
Finding Relevant Answers in Software Forums
Swapna Gottipati, David Lo, and Jing Jiang

School of Information Systems
Singapore Management University

{swapnag.2010,davidlo,jingjiang}@smu.edu.sg

Abstract—Online software forums provide a huge amount
of valuable content. Developers and users often ask questions
and receive answers from such forums. The availability of a
vast amount of thread discussions in forums provides ample
opportunities for knowledge acquisition and summarization. For
a given search query, current search engines use traditional
information retrieval approach to extract webpages containing
relevant keywords. However, in software forums, often there are
many threads containing similar keywords where each thread
could contain a lot of posts as many as 1,000 or more. Manually
finding relevant answers from these long threads is a painstaking
task to the users. Finding relevant answers is particularly hard in
software forums as: complexities of software systems cause a huge
variety of issues often expressed in similar technical jargons, and
software forum users are often expert internet users who often
posts answers in multiple venues creating many duplicate posts,
often without satisfying answers, in the world wide web.

To address this problem, this paper provides a semantic search
engine framework to process software threads and recover rele-
vant answers according to user queries. Different from standard
information retrieval engine, our framework infer semantic tags
of posts in the software forum threads and utilize these tags to
recover relevant answer posts. In our case study, we analyze 6,068
posts from three software forums. In terms of accuracy of our
inferred tags, we could achieve on average an overall precision,
recall and F-measure of 67%, 71%, and 69% respectively. To
empirically study the benefit of our overall framework, we also
conduct a user-assisted study which shows that as compared
to a standard information retrieval approach, our proposed
framework could increase mean average precision from 17%
to 71% in retrieving relevant answers to various queries and
achieve a Normalized Discounted Cumulative Gain (nDCG) @1
score of 91.2% and nDCG@2 score of 71.6%.

I. INTRODUCTION

During software development and maintenance activities,
users and developers often face issues and questions to be
solved. Addressing these questions fast would make mainte-
nance activities cheaper to perform. Fortunately, often ques-
tions faced by one developer or user have been faced by
many others before. These questions along with the associated
conversations (i.e., answers, contexts, etc), are often stored in
the many online software forums.

An online forum is a web application for holding discus-
sions. Users post questions, usually related to some specific
problems, and rely on others to provide potential answers.
Within a forum, there are many threads. And in each thread,
there are many posts. Software forums contain a wealth of
knowledge related to discussions and solutions to various
problems and needs posed by various developers and users.
Therefore, mining such content is desirable and valuable.

We investigated over 10 software forums and found that
all of them contain question-answer knowledge. The threads
contain posts ranging anywhere from 2 to 10,000. It is a
painstaking process for users to manually search through
many posts in various threads. This is true, especially, for
long threads that contains hundreds or even thousands of
posts. When the user scans through the posts, he/she often
lands up finding a variety of replies to various questions;
some of these might not be of interest to him/her. Even after
performing an exhaustive search it may turn out that either
there are no replies to the question or correct answer has been
not be provided.

Forum thread usually consists of an initiating post and a
number of reply posts. The initiating post usually has several
questions and the reply posts usually contain answers to the
questions and perhaps new questions or clarifying information
or some kind of feedback. The threads at times grow long
either because the issue is hard to solve or new independent
initiating questions are posted in the same thread. The new
initiating questions will have more replies and the process
continues. We refer to a sequence of posts related to a particu-
lar initiating question post as a question-answer conversation.
Within a thread, there could be multiple independent question-
answer conversations each starting with a different initiating
question post.

Another interesting observation is that the majority of
software forum threads contain questions and answers rather
than junks or irrelevant contents. It is different from social
networking site like Twitter [30]. In a thread, the first post
is likely a question and the following posts may contain
related information like clarifying posts or potential solutions
and feedbacks. Thus, software discussion boards contain rich
information similar to organized QA services like Yahoo!
Answers that are designed specifically for question answering
purpose. Unfortunately, this wealth of information is often
hidden in many threads of posts, some of which are very long.

To automatically search for relevant answers, typically de-
velopers search via a standard search engine (e.g. Google)
or specialized search engines in software forums. The former
approach will return many webpages many of which are
often not relevant to answering questions. The later approach
would return specialized pages from software forums that
often contain answers to various question. However, even in
the second approach returned answers could be numerous.
Consider searching answers for the following question: “ How
to get values from arraylist?”. As shown in the Figure 1,

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

323

searching this query in Oracle forum, would return 287 threads
with some threads as large as 30 posts. It is the user’s job to
filter the answers manually across all the threads which is very
time consuming.

Fig. 1. 287 search results from Oracle forum for query: “ How to
get values from arraylist?”

To leverage the wealth of information in software forums,
we propose a framework to find relevant answers from soft-
ware forums. Our framework consists of two main steps.
First, we propose an engine that automatically classifies and
tags posts in software forums as: answers, clarifying answers,
clarifying questions, feedbacks - both positive and negative,
and junk e.g., “today I am happy”. Users could then focus
on reading only the questions/answers including those buried
deep inside long threads rather than the entire posts. Some
questions with correct answers (based on the positive or
negative feedbacks) could also be identified. Second, we build
a semantic search engine framework that uses the inferred
semantic tags to recover the relevant answers from the threads.

We collected a dataset of 4020, 680, and 1368 posts from
Oracle, SoftwareTipsandTricks and DZone software forums
respectively. Using this dataset, we test our tag inference
engine and show that we could infer tags with 67% precision,
71% recall, and 69% F-measure. To evaluate our overall
search engine framework, based on the same dataset, we
conduct experiments where users are tasked to label returned
answers to 17 technical software-related queries expressed in
natural language returned by a standard information retrieval
toolkit [19] and our proposed framework. We show that we
could increase the mean average precision from 17% to 71%,
after the tags are utilized. We show that we could achieve
nDCG@1 of 91.2% and nDCG@2 of 71.6% on these queries,
with automatically generated inferred tags.

The contributions of this work are as follows:
1. We propose an engine that infers a comprehensive set of

tags of posts in software forums: questions, answers, clar-
ifying questions, clarifying answers, positive feedback,
negative feedback, and junk.

2. To the best of our knowledge, we are the first to propose a
semantic search engine to find relevant answers to queries
by leveraging automatically inferred tags.

3. We have experimented our solution on 3 real software
forums analyzing a total of 6068 posts which shows our
framework’s reasonable overall accuracy in inferring tags.

4. We have run a user-assisted study to evaluate the quality
of our proposed framework in returning relevant answers
from software forums with encouraging result.

This paper is organized as follows. Section II describes the
related work. Section III presents the details of the forum data
extraction process and some of the properties of the forum data
that we consider in this study. Section IV describes tag infer-

ence engine. Section V presents our semantic search engine
framework built upon the tag inference engine. Section VI
elaborates our experimental settings, evaluation approaches,
results and analysis. Section VII discusses some interesting
issues and future work. Finally, we conclude in Section VIII.

II. RELATED WORK

Recently there has been an active interest to mine or
extract information from the mass of available software data.
Some work propose extraction of information from code [18],
[17], [28], [22], execution traces [33], [25], [5], software
repositories like SVN or CVS [36], [23], etc. In this work,
we are also extracting information from the mass of available
software data. Different from many of the above work, we are
interested in the inference of tags of posts in software forums
and the utilization of those tags to effectively retrieve relevant
answers.

There are a number of work on extracting software knowl-
edge from the web or via natural language processing tech-
niques [28], [32], [35], [7], [3]. Similar to us, Thummalapenta
and Xie also extract information from the web [28]. However,
different from their work, we process textual information in
software forums rather than code from Google code. Wang
et al. use natural language and execution trace information in
bug reports to detect duplicate bug reports [32]. Similar to
Wang et al. we also analyze textual information. However,
we focus on the retrieval of relevant answers in software
forums rather than detecting duplicate bug reports. Zhong
et al. mine for software specifications from textual software
documentations [35]. Different from their work, we infer tags
from software forums rather than specifications from software
documentations.

There have been a number of recent studies that analyze
logged communication among users and developers to aid
software engineering activities. One of the early work is the
work by Bird et al. in [2] that extracts a social network
from developers communication via email. They find that the
level of email activity strongly correlates with the level of
activity in the source code. Rigby and Hassan perform a
psychometric text analysis on OSS mailing list [24]. They
find interesting patterns that relate a particular sentiment
with a particular release. Wolf et al. investigate the use of
social network and developer communication information to
predict for failures [34]. Recently, Storey propose the use of
feeds to help reverse engineer in leveraging resources from
the community (i.e., crowdsourcing) [27]. Dit and Marcus
investigate the readability of defect reports [7]. Breu et al.
suggest ways how a bug tracking system could be improved
with user participation [3]. In this study, we add to the variety
of work that analyzes logged communication in particular
software forums to aid both developers and users of software
products.

Ibrahim et al. analyze forums to find discussion threads
that developers could contribute in; in effect answering the
question: should I contribute to this discussion? [13]. In this
study, we extend their work in analyzing software forums by

324

Fig. 2. Long Threads in Software Forums: Java (top; 108 posts in 8
pages), Multimedia (bottom; 10,737 posts in 716 pages)

proposing an approach to retrieve relevant answers to natural
language queries, which are embedded in the mass of posts in
software forums, via a tag inference approach.

In this study, as the first step of our framework we propose
an engine to automatically infer tags for posts in software
forums. Our system could be used to aid other works requiring
the tagging of software forum posts. For example, Hou et
al. extracted questions from news groups and tagged them
manually [11]. Our system could potentially be used to provide
the tags automatically. Treude and Storey shows the usefulness
of tagging in software engineering activities to link technical
and social aspects in managing work items [29]. Al-Kofahi et
al. infer tags from software artifacts in IBM Jazz [1]. Duan
et al. propose methods to extract the questions semantically
close to a queried question [8] and, Jeon at al. retrieve similar
questions [14]. Different from the above studies, we infer
tags from software forums and utilize the inferred tags to
effectively retrieve relevant answers to user queries expressed
in natural language.

In the data mining and information retrieval communities,
there have been several recent works on the extraction of
question and answer sentences from online forums [4], [15],
[6], [10]. We extend their study by building a semantic search
engine that leverages a tag inference engine to return relevant
answers from software forums.

III. DATA SOURCE

In this section, we describe software forums, how data are
extracted from them, and some properties of software forum
dataset.

A. Software Forums

Software forums usually consists of many threads. Some
threads are organized in a hierarchical fashion. Each node in
a hierarchy corresponds to a particular domain of interest.
Questions posted are varied; some ask about device drivers
needed, libraries needed to accomplished a particular program-
ming task, help to solve a particular bug, and many more. An
example of a software forum with long threads is shown in
Figure 2.

We crawl the webpages corresponding to the threads in
the forums to collect our dataset. We make use of WinHT-
Track [12] to crawl. The crawled pages contains raw content
and they need to be cleaned. We process them by pruning the
HTML tags and keep the most important part of the posts.

This helps to reduce the noise generated by such HTML tags
which will not be useful for tagging posts.

B. Data Properties and Challenges

In our observations, the posts can be classified into various
types like questions, clarifying questions, answers, clarifying
answers, feedbacks and some junks. The feedback could be
classified as positive or negative. ”I still get the same error”, is
an example of a negative feedback. Table 1 shows an example
of each of the post types that are used in our study.

We have observed many peculiar behaviors in the threads
different from a typical one shown in Table I. For example, a
question can follow another question and there is no necessity
that the question-conversation is completed. An example of
an interwoven question is shown in Table II. This makes the
task of tagging the posts harder. To address this we use the
author’s name along with the textual content of the posts. We
observe that a forum often has authors that frequently ask
clarifying questions and give answers whereas questions are
posted mostly by new authors. Another challenge here is to
find the independent questions in the same thread.

We also observe that the same question could be asked
multiple times. For these, some users might have the patience
to answer or they might just reply back saying ”This question
has already been answered. Please read old posts.”. The
challenge is to tag such post as junk.

Furthermore, a question might not be answered by any
subsequent posts or could be answered by multiple users.
Some answers might not work and the conversation continues
with more clarifying questions, answers, feedbacks, and so on.
The general conversation behavior is represented in Figure 3.
Two typical forum conversation chains are shown in Figure 4.

Question

Clarifying Question

Clarifying Answer

Answer

Positive/Negative

Feedback

Junk

Fig. 3. Question-Conversation Graph

IV. PROPOSED TAG INFERENCE ENGINE

In this section, we present our engine for tagging software
forum posts which could be used to help in building an
effective search engine.

Our engine is based on a text classification approach.
As with any classification problem, we first need to clearly
define our class tags. We defined 7 tags including: question,
answer, clarifying question, clarifying answer, positive feed-
back, negative feedback, and junk. We believe these tags well
characterize the different types of post in software forums.
The relationships among posts having the seven class tags are
illustrated in Figure 3 and some example posts belonging to
each class are shown in Table I.

325

TABLE I
A TYPICAL CONVERSATION

Post Type Author Post Content
Question Lisa I have a JTable with 4 columns. The first column is a jCheckBox which is working fine. The other three are JComboBoxes.

They work fine when you click them and select from the list, but our end users only want to navigate with the keyboard.
Below is the code for my table. Any help .. code snippet..

Clarifying questions Christiaan When you tab to the component, does it become active
Clarifying answer Lisa When I tab to the combobox it doesn’t seem to have focus on the component unless I hit the F2 key.

Answer Christiaan Hi Lisa, I think your best bet is to add KeyListener to the table addKeyListener(KeyListener l) and listen to certain keys and
next call JTable.editCellAt(int row, int column) to put the cell in edit mode...

Clarifying question Lisa but Since I have four columns, the first being a checkbox which is working fine and the next three being ComboBoxes, would
I need to check which column that is selected

Answer Christiaan Hi, I think the following code should help you: some code lines....
Positive Feedback Lisa THANK YOU, THANK YOU, THANK YOU!!!!!!!!!!!!!!!!! It works great. You are a lifesaver. Lisa

Junk Linda I’m a newbie from Kansas. Really like this forum so far and am looking forward to contributing!

TABLE II
EXAMPLE OF INTERWOVEN QUESTIONS

Post Type Author Post Content
Question Blu Oke, i have the same problem, doesn’t recognize the multimedia audio controller. Before I installed a fresh windows xp on

my pc, i runned sandra (something like belarc) and it said under multimedia audio controller: intel 82801eb ich5 ac ’97
Questions Pink I have the same problem after formatting my hard drive. I’ll post the information i think is needed. OperatingSystem: Windows

XP Professional Service Pack 2 (build 2600) System Model MEDIONPC
Answer BW Get the driver here http://www.realtek.com.tw/downloads/...&Software=True and install
Answer BW Intel http://downloadfinder.intel.com/scri...5&submit=Go%21 it’s No:3 on the list, install and then restart your comp.

Question

Clarifying Question

Clarifying Answer

Answer

Positive Feedback

Junk

Question

Answer

Negative Feedback

Positive Feedback

Junk

Fig. 4. Sample Forum Conversation Chains

All classification algorithms rely on a sufficient amount of
labeled/tagged training data. For our task, it means for each
of the post type that we have defined, we need to identify a set
of posts that belongs to this type to be used as training data.
To this end, we manually annotate the posts for each software
forum we study according to our classification scheme.

Once tagged training data is created, the next step is to ex-
tract features from these examples. For most text classification
problems, usually features simply include individual words
from each piece of text to be classified. This is often referred to
as a bag-of-words vector space model in information retrieval.
Additionally, we also use author information as an additional
feature because we observe that some authors can be highly
correlated with certain types of posts. Auto labeling the
authors according to expertise levels and use it as features
may further benefit the model, which we keep for the future
work.

After the training posts are transformed into feature vectors
based on the features we choose to use, we can then apply a
classification algorithm to train a classifier.

Figure 5 shows the structure of our tag inference engine. As
can be seen, at the training stage, the posts are manually tagged
and processed into feature vectors. The learning algorithm
makes use of these tagged feature vectors to train a classifier.
This classifier is later used in the classification stage on unseen
new posts.

Feature Extractor

Feature Vectors

Classifier

Training

Corpus

Manual Annotation

True Labels

Train Classifier

Training Phase

Feature Extractor

Feature Vectors

Classification

Predicted Output

Testing

Corpus

Testing/Deployment Phase

Data

Process

Classifier

Fig. 5. Proposed Tag Inference Engine

In the following sub-sections, we describe some components
of our tag inference engine in more detail. We first describe
our feature extractor component, followed by our classification
model.

A. Feature Extractor

Most classification algorithms require data to be represented
as feature vectors. We use the following steps to convert each
post into a feature vector.

Stopword Removal: Stopwords are non-descriptive words
such as prepositions (e.g. of, in) and pronouns (e.g. he, it), and
are usually removed. We use a standard stopword list obtained
from www.ranks.nl/resources/stopwords.html that contains a
long list of 671 stopwords.

Stemming: Stemming is another commonly used technique
in information retrieval. It normalizes words with the same
root by removing certain suffixes of the words. For example,
computing, computer and compute can all be normalized into
the stem comput. We used Porter’s stemming algorithm [26]
to process our text.

Author Information: Each post is associated to one author.
Some authors tend to provide answers while others questions,
and yet others, provide junk like advertisements or irrelevant
information. Hence considering author information for tagging
of posts would be beneficial.

326

Post Content: For text classification, usually individual words
are used as features. We use the word/term frequency (i.e., the
number of times the word appear in the post) as the weight
of each feature.

In this study, we are interested on 4 different feature
extractor configurations:

1) STOP: Only the textual content of the posts, with stop
words being removed, are considered as features.

2) STOPA: Both the textual content of the posts, with stop
words being removed, and author information are used
as features.

3) STEMA: Both the textual content of the posts, with
stemming being performed, and author information are
used as features.

4) SSA: Both the textual content of the posts, with stop
words being removed and stemming being performed,
and author information are used as features.

B. Classification Models

We consider two classification models: Independent post
classification and context dependent post classification. We
describe each of the classification model that supports our tag
inference engine in the following paragraphs.

1) Independent Post Classification: In independent post
classification, we treat each post independently as shown in
Figure 6. Ti represents a thread in the software forum. P0, P1

and P2 represent observed posts within Ti.L0, L1 and L2

represent the hidden labels for these posts. Using independent
post classification, each post is classified based on its content
alone. Since our classification scheme has more than two
classes, we perform multi-class classification for classifying
the posts into 7 classes.

Fig. 6. Independent Post Classification

2) Context Dependent Post Classification: While a straight-
forward approach is to classify the posts separately, for our
task we observed that there is a potential dependence between
the class tags of consecutive posts. For example, a question
is likely to be followed by either a clarifying question or an
answer rather than a feedback message. This kind of depen-
dence can be naturally modeled by a Hidden Markov Model
as shown in Figure 7. In this approach we use the content
together with the context to classify the posts. The context
of a post is its k immediate preceding posts. Our intuition is
that this approach could have better accuracy than independent
post classification. We empirically investigate whether this is
the case in our experiments described in Section VI.

Fig. 7. Context Dependent Post Classification. Context dependent
post classification model utilizes two pieces of information for
tagging: correlation between the contents of the observed posts and
specific tags (shown in the figure by dashed circles), and correlation
between neighboring tags (shown in the figure by dotted circles)

V. PROPOSED SEARCH ENGINE FRAMEWORK

In this section, we describe how we could utilize inferred
tags to help the retrieval of relevant answer posts from software
forums. We first describe a typical search engine framework.
Next, we describe how we could embed our tag inference
engine to form a semantic search engine framework.

A standard search engine framework, as shown in Figure 8,
follows the following steps for processing a natural language
query and retrieving relevant documents:

1) Pre-processing: The pre-processor takes in a set of raw
documents and extracts a set of relevant features from
them. The features are in the form of words existing in
the document.

2) Indexing: The indexing tool builds an index from a
collection of documents. This index would be used
during the retrieval process to quickly locate relevant
documents.

3) Query processing and retrieval: The retrieval tool
processes user queries and retrieve relevant documents
using the index. Top-k matching documents are returned
along with their respective relevance scores.

Our proposed search engine model is shown in the Fig-
ure 8. This model consists of additional two components that
retrieves the relevant answers to the query.

1) Tagger: We embed our tag inference engine into the
standard search engine framework. As described in the
previous sections, our tag inference engine (or tagger)
would tag each document with various tags: question,
answer, etc.

2) Filterer: This additional component filters the top-k
matching documents from the retrieval tool based on
their inferred tags. With the Filterer, relevant solution
posts are kept while irrelevant posts, e.g., junk, are
filtered out.

VI. EXPERIMENTS

In this section we want to answer the following research
questions:

RQ1 How accurate are the inferred tags?
RQ2 What is the best feature combination to be used?
RQ3 What is the best classification model to be used?
RQ4 Is our proposed semantic search engine framework

leveraging inferred tags effective in retrieving rele-
vant answers for users ?

327

Fig. 8. Semantic Search Engine Framework.

Precision =
tp

tp + fp
, Recall =

tp

tp + fn

F − Measure =
2 × Precision × Recall

Precision + Recall

Fig. 9. Precision, Recall, F-measure. tp, fp, and fn corresponds to
true positives, false positives, and false negatives respectively.

We answer the first three research questions in Section 6.3
and the last one in Section 6.4. We first describe the datasets
that we use to evaluate our algorithm, and our evaluation
criteria. We next describe our tag inference experimental study
and the results of employing various configurations of our
proposed approach in obtaining accurate tags. Finally, we
describe our search engine experimental study that shows the
effectiveness of our proposed semantic search framework in
the retrieval of relevant answer posts for question queries
expressed in natural language.

A. Experiment Settings

Our dataset is constructed by crawling webpages corre-
sponding to posts from several software forums. We recur-
sively followed the chain of replies to recover the posts from
the threads in the forums. After the webpages have been
crawled, we clean it and retrieve various information including
the posts’ message content and author. We analyze three
different forums:

(Tips) www.softwaretipsandtricks.com
(DZone) http://forums.dzone.com
(Oracle) http://forums.sun.com/index.jspa

For Tips forum, we investigate the longer threads with
at least 300 posts each. We focus on the multimedia group
of threads. Tips forum consists of posts that involve more
hardware and software related questions whereas the other two
forums are programming related posts. DZone forum contains
advertisement posts, e.g., “Pat Niemeyer, author of Learning
Java by O’Reilly, lays out best practices with a modern FOSS
enterprise Java stack.”. Oracle forum consists of lengthy posts
often with lengthy code snippets.

We perform two experiments: Tag inference and search

engine enhancement. For the earlier, we evaluate the quality
of our inferred tags as compared to manually labeled tags. For
the latter, we evaluate the benefit of incorporating inferred tags
to a standard document retrieval tool to improve the quality
of the returned answers. We describe the settings for the two
experiments below.

For the tag inference experiment, we manually tagged 6068
posts from the 3 software forums (4020, 680, and 1368 from
SoftwareTipsandTricks, DZone, and Oracle, respectively). We
use approximately half of the posts for training (i.e., 2000, 300,
620 posts from each of the 3 datasets are used respectively)
and the rest for testing.

Search engine experiment is conducted on the same sets of
posts to answer a set of 17 software queries. The complete
list of queries is shown in the Table VII. The results from
a standard information retrieval toolkit 1 and our semantic
search engine framework, are consolidated for each query
and are annotated by a team of five human annotators. The
annotator would annotate 0, for irrelevant answer, 1, for
partially answer, and 2, for the definite answer. The annotators
for our experiments include three PhD students and two
working professionals with 2-4 years of software development
experience.

B. Evaluation Criteria

1) Precision, Recall, and F-measure: We evaluate our tag
inference approach based on precision, recall, and F-measure.
These measures have been commonly used to evaluate the
accuracy of various retrieval, classification, and mining algo-
rithms. Precision refers to the proportion of true positives over
the sum of the true and false positives. Recall refers to the
proportion of true positives over the sum of the true positives
and false negatives. F-measure combines both precision and
recall. This is useful as there is a tradeoff between precision
and recall. The formulas for the evaluation criteria are shown
in Table 9.

2) Mean Average Precision: We evaluate the quality of a
search engine based on Mean Average Precision (MAP) [20].
A search engine returns an ordered list of documents for a
given query. MAP gives a single numerical value to represent
the quality of the ordering for relevance(1 or 2) or irrele-
vance(0).

The average precision value for a single query is calculated
by taking the mean of the precision scores after each retrieved
document is manually analyzed one by one for relevance.
MAP is then the mean of the average precision scores over a
set of queries. The formula for MAP is shown in the Figure 10.

3) Normalized discount cumulative gain (nDCG): Note that
MAP can only handle cases with binary judgment: “relevant”
or “irrelevant”. Another evaluation measure called Normalized
Discount Cumulative Gain (nDCG) has been proposed [16],
which can handle multiple levels of relevance judgments.
While evaluating a ranking list, nDCG follows two rules: First,
highly relevant documents are more valuable than marginally

1http://www.lemurproject.org

328

TABLE III
OVERALL PRECISION, RECALL, AND F-MEASURE RESULTS (IN %)

Classifiers
Measure HSSA HSTEMA HSTOPA HSTOP MSSA MSTEMA MSTOPA MSTOP
Prec 67 66 62 62 50 50 50 49
Recall 71 70 67 65 57 57 56 53
F-measure 69 68 64 63 53 54 53 50

AvgPi =

∫ N

j=1

P (j) ×pos (j)

number of positive instances

P (j)=
number of positive instances in top j positions

j

MAP m =
AvgP i

m

Fig. 10. Average Precision and Mean Average Precision. AvgPi is
the average precision of query qi, j is the rank, N is the number of
instances retrieved, pos(j) is either 0 or 1, where 1 represents relevant
document and 0 represents irrelevant document. P(j) is the precision
at the given cut-off rank j. MAPm is the Mean Average Precision of
the total number of queries m.

relevant document and Second, the lower ranking position a
document (of any relevance level) has, the less valuable it is
for the user, because it is less likely to be examined by the
user. According to these rules, the nDCG value of a ranking
list at position n is calculated as follow:

nDCGp = IDCGp

∫ p

i=1

{
2reli −1 , i = 1

2reli −1
log2(i) , i > 1

where reli is the rating of the i-th document in the ranking
list, and the normalization constant ideal IDCG, IDCGp is
chosen so that the perfect list gets a nDCG score of 1. In
order to calculate nDCG, we use three ratings 0, 1, 2, from
annotation.

C. Tag Inference Experimental Results

We evaluate all four different feature set extractor config-
urations mentioned in Section IV. In the first configuration,
we perform stopword removal (STOP). In the second con-
figuration, we perform stopword removal and consider the
authors of the posts (STOPA). In the third configuration,
we perform stemming and consider the author of the posts
(STEMA). In the fourth configuration we perform stopword
removal, stemming and consider the author as well (SSA).
We evaluate the two classification models: independent post
classification and context dependent post classification. For
the concrete implementation of the model, we use Multi-
class Support Vector Machine (M) [21] for the first model
and Hidden Markov Support Vector Machine (H) [9] for the
second model. Thus, we have 8 different combinations: MSSA,
MSTEMA, MSTOPA, MSTOP, HSSA, HSTEMA, HSTOPA,
and HSTOP.

The overall result over all the datasets is shown in the
Table III. The result broken down to each of the 3 datasets
is shown in Table IV. The result broken down to each tag
type (i.e., question, answer, clarifying question, etc) is shown
in Table V. The following paragraphs describe the results in
more detail.

From the overall result shown in Table III, it could be
noted that the classification accuracy ranges from 50% to
69% (in terms of F-measure). MSTOP performs the worst
while HSSA performs the best. In general considering author
information improves accuracy. Also stemming seems to be
more effective than stop word removal in improving the
classification accuracy. The best combination is to consider
author information, removing the stop words, and performing
stemming (i.e., SSA). In general, for the same feature extractor
configuration, Hidden Markov Support Vector Machine (SVM)
performs better than multi-class SVM. Hidden Markov SVM
takes into consideration the context of a particular post.

From the per dataset result shown in Table IV, it could
be noted that the F-measure result ranges from 64% to 72%
for HSSA method. The accuracy values are relatively stable
across datasets. The result for Dzone has lower F-measure
as compared to the other datasets. The poor performance is
attributed to the fact that about 10% of the threads in this
dataset contains merely junk (e.g., advertisements) rather than
questions and answers.

From the per tag result shown in Table V, it could be noted
that our approach works best in tagging questions and answers
(which are the most important tags). Using HSSA, we could
achieve up to 85% accuracy (in terms of F-measure) in tagging
the questions. We could achieve up to 75-76% accuracy
in tagging the answers (using HSSA and HSTOPA). It is
interesting to note that for tagging feedback the performance
of Hidden Markov SVM far outperforms that of multi-class
SVM. This is the case as the detection of feedbacks often relies
on information from the surrounding context of a particular
post. In general, clarifying question could be detected better
than clarifying answer. We could also identify the junks well,
with an accuracy of up to 70% (in terms of F-measure, using
Hidden Markov SVM).

Confusion Matrix. Table VI shows detailed information on
the performance of HSSA in the form of a confusion ma-
trix [20]. The rows correspond to the actual tag class (based
on manual annotation) and the columns correspond to the
predicted tag class. The values in the cells of the confusion
matrix indicates the proportion of posts of a particular tag that
are predicted/classified as of a particular tag. For example, the
cell at row 6, column 1 with value 31 means that 31% of
the negative feedback posts (row 6) was wrongly classified as
question posts (column 1).

The percentages of correct classifications for a particular
tag lie in the diagonal of the confusion matrix. The cell at
row 1, column 1 with value 90 indicates that 90% of the
questions were correctly classified. These values represent the
true positives or correct predictions and all other off-diagonal
values represent wrong predictions (either false positives or

329

TABLE IV
PRECISION, RECALL, AND F-MEASURE RESULTS FOR: SOFTWARETIPSANDTRICKS, DZONE, AND ORACLE (IN %)

Classifiers
Dataset HSSA HSTEMA HSTOPA HSTOP MSSA MSTEMA MSTOPA MSTOP

SoftwareTipsandTricks
Prec 73 72 76 73 63 63 61 58
Recall 71 70 76 73 53 53 56 50
F-measure 72 71 76 73 57 57 58 53

DZone
Prec 68 65 49 48 46 46 42 42
Recall 61 60 42 44 35 37 33 32
F-measure 64 62 46 46 40 41 37 36

Oracle
Prec 71 70 67 65 57 57 56 53
Recall 67 66 62 62 50 50 50 49
F-measure 69 68 64 63 53 54 53 50

TABLE V
PRECISION, RECALL, AND F-MEASURE RESULTS FOR: QUESTIONS (Q), ANSWERS (A), CLARIFYING QUESTIONS (CQ), CLARIFYING

ANSWERS (CA), POSITIVE FEEDBACK (PF), NEGATIVE FEEDBACK (NF), JUNKS (J) (IN %)
Classifiers

Dataset HSSA HSTEMA HSTOPA HSTOP MSSA MSTEMA MSTOPA MSTOP

Q
Prec 89 87 88 88 90 90 88 87
Recall 82 83 82 74 68 68 70 64
F-measure 85 85 85 80 77 77 78 74

A
Prec 80 78 74 68 68 67 69 60
Recall 71 70 80 60 63 63 58 40
F-measure 75 74 76 64 65 65 63 48

CQ
Prec 64 64 65 65 44 57 18 4
Recall 63 55 70 68 57 57 71 55
F-measure 64 59 67 67 50 57 29 8

CA
Prec 28 40 48 48 9 13 15 4
Recall 40 36 45 39 13 13 22 33
F-measure 32 37 46 43 10 13 18 7

PF
Prec 54 51 54 42 0 0 1 3
Recall 65 69 56 58 0 0 0 0
F-measure 59 59 55 48 0 0 0 0

NF
Prec 6 57 33 21 0 0 2 3
Recall 57 46 59 62 0 0 37 0
F-measure 11 51 42 31 0 0 4 0

J
Prec 77 76 76 79 67 67 70 76
Recall 65 63 60 60 53 54 60 51
F-measure 70 69 67 68 59 60 65 61

TABLE VI
CONFUSION MATRIX

Predicted Tag Class

A
ct

ua
l

Ta
g

C
la

ss

Q A CQ CA PF NF J
Q 90 5 1 3 1 0 1
A 5 80 2 2 1 0 11
CQ 3 20 64 4 0 0 9
CA 23 17 17 28 3 1 10
PF 10 19 0 3 54 1 13
NF 31 48 1 4 3 6 6
J 6 13 0 1 4 0 77

false negatives). The best predicted tags are question, answer,
and junk. Clarifying question and positive feedback could
also be classified reasonably well. The worst tags in terms
of classification accuracy are negative feedback and clarifying
answer.

Negative feedbacks are often predicted wrongly as questions
(31%) or answers (48%) as forum users often add more
information to their negative feedback posts to clarify what
went wrong when they tried the proposed answer. Also, often
some questions are added too in these negative feedback posts.
For example, ”Hi!Thanks, your idea is interesting (exec(..)),
but it only works in shell, but not in a java aplication, even
using exec Do you have any other ideas?xxdd” is a negative
feedback containing a question. The accuracy of tagging
clarifying answers is quite bad as they could be mis-tagged as
questions (23%), answers (17%), clarifying questions (17%),
or junk (10%). Again this is attributed to the fact that users
tend to add questions in clarifying answers. For example, for
a clarifying question, ”Is FTP installed on the machine?”,
the reply is, ”ftp is installed on the server and we are using

JRE 1.3... on all client systems. Using ftp manually through a
command prompt works fine. I’m wondering if I need a newer
version of JRE”, which is a clarifying answer together with a
clarifying question.

Summary. As an answer to RQ1, we show that we could ac-
hieve an F-Score of up to 69% in inferring tags. As an answer
to RQ2, our experiment shows that the best feature extractor
configuration is SSA. SSA improves other configuration option
by 1-6%. As an answer to RQ3, our experiment shows that
context dependent post classification approach performs better
than independent post classification by 11-17%.

D. Search Engine Experimental Results

To evaluate our overall search engine framework, we con-
duct a user-assisted experiments where users are tasked to
label returned answers to 17 technical software-related queries
shown in the Table VII that are expressed in natural language
returned by a standard information retrieval toolkit and our
proposed framework. We use the best configuration identified
in our tag inference experiments, the HSSA configuration, for
our tag inference engine.

We develop three search engines: Sys0, Sys1 and Sys2. Sys0
is created by treating all posts as individual documents in a
collection. Sys1 is created with each thread treated as a single
document. Sys2 is created in the same way as Sys1 but we
also add the inferred tags for each post. We illustrate the setup
for the three search engines in Figure 11. We build Sys0, Sys1,
and Sys2 on top of Lemur [19], a language model toolkit that

330

TABLE VII
QUERIES TO EVALUATE SEARCH ENGINE PERFORMANCE
What is javax telephony InvalidArgumentException?
How to calculate Pi?
How to change this clock object to display 12 hour time instead of 24?
How to execute internet explore or windows word in java program?
What are the differences between a hash map and a hash table?
What is an invalid argument?
How to access CVS files?
How to set a combo box with different fonts?
How to generate random numbers or random booleans?
How to read files in Java?
How to generate prime numbers?
How to remove duplicates in an ArrayList?
How to get values from an ArrayList?
How to calculate the difference between two dates?
How to create a two dimensional array or 2D vector?
How to encrypt?
How to read a PDF file or PDF document?

TABLE VIII
NDCG AT POSITION P COMPARISON FOR 17 QUERIES.

SearchEngines nDCG@1 nDCG@2 nDCG@3 nDCG@4 nDCG@5
Sys0 0.294 0.466 0.424 0.383 0.371
Sys1 0.206 0.422 0.341 0.323 0.315
Sys2 0.912 0.716 0.619 0.572 0.540

processes a query q and retrieves relevant documents from a
set of documents. For Sys1 and Sys2, we convert the threads
retrieved by Lemur back to posts. Sys1 retains all posts, while
Sys2 only retains posts that are auto tagged as answers.

Fig. 11. System setup for search engine experiments. Sys0, Sys1 and
Sys2 are the search engines under test. The labels for Sys2 are the
tags automatically inferred by our inference engine.

We fed the 17 queries to all the engines and retrieved the
top 20 posts for each query using Lemur. Finally we used
MAP and nDCG to evaluate the results from each of the three
engines against human annotations. The comparisons of the
three systems in terms of MAP is shown in the Figure 12. It
can be observed that Sys 0 performs better than Sys1 as many
posts in a single thread might be junks or feedbacks rather
than relevant answers. Sys2 with tagged posts, outperforms the
other two. The tagging helps us to filter out the uninterested
posts corresponding to feedbacks, junks, and so on from
the retrieved results. With Sys2, we can display the relevant
answers at the top of the returned list of posts which would
benefit the users.

While, the results for nDCG as shown in the Table VIII,
shows that Sys2 outperforms both Sys0 and Sys1 for all
nDCG@1, nDCG@2, nDCG@3, nDCG@4 and nDCG@5.

Summary. As an answer to RQ4, we show that our framework
could increase MAP from 17% to 71% and achieve nDCG@1
of 91.2%.

Fig. 12. MAP comparison for 17 queries.

E. Threats to Validity

Similar to other empirical studies, there are several threats
to validity in interpreting the results.

Threats to construct validity corresponds to the appropri-
ateness of our evaluation metrics. We use standard metrics:
precision, recall, F-measure, and mean average precision.
Thus, we believe there is little threat to construct validity.

Threats to internal validity correspond to the ability of
our experiments to link the independent variable (i.e., input
variable to be varied during the experiment) and the dependent
variable (i.e., target variable). Since the real tags of the posts
are not available, we need to tag the posts manually. Our
manual tagging process might be prone to error. We have
tried to minimize this error by performing some checks to
the manually created tags.

Threats to external validity correspond to the ability to
generalize our results. In this study, we have experimented
with 3 sets of posts from different forums. A total of 6068
posts are investigated. We admit that this dataset is in no way
near the number of all posts available in the various forums in
the internet. In the future, we plan to extend our case study to
include more posts, more forums and evaluate SE performance
with questions on code. We also hope there would be more
researchers interested in analyzing software forums and could
help us in collecting and tagging more datasets.

VII. DISCUSSION AND FUTURE WORK

Some forums come with search utilities to help users in
identifying relevant posts. It might seem that the search func-
tionalities provided in these forums would suffice in helping
users navigate through the mass of posts. Unfortunately, often
there are many posts of various types (questions, answers,
junks, etc) having similar keywords. Different keywords could
also be used to convey the same meaning [31]. In this work, we
study an orthogonal approach by inferring tags of the various
posts and utilizing these tags to find relevant answers.

We provide not only question and answer tags, but also
clarifying question, clarifying answer, positive feedback, neg-
ative feedback, and junk tags. These expressive and intuitive
tags are useful. The tags could be used to extract answers
which have been given positive feedback. Answers with only
negative feedbacks can be pruned. Questions with no answers
or answers receiving positive feedback can also be detected

331

and sent to experts. Clarifying questions and answers could
be used to improve the search experience, e.g., by providing
some help for users to refine his/her query. We leave these
possible extensions for future work.

Posts are often highly ungrammatical and filled with
spelling errors. In the future, we would look into the spelling
variations to handle the noise in human written communica-
tion. The level of noise in software forum could at times be
high. We also plan to explicitly incorporate technical terms,
api (code questions) and jargons. We tested our model with
50% training data but, we would like to further explore the
model accuracy with smaller training set to reduce the manual
tagging task, as our future work.

Furthermore, it is interesting to combine our approach that
works on macro (or post) level to latest research in information
retrieval that works on micro (or sentence) level. It would
also be interesting to develop an automated approach that
could automatically arrange or cluster the forum posts in a
hierarchical fashion to help users in finding the right answer
to his/her question.

In this study, we only investigate 3 software forums. In the
future, we want to extend this study further to investigate yet
more forums to further validate the utility of our approach.

VIII. CONCLUSION

In this paper, we present a new approach to find relevant
answers from software forums by leveraging an engine that
automatically infers tags of posts in software forum threads.
This tag inference engine automatically assigns 7 different
tags to posts: question, answer, clarifying question, clarifying
answer, positive feedback, negative feedback, and junk. We
build a semantic search engine by leveraging the inferred
tags to find relevant answers. Our experiments shows that
our tag inference engine could achieve up to 67% precision,
71% recall, and 69% F-measure. The best result is obtained
when using the SSA (Stop-Stem-Author) feature extractor
and context dependent classification model implemented by
Hidden Markov SVM. Our user-assisted study shows that as
compared to a standard information retrieval approach, our
proposed semantic search engine framework could increase
mean average precision from 17% to 71% in retrieving relevant
answers to various queries. We could achieve a Normalized
Discounted Cumulative Gain (nDCG) @1 score of 91.2% and
a nDCG@2 score of 71.6% on these queries.

ACKOWLEDGEMENTS

We would like to thank Swetha Gottipati, Qui Minghui,
Diao Qiming, Karthik Thirugnanam and Wang Shaowei for
their help in the manual annotation process.

REFERENCES

[1] J. Al-Kofahi, A. Tamrawi, T. Nguyen, H. Nguyen, and T. Nguyen. Fuzzy
set approach for automatic tagging in evolving software. In ICSE, 2010.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
email social networks. In MSR, 2006.

[3] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information needs
in bug reports: Improving cooperation between developers and users. In
CSCW, 2010.

[4] G. Cong, L. Wang, C. Lin, Y. Song, and Y. Sun. Finding question-answer
pairs from online forums. In SIGIR, 2008.

[5] F. C. de Sousa, N. C. Mendona, S. Uchitel, and J. Kramer. Detecting
implied scenarios from execution traces. In WCRE, pages 50–59, 2007.

[6] S. Ding, G. Cong, C.-Y. Lin, and X. Zhu. Using conditional random
fields to extract contexts and answers of questions from online forums.
In ACL, 2008.

[7] B. Dit and A. Marcus. Improving the readability of defect reports. In
RSSE, 2008.

[8] H. Duan, Y. Cao, C. yew Lin, and Y. Yu. Searching questions by
identifying question topic and question focus. In Proc. of Annual
Meeting of the Association for Computational Linguistics- Human
Language Tchnologies (ACL-HLT), 2008.

[9] www.cs.cornell.edu/people/tj/svm light/svm hmm.html.
[10] L. Hong and B. D. Davison. A classification-based approach to question

answering in discussion boards. In SIGIR, 2009.
[11] D. Hou, K. Wong, and H. Hoover. What Can Programmer Questions

Tell Us About Frameworks? In IWPC, 2005.
[12] www.httrack.com.
[13] W. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. Hassan. Should

I contribute to this discussion? In MSR, 2010.
[14] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar questions in large

question and answer archives. In Procȯf ACM Int. Conf. on Information
and knowledge management (CIKM), 2005.

[15] M. Jeong, C.-Y. Lin, and G. Lee. Semi-supervised speech act recognition
in emails and forums. In EMNLP, 2009.

[16] K. Jrvelin and J. Keklinen. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems, 20(4):422–446,
Oct. 2002.

[17] H. Kagdi, M. Collard, and J. Maletic. An approach to mining call-usage
patterns with syntactic context. In ASE, pages 457–460, 2007.

[18] H. Kagdi and D. Poshyvanyk. Who can help me with this change
request? In ICPC, pages 273–277, 2009.

[19] www.lemurproject.org.
[20] C. Manning, P. Raghavan, and H. Schutze. Introduction to Information

Retrieval. Cambridge University Press, 2008.
[21] svmlight.joachims.org/svm multiclass.html.
[22] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Graph-

based mining of multiple object usage patterns. In ESEC/SIGSOFT FSE,
pages 383–392, 2009.

[23] K. Pan, S. Kim, and E. W. Jr. Toward an understanding of bug fix
patterns. Empirical Software Engineering, 14:286–315, 2009.

[24] P. Rigby and A. Hassan. What can oss mailing lists tell us? a preliminary
psychometric text analysis of the apache developer mailing list. In MSR,
2007.

[25] M. Shevertalov and S. Mancoridis. A reverse engineering tool for
extracting protocols of networked applications. In WCRE, pages 229–
238, 2007.

[26] www.ils.unc.edu/∼keyeg/java/porter/PorterStemmer.java.
[27] M.-A. Storey. Beyond the lone reverse engineer: Insourcing, outsourc-

ing, and crowdsourcing. In WCRE, 2009.
[28] S. Thummalapenta and T. Xie. Spotweb: Detecting framework hotspots

and coldspots via mining open source code on the web. In ASE, pages
327–336, 2008.

[29] C. Treude and M.-A. Storey. How tagging helps bridge the gap between
social and technical aspects in software development? In ICSE, 2009.

[30] http://twitter.com/.
[31] X. Wang, D. Lo, J. Jing, L. Zhang, and H. Mei. Extracting paraphrases

of technical terms from noisy parallel software corpora. In ACL/IJNLP,
2009.

[32] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach to
detecting duplicate bug reports using natural language and execution
information. In ICSE, pages 461–470, 2008.

[33] A. Wasylkowski and A. Zeller. Mining temporal specifications from
object usage. In ASE, pages 295–306, 2009.

[34] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build
failures using social network analysis on developer communication. In
ICSE, 2009.

[35] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifica-
tions from natural language api documentation. In ASE, pages 307–318,
2009.

[36] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining
version histories to guide software changes. IEEE Trans. on Software
Engineering, 31:429–445, 2005.

332

