank s7 as the most suspicious statement
(the last three columns in the highlighted row for s7 in
Figure 1(a)). However, the fault localization techniques can
in fact achieve the same effectiveness (i.e., ranking s7 as the
top suspicious one) with much fewer test cases when our
concept is applied.

Use Ochiai as an example. First, we select an initial
small number of test cases (t2 in the example). After
a programmer labels the execution result of t2, Ochiai

can already assign suspiciousness scores to each statement,
although the ranks are not accurate (as in the last 11
columns of the row for t2 in Figure 1(b)). Then, our
approach calculates the potential rank changes that may
be caused if a new test case is used by Ochiai, and selects
the next test case with the maximal change-potential (t8 in
our case) for manual labeling. With a label for t8, Ochiai
updates the suspiciousness scores for the statements (as in
the last 11 columns of the row for t8). Repeating such
a process three more times, test cases t6, t4 and t9 are
added, and Ochiai can already rank s7 as the most suspicious
statement. Thus, our approach helps Ochiai to effectively
locate the fault in this case with only five test cases, instead
of 12. Section 3 and 4 present more details about our
approach.

1.2 Contributions
We have evaluated our approach on five real C programs

and seven Siemens test programs from the Software-artifact
Infrastructure Repository (SIR [9]). In total, we analyze
254 faults, and demonstrate that our approach significantly
outperforms existing test case selection methods for fault
localization.

1. Given a target fault localization accuracy, our ap-
proach can significantly reduce the number of test
cases needed to achieve it. In particular, we com-
pare with several state-of-the-art test case prioritiza-
tion strategies, including coverage-based (e.g., Stmt-
Total [27, 10], Art [17]), fault-exposing potential
based [27], and diagnostic prioritization [12, 13, 16],
and our approach achieves, on average, test case
reduction rates from 10% to 96%.

2. Given a maximum number of test cases that a pro-
grammer can manually label (i.e., given a fixed number
of test cases to be used for fault localization), Dms can
improve the accuracy of fault localization and thus
helps reduce the amount of code programmers need
to investigate to locate faults and reduce debugging
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cost. In comparison with other test case selection tech-
niques, we show, with Wilcoxon signed-rank test [30]
at 95% confidence level, that the cost saving achieved
by Dms is statistically significant on real-life programs.

1.3 Paper Outline
The rest of this paper is organized as follows: Sec-

tion 2 describes fault localization and test case prioritization
techniques that we use in our study. Section 3 formally
introduces the problem we address. Section 4 presents
our approach in detail. Section 5 presents our empirical
evaluation. Section 6 describes more related works. Finally,
Section 7 concludes with future work.

2. PRELIMINARIES

2.1 Fault Localization
Spectrum-based fault localization aims to locate faults by

analyzing program spectra of passed and failed executions.
A program spectra often consists of information about
whether a program element (e.g., a function, a statement, or
a predicate) is hit in an execution. Program spectra between
passed and failed executions are used to compute the
suspiciousness score for every element. All elements are then
sorted in descending order according to their suspiciousness
for developers to investigate. Empirical studies (e.g., [22,
18]) show that such techniques can be effective in guiding
developers to locate faults. Parnin et al. conduct a user
study [25] and show that by using a fault localization tool,
developers can complete a task significantly faster than
without the tool on simpler code. However, fault localization
may be much less useful for inexperienced developers.

The key for a spectrum-based fault localization technique
is the formula used to calculate suspiciousness. Table 1 lists
the formulae of three well-known techniques: Tarantula [18],
Ochiai [1], and Jaccard [1]. Given a program element s,
Nef (s) is the number of failed executions that execute s;
Nnp(s) numerates passed executions that do not hit s; by
the same token, Nnf (s) counts failed executions that do not
hit s and Nep(s) counts passed executions that execute s.

Table 1: Spectrum-based fault localization
Name Formula

Tarantula

Nef (s)

Nef (s)+Nnf (s)

Nef (s)

Nef (s)+Nnf (s)
+

Nep(s)

Nep(s)+Nnp(s)

Ochiai
Nef (s)√

(Nef (s) + Nnf (s)) · (Nef (s) + Nep(s))

Jaccard
Nef (s)

Nef (s) + Nnf (s) + Nep(s)

Example. Each column for ti in Figure 1(a) is a spectrum.
The columns Nef , Nep, Nnf , and Nnp can thus be calculated
from the spectra. The suspiciousness scores of Tarantula,
Ochiai, and Jaccard for each statement are then calculated
based on the formulae in Table 1.

2.2 Test Case Prioritization
In [27], Rothermel et al. define the problem of test case

prioritization as follows:

Definition 2.1 (Test Case Prioritization). Given
(1) T , a set of test cases, (2) PT , the set of permutations

of T , and (3) f , a function mapping PT to real numbers,
the problem is to find a permutation p ∈ PT such that:
∀p′ ∈ PT .f(p) ≥ f(p′).

In this definition, PT represents the set of all possible
orderings of T ; f is an award function indicating the value
for each ordering. The higher the value, the better it is. For
easier implementation, award functions in the literature are
often defined as a priority function mapping test cases to real
numbers, and then the optimal permutation is simply to sort
the test cases in descending order according to their values.
The key for a test case prioritization technique to be effective
is to design a priority function that assigns appropriate
priority to the test cases under given situations. The
following subsections highlight some test case prioritization
techniques that we compare with our approach.

2.2.1 Coverage Based Prioritization
STMT-TOTAL [27] is a test case prioritization strategy

that assigns higher priorities to a test case that executes
more statements in a program. STMT-ADDTL [27] extends
Stmt-Total by selecting next test case that covers more
statements that have not been covered by previously selected
test cases. Adaptive Random Test Prioritization (ART) [17]
starts by randomly selecting a set of test cases that achieves
maximal coverage, and then sort the unlabeled test cases
based on their Jaccard distances to previous selected test
cases. Among its several variants, ART-MIN was shown to
be the best test case prioritization strategy [17]. However,
recent study [2] shows that Art may not be effective when
the failure rate is low and the high distance calculations cost
might overshadow the reduction on test execution times.

2.2.2 Fault-Exposing Potential Based Prioritization
FEP-ADDTL [27] aims to sort test cases so that the

rate of failure detection of the prioritized test cases can be
maximized. To reduce the need for test oracles, the rate
of failure detection is approximated by the fault-exposing
potential(Fep) of a test case, which is in turn estimated
based on program mutation analysis [15]: each program
element sj is mutated many times and the test case ti is
executed on each mutant; the Fep of ti for sj (Fepij) is
calculated as the ratio of mutants of sj detected by ti over
the total number of mutants of sj ; then, the Fep of ti (Fepi)
is the sum of the FEP of ti for all elements (

∑
j Fepij).

2.2.3 Diagnostic Prioritization
Jiang et al. [16] investigate the effects of previous test

case prioritization techniques on fault localization and find
that coverage-based techniques may be insufficient since
the prioritized test cases may not be useful in supporting
effective fault localization. González-Sanchez et al. use
the concept of diagnostic distribution that represents the
probability of a program element to be faulty, which is then
estimated by Bayesian inference based on previous selected
test cases, and in their tool named SEQUOIA [13], sort
test cases so that the information entropy of the diagnostic
distribution can be minimized. Soon after, González-
Sanchez et al. propose another strategy called Ambiguity
Group Reduction to sort test cases. In their tool named
RAPTOR [12], program elements having the same spectrum
record are considered to be in the same ambiguity group
(Ag), and Raptor aims to select next test case that would
maximize the number of ambiguity groups while trying to
minimize the deviation on the sizes of the ambiguity groups.
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3. PROBLEM DEFINITION
In this section we show a motivating example and formally

introduce our approach: Diversity Maximization Speedup
(Dms). Dms employs trend analysis to give priorities to test
cases that can quickly increase the diversity of suspiciousness
scores generated by fault localization techniques for various
program elements. In the subsections, we illustrate its
intuition and formally define it as a variant of test case
prioritization.

3.1 Running Example Revisited
We use the running example (Figure 1(a)) to explain the

intuitions for Dms.
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s10 
others 
s9 
s7(faulty) 

Figure 2: Motivating Example

With sufficient test cases, an effective fault localization
technique is more likely to assign high suspiciousness scores
to faulty program elements while assigning low scores to
non-faulty elements, and each element should be assigned
a unique rank according to their suspiciousness scores to
facilitate further investigation (such as the scores shown in
the last three columns in Figure 1(a)).

With fewer test cases, a fault localization technique may
not be able to achieve an effective ranking. Figure 2 shows
the evolution trend of the ranks of the running example’s
program statements based on their Ochiai [1] scores as test
cases are added one by one. The test cases are added
by Raptor which is the existing best approach in the
literature [12] for selecting test cases for fault localization.
In this figure, the horizontal axis represents the number of
iterations to select test cases. In each iteration, one test
case is picked from the unlabeled test case pool TU . The
vertical axis is the rank1 of a statement sorted based on
suspiciousness. Each line in the figure depicts the evolution
of the suspiciousness rank for one specific statement. For
example, s7 (the faulty statement) is ranked 11th in the first
iteration, and 6th in the second iteration.

This figure shows that the ranks of different statements
may evolve in different ways as more test cases are added.
Specifically, some statements keep rising in general (e.g.,
s7); some others oscillate back and forth (e.g., s9). Ideally,
we should only use test cases that could enable a fault
localization technique to assign elements the scores close to
the final score when all test cases are used. Comparing to
the changes of s7, the oscillation of s9 is less important as
its final rank is the same as its initial rank. Thus, when we
add test cases, we should look for test cases that could offer

1
Program elements with the same suspiciousness score are assigned

the same low rank since developers are expected to investigate all
of the elements having the same score if they are ever going to
investigate one. For example, if statements s1, s2, s3 have the highest
suspiciousness score, then the ranks of the 3 statements are all 3.

more changing opportunities to “promising” elements like s7
(with clear trend) instead of s9 so that the ranks (for both
s7 and s9) may quickly approach their final position.

The following questions prompted us to define Dms:

1. Can we analyze the change trend of every program
element and identify “promising” elements with high
change-potentials (i.e., elements whose ranks are likely
to change much in a stable way)?

2. For program elements having high change-potentials,
can we select appropriate test cases to speed up their
rank changing process so that these elements can reach
their final ranks faster (i.e., with fewer test cases)?

3.2 Formal Definition of DMS
Definition 3.1 (Diversity Maximization Speedup).

Given (1) T , a set of test cases, (2) PT , the set of
permutations of T , and (3) k, a positive integer, we use
pk to represent a permutation p ∈ PT truncated at length k,
and PT k to represent all such truncated permutations (i.e.,
PT k = {pk|p ∈ PT}).

Then, with f , a function mapping PT k to real numbers,
the problem of DMS is to find a permutation p ∈ PT such
that: ∀pki ∈ PT k. f(pk) ≥ f(pki ), for the given k.

In Definition 3.1, f is an award function indicating the
value of an ordering in PT k, which in our case, would be
the effectiveness of a fault localization technique based on k
labeled test cases. The number k can be used as a labeling
budget, indicating the number of test cases developers are
willing to label for fault localization. Thus, the goal for Dms
is to quickly maximize the effectiveness of fault localization
techniques with at most k labeled test cases.

4. APPROACH DETAILS
In this section we answer the two questions raised in the

previous section which conceptualize Dms.

4.1 Identify High Change-potential Elements
In order to evaluate the change-potential of program

elements, we first represent program element’s rank changes
as time series data points. We then fit the points to a linear
model using regression analysis. The regression coefficient
of the model and the error (i.e., discrepancy between the
model and the real points) are used as proxy to identify
program elements with high change-potentials. More details
are described as follows.

Representative Time Series Construction. We capture
changes in the ranks of a program element as a series of
trend units:

1. When the rank of the program element decreases, its
current trend unit is [+].

2. When the rank of the program element increases, its
current trend unit is [-].

3. If the element’s rank stays the same, its current trend
unit is [0].

For example, the ranks of statement s8 in different
iterations and its corresponding trend units are listed in
Table 2. This series of trend units is further converted to a
series of points < xi, yi >, where xi represents the iteration
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number, and yi represents cumulated changes in program
ranks at iteration i. We set y0 as 0. When the trend in
iteration i is [+], yi = yi−1 + 1. If the i-th trend is [-],
yi = yi−1 − 1, otherwise, if the trend does not change([0])
then yi = yi−1. We refer to this series of points as the
evolution trend of the corresponding program element.

Table 2: Evolution Trend of s8.
Iteration (xi) 1 2 3 4 5 6 7 ...

Rank 11 6 4 2 3 11 5 ...

Trend (T ) [+] [+] [+] [-] [-] [+] ...

yi 0 1 2 3 2 1 2 ...

Linear Model Construction. Then we use linear regression
analysis [14] to model the trend of each program element.
Each trend is modeled as a linear equation:

yi = β1 · xi + β0 + εi (1)

Change Potential Computation. Here we define the change-
potential of a program element with trend T as:

WT =
∣∣∣β̂1
∣∣∣ · 1

σ̂β1 + 1
(2)

β̂1 is estimated by least squares and σ̂β1 is the error
of estimating β1 [14]. In this metric, the numerator is
the absolute value of the trend slope and the denominator
considers the fitness of the regression model which represents
the deviation of the actual value from the regression model.
Using this metric, our method isolates trends that evolve in
a monotonous and stable way. Table 3 shows a few example
trends and their change-potentials according to Equation 2.

Table 3: Trend examples and their potentials
T β̂1 σ̂β1 WT

[+] [+] 1 0 1

[+] [-] 0 0.577 0

[+] [0] 0.5 0.289 0.388

[0] [0] 0 0 0

4.2 Speed up the Rank Change Process
After evaluating the program elements according to their

change-potentials, Dms will try to speed up the evolu-
tion trend of the program elements based on the change-
potential(WT ). First, program elements with the same
suspiciousness scores are grouped together, they are termed
as suspicious group in this paper. These suspicious groups
are then assigned change-potential scores based on the
change-potentials of their constituent program elements.
When new test cases are added, based on the actual program
elements that get executed, some groups can be broken into
two. When this happens, the diversity of the suspiciousness
scores increases in most cases. The goal of Dms is to select a
new test case that breaks a group into two sub-groups where
the overall change-potentials are maximized.

We calculate the potential of a group g by summing up
the potential of all program elements d that belongs to g.

Wg =
∑

d∈g
WTd (3)

where Td is the change-potential of the program element
d based on the labeled execution trace profiles.

The overall change-potential score of all suspicious groups(G)
are calculated as follows:

HG =
∑

gi∈G
W2
gi (4)

To evaluate an unlabeled trace t, Dms calculates the
difference between the overall change-potential score of the
current groups G (HG) and the overall change-potential
score of all groups when t is added to the pool of labeled test
cases (G⇐ t), and chooses the test case that can maximize
the difference as the next one for labeling.

arg max
t∈TU

{
HG −H(G⇐t)

}
(5)

The new groups (G ⇐ t) and their change-potential
H(G⇐t) can be estimated based on t’s spectrum (i.e., the
set of program elements hit by t) even when the pass/fail
label for t is unknown. Given an existing suspicious group,
if a newly added test case t only covers a subset of the group
elements, this group may be broken into two: one contains
the elements hit by t, and the other contains the elements
uncovered by t. Then, each subgroup inherits a portion of
the original group’s change-potential proportional to its size.
For example, suppose a group g in HG contains 2 elements,
whose potentials are 0.4 and 0.6 respectively, and a new test
case t breaks g into g1 and g2, each of which contains 1
element; then, the change-potentials Wg1 and Wg2 are both
1
2
× (0.4 + 0.6) = 0.5.
Note that Dms does not intentionally increase suspicious-

ness scores of promising statements which could lead to
confirmation bias. More specifically, Dms might make an
initially promising statement become less suspicious if the
statement is covered in the next selected trace and the trace
is labeled pass, or it is not covered in the next selected trace
and the trace is labeled fail.

4.3 Overall Approach
Before prioritization, all test cases will be executed on

instrumented program versions and the corresponding traces
would be collected. Our approach (pseudocode in Figure 3)
takes in a set of unlabeled traces TU and the labeling budget
k (i.e., the maximum number of traces to be manually
labeled), and outputs k selected traces for manual analysis.
One failed trace (t0 in Line 1) is also used as an input
because a developer usually starts debugging only when at
least one test fails, and fault localization techniques rarely
produce meaningful results if all spectra consists of only
passed executions.

To collect indicative trends for analyzing and speedup, at
lines 3-9 we first collect w traces by one generic prioritization
technique P and record evolution trend Td for each program
element d. This step is desirable since it helps bootstrap the
trend analysis in our solution. At lines 12-24, we perform
the second stage which speeds up the change process based
on existing trends. Note that after selecting each test case t
in this stage, we will update the trend for all elements. fT
represents a fault localization technique (e.g.,Ochiai), built
based on the set of test cases T . fT (d) returns the suspicious
score for the program element d.

In the pseudocode, manual_label(t) asks a user to check
the correctness of the outcome from the test case t. Proce-
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Table 4: Evolution of Suspiciousness Scores for the Running Example in Table 1(a) using RAPTOR [12].

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10s11 p/f s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

{s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11} t2 1 1 1 1 1 1 1 1 1 1 1 F 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909

{s5,s6,s7,s8,s9,s10},{s1,s2,s3,s4,s11} t8 1 1 1 1 0 0 0 0 0 0 1 P 0.0742 0.0742 0.0742 0.0742 0.1049 0.1049 0.1049 0.1049 0.1049 0.1049 0.0742

{s7,s8,s9,s10},{s6,s5},{s1,s2,s3,s4,s11} t6 1 1 1 1 1 1 0 0 0 0 1 P 0.0696 0.0696 0.0696 0.0696 0.0852 0.0852 0.1205 0.1205 0.1205 0.1205 0.0696

{s7,s8},{s5,s6}{s1,s2,s3,s4,s11},{s9,s10} t4 1 1 1 1 1 1 1 1 0 0 1 F 0.0824 0.0824 0.0824 0.0824 0.0951 0.0951 0.1165 0.1165 0.0824 0.0824 0.0824

{s7,s8},{s6},{s5},{s10},{s1,s2,s3,s4,s11},{s9} t7 1 1 1 1 1 0 1 1 1 0 1 P 0.0840 0.0840 0.0840 0.0840 0.0940 0.1085 0.1085 0.1085 0.0664 0.0940 0.0840

{s7},{s10},{s5},{s1,s2,s3,s4,s11},{s6},{s8},{s9} t9 1 1 1 1 1 0 1 0 1 1 1 F 0.0885 0.0885 0.0885 0.0885 0.0969 0.0834 0.1084 0.0834 0.0834 0.1022 0.0885

Ambiguity Group
(the groups are ordered according to their suspiciousness)

Selected
Test Case

Program Spectra Normalized Ochiai  Score

Procedure DiversityMaximizationSpeedup
Input:
k - Maximum number of traces to be selected
w - Switching threshold
TU - Unlabeled trace set, where |TU | > k
t0 - Initial failed trace

Output:
k selected test cases prioritized

Method:

1: Ttmp ← {<t0, fail>}
2: //Bootstraping with prioritization technique P
3: while |Ttmp| ≤ k and |Ttmp| ≤ w do
4: Select t by P
5: c←manual_label(t)
6: Ttmp ← Ttmp ∪ {<t, c>}; TU ← TU \ {t}
7: ∀d ∈ D, calculate suspicious score fTtmp (d)

8: ∀d ∈ D, update trend Td based on fTtmp (d)

9: end while
10: TS ← Ttmp
11: //Speedup
12: while |TS | ≤ k do
13: ∀d ∈ D, calculate WTd by Equation 2
14: Select t by Equation 5
15: c←manual_label(t)
16: Ttmp ← Ttmp ∪ {<t, c>}; TU ← TU \ {t}
17: ∀d ∈ D, calculate suspicious score fTtmp (d)

18: ∀d ∈ D, update Td based on fTtmp (d)

19: TS ← TS ∪ Ttmp
20: if div(Ttmp) cease growing then
21: Ttmp ← {<t0, fail>}
22: ∀d ∈ D, clear Td
23: end if
24: end while
25: return TS

Figure 3: Diversity Maximization Speedup

dure div(T ) counts the number of unique suspicious scores
(diversity) generated by fT , which is defined as follows:

div(T ) =

∣∣∣∣∣
⋃

d∈D
{fT (d)}

∣∣∣∣∣ (6)

The diversity of small programs may reach the maximum
after selecting a small number of test cases. To avoid random
selection after that happens, the pseudocode at lines 20-
23 resets the set Ttmp based on which the suspiciousness
scores of all program elements are calculated. With this
step, Dms can continually choose test cases from TU that
maximally diversify suspicious scores calculated based on
Ttmp. Repeating the diversity selection process also helps to
confirm the previously selected test cases and make the final
result more robust.

Example We describe step by step how Dms minimizes the
number of test cases needed by Ochiai to locate the fault in
the running example in Figure 1(a) and Figure 1(b).

Since the example code snippet is quite small, there is no

need to use a large number of initial test cases to bootstrap
our trend analysis. We set w = 1 and only use one test
case (in addition to t0) for bootstrapping. In this example
and our evaluation in Section 5, we use Raptor, one of the
previously best techniques, in the bootstrapping process for
better comparison.

Initially, users execute the program and expose a failure
(t2 in this example) in which all statements are covered.
Thus all statements get equal non-zero suspiciousness and
constitute a suspicious group g. All non-zero suspicious
groups compose a group set G = {g}. Raptor would then
choose t8 and ask developer to label (pass or fail).

After the bootstrapping stage, Ochiai updates the sus-
piciousness score for each statement based on the selected
traces and the existing suspicious group set are broken into
{s1,s2,s3,s4,s11} and {s5,s6,s7,s8,s9,s10}, they are called g1
and g2 respectively. At this time, the trend for the state-
ments in g1 is [+], because the ranks of these statements
change from 11 to 6, while the trend for the statements in
g2 is [0], because their ranks are still 11. The corresponding
time series of the statements in g2 are: y0 = 0 and y1 = 1.
Applying equation 2, we obtain the change-potential of the
trend of the program elements in g2 as 1.

We now calculate HG for the current suspicious group set
G = {g1, g2} according to Equation 3: HG =W2

g1 +W2
g2 =

(
∑
d∈g1 0)2 + (

∑
d∈g2 1)2 = 36.

Now there are 10 candidate traces: {ti|1 ≤ i ≤ 12 ∧ i /∈
{2, 8}} to be evaluated. We will use each candidate trace ti
to break ties in G (G ⇐ ti). Then we calculate the score
that evaluates the breaking effect: H(G⇐ti).

For example, when evaluating t6, t6 covers s1,s2,s3,s4,s5,s6
and s11, thus breaks suspicious g2 into {s5,s6} and {s7,s8,s9,
s10}, let us call them g21 and g22 respectively. Now, the score
Wg21 = 2

6
×Wg = 2, Wg22 = 4

6
× 6 = 4. So if choosing t6,

the score for G is H(G⇐t6) = W2
g21 +W2

g22 = 20. And the
reduction is HG −H(G⇐t6) = 36− 20 = 16.

In the same way, we evaluate all candidate traces and
find that the reduction of t6 is maximal, so we select t6
as the next trace and ask developer to manually label t6.
The developer then labels it as “pass”. After adding newly
labeled trace t6 into the selected trace set TS , we recalculate
the suspicious score of all program elements according to the
current selected trace set. After calculation, the normalized
suspicious score of the elements in {s5,s6} reduced from
0.1049 to 0.0852 and their ranks remains the same. The
suspicious scores of the elements in {s7,s8,s9,s10} increase
from 0.1049 to 0.1205 and thus their ranks rises from 6 to
4. After that, the trends of program elements are updated.
For example, the trend of elements in {s1,s2,s3,s4,s13}
becomes ([0][0]), the trend of the statements in {s5,s6}
becomes ([+][0]) and those in {s7,s8,s9,s10} corresponds
to ([+][+]).

Note that right now {s7,s8,s9,s10} gets the highest change-
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potential score and thus can get more chances to be broken
up. As shown in Table 1(b), after three iterations, Dms
selects (t8→t6→t4). In the next iteration, Dms chooses t9
and breaks {s7,s8} and {s5,s6} which have greater change-
potentials and consequently ranks s7 the highest. Overall,
Dms only requires user to manually label four additional
traces (t8→t6→t4→t9).

As a comparison, Raptor always chooses the test case
that maximally reduces the overall sizes of groups of state-
ments that have the spectrum records (i.e., Ambiguity
Group Reduction, c.f. Section 2.2.3). As shown in Table 4,
Raptor effectively selects the same test cases as Dms in
the first four iterations; however, it chooses t7 in the next
iteration to break {s1,s2,s3,s4,s9,s10,s11} and {s5,s6}, and
it takes one more iteration to rank s7 the highest. It thus
requires users to label five additional test cases besides t2
(t8→t6→t4→t7→t9).

5. EMPIRICAL EVALUATION
In this section we present empirical evaluation that ana-

lyzes the impact of Dms on manual effort needed for test case
labeling, and compares our approach with multiple previous
test case prioritization methods. Section 5.1 gives details
about experimental setup. In Section 5.2, we introduce the
subject programs in our study. Section 5.3 shows the results
followed by Section 5.4 discussing the threats to validity.

5.1 Experimental Setup
In our experiment, every test case prioritization technique

starts from an arbitrary labeled failed trace because devel-
opers start debugging only when test cases fail.

We compare the effectiveness of different prioritization
methods based on the diagnostic cost when the same number
of test cases are selected. The diagnostic cost is defined as
follows:

cost =
|{j | fTS (dj) ≥ fTS (d∗)}|

|D| (7)

where D consists of all program elements appearing in the
program. We calculate the average cost as the percentage
of elements that developers have to examine until locating
the root cause(d∗) of failure. Since multiple program
elements can be assigned with the same suspicious score, the
numerator is considered as the number of program elements
dj that have bigger or the same suspicious score to d∗.

In this paper, we use Raptor as the bootstrapping
technique (P in Figure 3). During the bootstrapping
process, w is set to 10 to facilitate trend analysis.

Following [16], for each faulty version, we repeat each
prioritization technique 20 times to obtain its average cost.
For each time, a randomly chosen failed trace is used as the
starting point to alleviate the sensitivity of the technique to
the choice of starting traces. On the other hand, to fairly
compare our approach with other prioritization methods,
the same randomly chosen failed traces are used as the
starting traces for all methods.

5.2 Subject Programs
We use five real C programs and seven Siemens test

programs from the Software-artifact Infrastructure Repos-
itory (SIR) [9]. We refer to the five real programs (sed,
flex, grep, gzip, and space) as Unix programs. Table 5
shows the descriptive statistics of each subject, including

the number of faults, available test cases and code size.
Following [19, 1], we exclude faults not directly observable by
the profiling tool2 (e.g., some faults lead to a crash before
gcov dumps profiling information and some faults do not
cause any test case to fail), and in total we study 254 faults.

Table 5: Subject Programs
Program Description LOC Tests Faults

tcas Aircraft Control 173 1609 41

schedule2 Priority Scheduler 374 2710 8

schedule Priority Scheduler 412 2651 8

replace Pattern Matcher 564 5543 31

tot info Info Measure 565 1052 22

print tokens2 Lexical Analyzer 570 4055 10

print tokens Lexical Analyzer 726 4070 7

space ADL Compiler 9564 1343 30

flex Lexical Parser 10124 567 43

sed Text Processor 9289 371 22

grep Text Processor 9089 809 17

gzip Data Compressor 5159 217 15

5.3 Experimental Results
In this subsection, we conduct several controlled experi-

ments to show the effectiveness of Dms.

5.3.1 Effectiveness on Reducing The Number of Test
Cases Needed for a Target Cost

We compare Dms with previous test case prioritization
techniques in terms of labeling effort when given an expected
fault localization accuracy. If labeling all test cases and
performing fault localization on all program spectra results
in an average diagnostic cost c, we call it the base line cost.
Then we define x% base line effectiveness (cx) as follows:

cx =
x

100
× c (8)

Table 6 shows how many labels are needed on average
to achieve 101% base line effectiveness (i.e., within 1%
accuracy lost) for each approach. E.g., Raptor requires
48 labels on average for each faulty version from the 5 Unix
programs while Dms only needs 16. Overall, Dms requires
the minimal amount of labeling effort by achieving 67.7%
labeling reduction on Unix programs and 10% reduction
on Siemens programs in comparison with the existing best
approach (Raptor).

Table 6: Labeling Effort on Subject Programs
Subject Rap- Seq- Stmt- Stmt- Fep- Art-

Programs Dms tor uoia Addtl Total Addtl Min

Siemens 18 20 500+ 500+ 500+ 97 150

Unix 16 48 176 150 500+ 98 56

5.3.2 Effectiveness on Reducing Cost for a Given
Number of Labeled Test Cases

We select 30 test cases, which we believe are not too many
to manually label. We also find that in our experiments the
average debugging cost of using Dms will not reduce notice-
ably even if more labeled test cases are added further (See
Figure 4). During the bootstrapping process, the first 10 test
cases are picked by Raptor. We use different prioritization
techniques and apply Ochiai to evaluate program elements

2http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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on the selected program spectra. A prioritization technique
that obtains a lower cost is better.
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Figure 4: Average Cost of Dms when Selecting
Different Numbers of Test Cases.

Following [4, 5] and the Cost metric (Equation 7), we
compare the effectiveness of two prioritization methods PA
and PB by using one of the methods (for example, PB) as
reference measure. When selecting equal number of traces
k, the Cost difference: Cost(PB) − Cost(PA) is considered
as the improvement of PA over PB . A positive value
means that PA performs better than PB (since lower Cost
is better). The difference corresponds to the magnitude of
improvement. For example, if the Cost of test cases from PA
is 30% and the Cost of PB is 40%, then the improvement
of PA over PB is 10%, which means that developers would
examine 10% fewer statements if PA is deployed.

Summary Table 7 and 8 summarize the comparison be-
tween our method and the existing prioritizing techniques,
the results show that our method outperforms all of them.

Table 7: Comparison of Prioritization methods.
Test Pri. Tech. Positive Negative Neutral

Dms vs Raptor 25.20% 19.29% 55.51%

Dms vs Sequoia 33.46% 19.69% 46.85%

Dms vs Stmt-Addtl 42.13% 19.29% 38.58%

Dms vs Stmt-Total 62.99% 7.87% 29.13%

Dms vs Fep-Addtl 40.16% 20.08% 39.76%

Dms vs Art-Min 31.50% 19.29% 49.21%

As illustrated in Table 7, Dms performs better than
Raptor on 25.20% of the faulty versions, worse on 19.29%
of the faulty versions, and shows no improvement on 55.51%
of the faulty versions. The first row of Table 8 characterizes
the degree of positive improvement of Dms over Raptor.
As the table indicates, half of the 33.46% faulty versions with
positive improvement values have improvements between
0.03% and 7.71%, and the other half have improvements
between 7.71% and 77.42%. The average positive improve-
ment of Dms over Raptor is 7.71%.

We conduct paired Wilcoxon signed-rank test to confirm
the difference in performance between Dms and six existing
prioritization techniques. The statistical test result rejects
the null hypothesis and suggests that Dms is statistically
significantly better than the existing best approach on Unix
programs at 95% confidence interval.

Detailed Comparison Table 6 shows that Raptor, Fep-
Addtl and Art-Min achieve 101% base line effectiveness
with less than 500 test cases on subject programs. Due to

Table 8: Distribution of positive improvements.
Test Pri. Tech. Max Mean Median Min

Dms vs Raptor 77.42% 7.71% 3.93% 0.03%

Dms vs Sequoia 66.67% 14.38% 8.06% 0.23%

Dms vs Stmt-Addtl 72.87% 14.68% 5.17% 0.03%

Dms vs Stmt-Total 94.97% 27.68% 22.29% 0.03%

Dms vs Fep-Addtl 45.90% 13.83% 6.35% 0.03%

Dms vs Art-Min 53.81% 7.70% 3.23% 0.03%

limited space, we only show the comparison between Dms
and these methods in detail.

Figure 5, 6, and 7 show the comparison between different
prioritization techniques based on fault localization Cost.
The horizontal axes represent the number of versions that
show differences in the Cost of fault localization. The
vertical axes represent the percentage difference in Costs.
If Dms is better than the reference method, the area above
zero-level line will be larger.

DMS vs FEP-ADDTL Previous studies [27, 10] show that
Fep-Addtl is the most promising prioritizing method for
fault detection. Without test oracles, Fep can be estimated
by 1−False Negative Rate (Fnr) [13] 3 which is also used in
our study.
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Figure 5: Improvement of DMS over FEP-ADDTL.

Figure 5 presents the comparison between Dms and Fep-
Addtl over all faulty versions. Fep-Addtl is used as the
reference prioritization technique. The baseline represents
the fault localization Cost on program spectra prioritized
by Fep-Addtl. Each program version is a bar in this graph
and we remove versions from the graph that have no Cost
differences due to the limited space. In the Figure, the
vertical axis represents the magnitude of improvement of
Dms over Fep-Addtl. If the bar of a faulty version is above
the horizontal axis, that means on this version Dms performs
better than Fep-Addtl (positive improvement) and the
bars below the horizontal axis represent faulty versions for
which Dms performs worse than Fep-Addtl.

The comparison shows that Dms is better than Fep-
Addtl. Out of 153 versions that show differences in Costs,
our prioritization method performs better than Fep-Addtl
on 102 versions but performs worse than the Fep-Addtl on

3Fnr is the program passing rate when program element is
the real fault and executed in test case. Usually when Fnr is
high, the fault is difficult to be detected by Spectrum-based
fault localization techniques.
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51 versions. The positive improvement ranges from 0.03%
to 45.90%, with an average of 6.35%.
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Figure 6: Improvement of DMS over Art-MIN.

DMS vs Art-MIN In this study we compare the ef-
fectiveness of Dms to Adaptive Random Test Prioritiza-
tion(Art) [17]. There are various strategies for Art, in
this experiment we only compare with the best one: Art-
Min [17, 13, 12]. Figure 6 shows the results of the study
in which Art-Min is used as the baseline method. The
comparison shows that Dms is better than Art-Min. Out of
129 versions that show differences in Costs, our prioritization
method performs better than Art-Min on 80 versions but
performs worse than the Art-Min on 49 versions.

DMS vs RAPTOR Figure 7 shows the comparison between
Dms and Raptor on Unix programs. Here we use Raptor
as the reference metric. The comparison shows that Dms is
better than Raptor. On Unix programs Dms outperforms
Raptor on 20 versions by at least 1% cost, and only 5
versions worse than Raptor over 1% cost.
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Figure 7: Improvement of DMS over RAPTOR on
UNIX programs.

There is also improvement on Siemens programs: 32.2%
versions show differences and the average debugging cost
improvement is 1.3%, which is not so significant as com-
parison on Unix programs. This is probably due to the
small software size. On Siemens programs the existing best
approach can reach 101% of the base line effectiveness by
only selecting less than 20 test cases on average (see Table
6). By selecting such few test cases, Raptor already obtains
the maximal ambiguity group reduction due to very limited
different coverage profiles. For example, all test cases of
tcas only have less than 15 ambiguity groups in all faulty

versions. In this case, the speedup by our method is trivial.
In real scenario, programs to be diagnosed would be more
similar to Unix programs.

5.4 Threats to Validity
The threats to our studies include the issue of how

representative the subjects of our studies are. Since the
Siemens programs are small and larger programs may be
subject to different testing and debugging traits. To
strengthen the external validity, we include Unix programs
which are real-life programs. These subjects have been
adopted for evaluation in many works [18, 1, 28].

Another possible threat is that although our method
outperforms existing method in 25.2% to 62.99% program
versions and gets equivalent cost in around 30% versions,
there are still a certain percent of versions that our method
does not perform very well. But as we can see in the studies,
most of the negative improvements of those versions are
relatively small or even trivial comparing to the positive
improvements. We also conduct statistical test to further
confirm the superiority of Dms.

6. RELATED WORK
In this section, we describe related work on fault localiza-

tion, defect prediction, test case prioritization, diagnostic
prioritization, and automated oracle construction. The
survey here is by no means a complete list.

Fault Localization Over the past decade, many automatic
fault localization and debugging methods have been pro-
posed. The ways of calculating suspiciousness for program
elements are various, including state-of-arts (e.g. Taran-
tula [19, 18] and Ochiai [1]). Renieris and Reiss propose a
nearest neighbor fault localization tool called Whither [26]
that compares the failed execution to the correct execution
and reports the most suspicious locations in the program.
Zeller applies Delta Debugging to search for the minimum
state differences between a failed execution and a successful
execution that may cause the failure [32]. Liblit et al.
consider predicates whose true evaluation correlates with
failures [21] are more likely to be the root cause.

Test Case Prioritization Test case prioritization tech-
niques are initially proposed for early fault detection in
regression testing. Rothermel et al. [27] show the coverage-
based and Fault-exposing-potential based approaches can
improve the rate of fault detection of test suites. Elbaum et
al. [10] further investigate “version-specific prioritization”
on different profile granularities. In [20], Li et al. show that
Additional Greedy Algorithm is among the best approaches
for regression test case prioritization. Baudry et al. propose
Dynamic Basic Block (Dbb) [6] for test suite reduction.
Their method focuses on the number of Dbbs. González-
Sanchez et al. [12] further consider group size.

Oracle Construction Although in recent years, many
studies [24, 31, 8] aim to automatically generate test oracles,
they are often heavy weight, based on certain assumption
and thus applicable to specific scenarios. Eclat [24] can
generate assertions based on a learning model, but they
assume correct executions. Xie proposes a method called
Orstra [31] for oracle checking. Bowring et al. propose
Argo [8] which selects test cases inducing unknown be-
haviors to actively construct test oracles for improving test
quality. The approach is more suitable for regression testing.
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Our approach complements these studies by reducing the
effort needed for the purpose of fault localization.

7. CONCLUSION AND FUTURE WORK
This paper proposes a new technique aiming to minimize

the amount of effort in manual oracle construction, while
still permitting effective fault localization. In comparison
with existing prioritization techniques on 12 C programs,
we have shown that: our method only requires on average a
small number of test cases to accomplish the target average
cost within 1% accuracy lost, and outperform existing
methods in terms of reducing debugging cost for the subject
programs. We have also shown that the differences on real-
life programs are statistically significant.

In future, we will evaluate the proposed approach on more
subject programs. We will also explore the possibility of
adopting more sophisticated trend analysis methods.
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[12] A. González-Sanchez, R. Abreu, H.-G. Groß, and
A. J. C. van Gemund. Prioritizing tests for fault
localization through ambiguity group reduction. In
ASE, pages 83–92, 2011.
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