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Abstract

We present and investigate the problem of mining
scenario-based triggers and effects from execution
traces, in the framework of Damm and Harel’s live se-
quence charts (LSC); a visual, modal, scenario-based,
inter-object language. Given a ‘trigger scenario’, we
extract LSCs whose pre-chart is equivalent to the given
trigger; dually, given an ‘effect scenario’, we extract
LSCs whose main-chart is equivalent to the given
effect. Our algorithms use data mining methods to
provide significant sound and complete results modulo
user-defined thresholds. Both the input trigger and ef-
fect scenarios, and the resulting candidate modal sce-
narios, are represented and visualized using a UML2-
compliant variant of LSC. Thus, existing modeling
tools can be used both to specify the input for the miner
and to exploit its output. Experiments performed with
several applications show promising results.

1. Introduction

Specification mining is a dynamic analysis process
aimed at extracting candidate specification models of
a program from its execution traces (see, e.g., [6],
[30]), to aid, e.g., in testing, debugging, and program
comprehension. Specifically, in previous work [24] we
have introduced a framework, a method, and prototype
implementation for mining of modal scenarios, in the
form of a UML2-compliant variant of Damm and
Harel’s live sequence charts (LSC) [8], [12]. There,
we used a data mining algorithm to mine a sound
and complete set of statistically significant universal
LSCs modulo given execution traces and user defined
thresholds of support and confidence metrics. The
popularity and intuitive nature of sequence diagrams as
a specification language in general, together with the
the additional unique features of LSC, motivated our
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choice of the target formalism of our mining approach.
Moreover, the choice is supported by previous work
on LSC (see, e.g., [15], [19], [26]), which can be
practically used to visualize, analyze, manipulate, test,
and verify the specifications we mine.

To introduce the problem of triggers and effects min-
ing investigated in this paper consider the following
two examples, taken from Jeti [4], an instant messaging
application we experiment with. When a user starts
a drawing on the shared white board, the draw ()
method of one of the shapes is called. A programmer
investigating a bug in Jeti, ‘why some shapes are not
sent to the other party?’, may be interested in finding
the sequence of events which always occur in correct
executions following this call. Moreover, when such a
sequence is found, the programmer may be interested
in transforming it into a runtime monitor, to track
the relevant events in future executions. Conversely,
a Jeti user’s presence indicator changes whenever
the user’s online status changes (offline, busy, etc.).
A programmer responsible for a change request, to
conditionally disable this functionality in Jeti based on
user preferences, may be interested in the sequences
of method calls which, whenever occur, are followed
by a call to the presenceChg () method of the
ChatWindow. Moreover, when such a sequence is
found, the programmer may be interested in consider-
ing it as a candidate property for formal verification of
Jeti, before and after the changes will be made. Our
work uses dynamic analysis of execution traces to pro-
vide the programmer with the means for investigating
the answers to these questions and addressing similar
property discovering tasks for debugging, evolution,
testing, and verification.

Thus, in this paper we focus on a special case of
scenario-based specification mining — mining of trigger
and effect scenarios — which we find both more useful
and more practical than the general problem. Given a
‘trigger scenario’, we extract significant LSCs whose
pre-chart is equivalent to the given trigger; dually,
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Figure 1. Mined LSCs: (a) Presence Changed, (b) Draw Shape

given an ‘effect scenario’, we extract significant LSCs
whose main-chart is equivalent to the given effect.
Fig. 1 shows two LSCs, resulting from our experiments
with Jeti, and answering the example questions given
in the previous paragraph.

The problem of mining triggers and effects ad-
dressed here is very different than the general scenario-
based specification mining problem considered in [24],
where all significant LSCs meeting support and confi-
dence thresholds are mined. In contrast, in this work,
given a user-defined trigger or effect chart, only the
corresponding effects or triggers are automatically
computed. Instead of requiring an arbitrary support
threshold, a normalized and more intuitive support
threshold is used (see Sec. 3). Also, with scenario-
based trigger and effect mining, the search space of
possible LSCs is restricted — the longer the given effect
or trigger the more restricted the search space becomes.
This difference is evident in the performance of the
mining algorithm, and thus allows us to handle signif-
icantly longer traces (see the experiments in Sec. 4).
Finally, from a qualitative methodological perspective,
the current work suggests a different, more focused
and interactive specification mining process.

As inputs, the mining algorithm accepts a set of
traces of inter-object events, a trigger or an effect,
and a set of statistical significance thresholds. The
algorithm models mining as a search space exploration
process. Effective search space pruning strategy based
on a monotonicity property of a support statistic is
employed to efficiently extract triggers (or effects)
from the input execution trace and the given effect
(or trigger). Simply put, effects mining first finds all
instances of the given trigger and then look forward
for significant effects. Trigger mining is harder, as it
is not a direct inverse of the problem of mining effect;
looking ‘backward’ does not provide the required
result (in future-time temporal expression) but rather a

past-time temporal expression. Our solution is to first
find significant triggers of length 1, and then grow them
forward using the events in between the instances of
the trigger and its given effect in the trace (see Sec. 3).

It is important to note that scenario-based speci-
fication mining is not aimed at finding a complete
specification of the system under investigation. The
scenario-based approach to modeling, in general, is not
aimed at providing complete systems specifications.
Rather, the strength of the scenario-based approach
to modeling is that it allows the specifier to brake
up the spec into ‘pieces of behavior’ or ‘scenarios’,
each of which cuts across multiple objects. Moreover,
trigger/effect mining is intrinsically partial, focusing
on a specific behavior the user is interested in, such as
a certain aspect of the program or a specific feature or
bug; this focus on behaviors of interest is an important
characteristics of our work.

Finally, our work on mining triggers and effects is
an example for and part of a larger framework we
are working on, presenting and examining what we
may call user guided specification mining, an iterative
interactive process, which allows the user to take
advantage of prior knowledge and knowledge acquired
from previous mining sessions in order to shape and
direct the next mining task, focusing and narrowing
down on the aspects of the specification that require
examination for a specific purpose.

In this context, we consider the potential end-to-end
visual characteristics of our work to be a major advan-
tage. That is, both the input for the miner, trigger or
effect sub scenarios, and the output of the miner, a set
of LSCs, may be created and presented visually, within
an industry standard modeling tool (in our case, IBM
RSA [3]). We believe this will significantly contributes
to the usability of our work and its accessibility to
software engineers.

The paper is organized as follows. Basic concepts



and mining algorithms outlines are presented in the
next two sections. Sec. 4 presents experimental results
and evaluation. Sec. 5 discusses advanced features
and considerations. Sec. 6 discusses related work and
Sec. 7 concludes.

2. Concepts & Definitions

We briefly recall LSC, describe the semantics of
triggers and effects, and define the metrics of support
and confidence used in our work as the basis for
evaluating candidate triggers and effects significance.

Live Sequence Charts We use a restricted subset of
the LSC language. An LSC includes a set of instance
lifelines, representing system’s objects, and is divided
into two parts, the pre-chart (‘cold’ fragment) and
the main-chart (‘hot’ fragment), each specifying an
ordered set of method calls between the objects repre-
sented by the instance lifelines. Syntactically, instance
lifelines are drawn as vertical lines, pre-chart (main-
chart) events are colored in blue (red) and drawn using
a dashed (solid) line. Semantically, a (universal) LSC
specifies a universal liveness requirement: for all runs
of the system, and for every point during such a run,
whenever the sequence of events defined by the pre-
chart occurs (in the specified order), eventually the
sequence of events defined by the main-chart must
occur (in the specified order). Events not explicitly
mentioned in the chart are not restricted in any way
to appear or not to appear during the run (including in
between the events that are mentioned in the chart).
For a thorough description of the language and its
semantics see [8], [10]. A UML2-compliant variant of
the language using the modal profile is defined in [12].
A translation of LSC into various Temporal Logics
appears in [17]. The diagrams shown in our current
work follow vertical ordering, that is, events are strictly
ordered from top to bottom with no partial order.

An additional important feature of LSC is its seman-
tics of symbolic instances [27]. Rather than referring
to concrete objects, instance lifelines may be labeled
with a name of a class and defined as symbolic, i.e.,
formally representing any object of the referenced
class. This allows a designer to take advantage of
object-oriented inheritance and create more expressive
and succinct specifications.

Fig. 2 shows an example LSC taken
from Jeti. The participants in this sce-

nario are UndoAction, PictureChat,
PictureHistory, Backend, Connect,
Output, and PictureChangelListener.

Roughly, this LSC specifies that “whenever an
object of type UndoAction calls an object of type
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Figure 2. Undo Draw

PictureChat undo () method, eventually the
history is updated (by calling undoMyAction ()
method of PictureHistory), messages are
sent to the other party (the 3 send() method
calls), and PictureChat dialog is refreshed (the
showWindow () method call)”. We denote an LSC
by L(pre,main), where pre denotes the pre-chart
and masin denotes the main chart.

Semantics of triggers and effects Roughly, as ex-
plained above, an LSC is composed of two charts, pre-
and main-chart. LSC specifies a universal temporal
rule: “Whenever the pre-chart is satisfied, eventually
the rest of the LSC must be satisfied”. Before formally
defining triggers and effects, we precisely define the
meaning of charts satisfaction.

We have two types of events: concrete and abstract.
A concrete event is a triplet: caller object identifier,
callee object identifier, and method signature. An ob-
ject is uniquely identifiable usually by its hash key
and the class it is instantiated from. The input trace is
simply a series of concrete events. An abstract event
is a triplet: caller class identifier, callee class identifier,
and method signature. An abstract event groups several
related concrete events together: it replaces object
identity with a higher level of abstraction, in our case,
the object’s class.

A bit more formally, let X.,,, and X5 be the set of
concrete events and abstract events, respectively. Each
concrete event in X, corresponds to a unique abstract
event in 5. Each abstract event in ¥4 corresponds
to a set of events from X.,,. The map from a concrete
event to its abstract event is a projection. Given a
concrete event o, proj(o) returns the abstract event of
o. Events can be sequentially ordered and composed
to form a chart.

Definition 2.1 (Concrete Chart): A concrete chart
CC corresponds to a series of concrete events
(01,...,0p). Each event in turn is a triplet containing:
caller object identifier, callee object identifier and
method signature.

A set of concrete charts may map to a single abstract
chart. We define a simple projection mapping from



concrete and abstract chart.

Definition 2.2 (Abstract Chart): A concrete chart
cC {o01,...,0,) is mapped to an abstract chart AC
(a1,...,an) iff Vi<i<pn. proj(o;) = a;. We define the
mapping from concrete to abstract chart by extending
the projection operator to charts, i.e., proj(CC) = AC.

Two or more charts can be concatenated together.
The concatenation operator is defined below.

Definition 2.3 (Concatenation): Consider two
(concrete or abstract) charts Cl= (a1, aq,...,a,) and
C2=(by,ba,...,b,). The concatenation of the two
charts, denoted by C'1-H-C'2, corresponds to the chart
<a1,...,an,b17...,bn>

We can also define a sub-sequence relationship
among charts as defined below.

Definition 2.4 (Sub-sequence): A chart (concrete
or abstract) Cy = (ey,...,e,) is considered a subse-
quence of another chart Co = (f1, fo,..., fm) if there
exist integers 1 < i1 < @9 < i3 < ig... < ip <M
where e; = f;,, ea = fi,, -+, en = fi,. We denote
this relation by C; C C5. We also say that C5 is a
super-sequence of Cf.

An input trace can be viewed as a series of concrete
events. To formalize we denote T as (01,02, . . ., Ocnd)
where each o; is a concrete event from X.,,. The ith
event in a trace 7' is denoted by T'[¢]. In this paper, we
consider a single trace, but the algorithm can be easily
generalized to multiple traces.

Satisfaction of a chart follows the semantics of LSC.
We refer to a sub-trace (or a segment of consecutive
events in the trace) satisfying the chart C' (either
concrete or abstract) as an instance of C. To describe
it simply, we use the following Quantified Regular Ex-
pressions (QRE) [28]. A quantified regular expression
is very similar to standard regular expression with ‘;’
as concatenation operator, ‘[-]’ as exclusion operator
(i.e. [-P,S] means any event except P and S) and * as
the standard kleene-star.

Definition 2.5 (Instance of a Concrete Chart):
Given a
concrete chart C' = (01,09,. .. 0,,), a trace segment SB
= (sb;,$bit1, -, Sbiym—1) of a trace is an instance
of C'iff it is of the following QRE expression

01; [—01,. .., 0p]%;09; .. .5 [—01, . .., On]*; 0p.

Note the constraint involved in the definition of
an instance of an object level LSC. In particular, we
note the exclusion operations (i.e., [—01,...,04,]) in
Definition 2.5. This means, for 2 < i < n, between
occurrences of the events o;_; and o; in an instance
of chart C, there should be no occurrences of events
from the set {o1,...,0,}. We refer to this constraint
as the instance constraint.

An instance of a concrete/abstract chart in a trace
T can be denoted by a pair (srt,end) where srt and
end correspond to the starting and ending indices of
the segment S B. The set of all instances of a chart C'
is denoted Inst(C).

To illustrate the above definition of instances of a
concrete chart, consider the following table consisting
of 4 concrete traces.

ID Trace

El {a,b,c,b,a,d)

E2 (a,b,b,a,d)

E3 (a,f,be,qa,f,d)

E4 (a,b,e,a,z,d,g,a,b,c,a,d)

Consider the concrete chart CC' = (a,b,a,d) and
the table above. FE1 is not an instance of C'C due
to event b appearing out of specified order, defined
by CC, between the first occurrence of b and the
second occurrence a. Similarly, E£2 is not an instance
of CC due to the event b duplicated between the first
occurrence of b and the second occurrence a. E3 is
an instance of C'C' since we ignore the occurrences of
unrelated event f not specified in C'C. Also, in F4
there are 2 instances of C'C, namely (1, 6) and (8, 12).
Note that we ignore the interleaving occurrences of
unrelated events c, e, x, g not mentioned in C'C.

We define the set of instances of an abstract chart
AC to simply correspond to the union of instances of
concrete charts C'C whose projection equals to AC.

Definition 2.6 (Instance of an Abstract Chart):
Consider an abstract chart AC' = (a1,as9,...,a,).
Let the set CCSet(AC) = {cc|proj(cc) = AC}.
Let Objlstsq = Uscecoseracy 1(8,€)|(s',€') €
Inst(cc)}. The set of instances of AC' is: {(s, e)|(s, €)
€ Objlstsay N (A (s, f) € Objlstsay. f<e)}

The definition simulates creating a monitor every
time the first event of an LSC occurs. The next time a
monitor state can be advanced on occurrence of a new
event in the trace the state changes and it will look
for the next event specified in the LSC. The condition
[(s, f) € ObjIstsyy] in Defn. 2.6 ensures that (s, e) is
a valid instance. The condition [7 (s, f) € ObjIstsa.
f < €] ensures that we capture the first points in the
trace where the state of each monitor is updated to that
when chart AC' is satisfied.

Definition 2.7 (Trigger & Effect): Trigger and ef-
fect are each defined as a chart. Trigger and effect can
be either concrete or abstract chart.

In the context of this work, input trigger (or effect)
corresponds to the pre-chart (or main-chart) of the
LSC. The input trigger (or effect) and mined effect (or
trigger) are composed to form an LSC L(trigger,effect).
In this paper, we impose additional restriction requiring




the sets of events of the input chart and the output chart
to be disjoint. This seems reasonable as most example
LSC in the literature do not include repeated events.
This restriction further improves the mining speed of
the algorithm (see Sec. 4).

Witnesses and significant LSCs We consider the
problem of computing the statistical values of a given
chart. The definitions provided in this sub-section
apply to both concrete and abstract charts. Given a
concrete or an abstract LSC M and a trace 1, we
are interested in finding statistics denoting significance
of M in T. To do so, we introduce the concepts of
positive and negative witnesses.

A positive witness of a concrete or abstract LSC
M = L(pre,main), is a trace segment satisfying the
pre-Hmain chart — by extension the pre chart as
well, since pre is a prefix of pre+main. A negative
witness of M 1is a positive witness of pre which
cannot be extended to a positive witness of M (or
pre-Hmain). We say that a negative witness is a weak
negative witness (see discussion in [24]) if the positive
witness of pre cannot be extended due to end-of-trace
being reached.

We use the above notions of witnesses to de-
fine the statistical support and confidence metrics for
LSC. Given a trace T, the support of an LSC M=
L(pre,main), denoted by sup(M), is simply defined
as the number of positive-witnesses of M found in 7.
The confidence of an LSC M, denoted by conf (M),
measures the likelihood of a sub-trace in 7" satisfying
M’s pre-chart to be extended such that M’s main-
chart is satisfied or the end of the trace is reached.
Hence, confidence is expressed as the ratio between
the number of positive-witnesses and weak-negative-
witnesses of the LSC and the number of positive-
witnesses of the LSC’s pre-chart. Formally:

lpos(L,T)|+|w_neg(L,T)|
Ipos(pre,T)]

conf(L,T) Zgef

Notation-wise, when 7" is understood from the con-
text, it can be omitted. The confidence gives the
measure of assurance that if a pre-chart is satisfied,
either the main-chart is satisfied or the end of trace is
reached.

The support metric is used to limit the extraction to
frequently observed interactions. The confidence met-
ric restricts mining to such pre-chart that is followed
by a particular main-chart with high likelihood. We
are especially interested in those LSCs with perfect
confidence, that is with conf(M) = 1 (our algorithms,
however, handle the case of conf(M) < 1 too; see
Sec. 5).

Note that since we consider a given trigger (or

effect), to return a non-empty result, mining must use
a minimum support threshold that is at most equal to
the number of instances of the given trigger (or effect)
in the trace. Thus, the support threshold we use is in
fact normalized according to the number of instances
of the given trigger (or effect) in the trace (in our
experiments we use sup(M) = 1 as default). This
seems a nice property, as both support and confidence
threshold values are in the range of O to 1, and are
hence intuitive for users to set and are comparable
across different traces (we remark that this was not
possible in [24], as there was no reference point to
normalize to).

Problem statements The two problems of effect and
trigger mining addressed in our work are stated below.

Problem Statement 1. Given a (concrete/abstract)
trigger chart TG R, compute a complete set of (con-
crete/abstract) effect charts FFCSet, such that for
each FFC € FEFCSet, the LSC L(TGR,EFC)
meets the minimum support and confidence thresholds
in the set of input traces 7.

Problem Statement 2. Given a (concrete/abstract)
effect chart EF'C, compute a complete set of (con-
crete/abstract) trigger charts TG RSet, such that for
eachTGR € TGRSet, the LSC L(TGR,EFC) meets
the minimum support and confidence thresholds in the
set of input traces 7.

We refer to the minimum support and confidence
thresholds as min_sup and min_conf. A trigger
or effect whose resulting LSC meets the min_sup
threshold is considered frequent. If it’s corresponding
LSC also meets the min_conf threshold, we refer to
it as being significant.

In addition, in trigger mining (effects mining), we
are only interested in those significant charts that are
minimal (maximal). We want to get minimal triggers
(maximal effects) that relate to the behavior described
by the given effect (trigger). See the discussion on
longest main charts and shortest pre charts in Sec. 5.

Statistical soundness & completeness An algorithm
mining significant specifications is statistically sound
and complete if all mined specifications are significant
(sound), and all significant specifications are mined
(complete). This notion is commonly used in data
mining, and is guaranteed by, e.g., Daikon [9] or
data mining applications (e.g., [21]). Our algorithms
are sound and complete modulo the given traces and
user-defined thresholds (our notion of soundness and
completeness is thus independent of the quality of the
traces used in terms of coverage etc., that is, in contrast
to, e.g., [13]).



3. Mining Algorithm Outlines

Our mining algorithms take advantage of the follow-
ing monotonicity property for concrete and symbolic
LSCs (a proof is available in the technical report [22]).

Property 1 (Monotonicity - Positive Witness):
Given a (concrete/abstract) LSC M = L(pre, main)
and M’ = L(pre/,main’). If pre++main is a sub-
sequence of pre/++main’, every positive witness of
M’ is a positive witness of M. Hence, sup(M') <
sup(M).

The above property can be effectively used to prune
the search space. For example, after ascertaining that
the support of a (concrete or abstract) chart L(a,b)
is less than the minimum support threshold, one can
prune the search space of all LSCs L(pre,main) where
(a, b is a subsequence of pre++main.

Our algorithm for mining effects given a trigger is
outlined below.

Algorithm outline 1 (Effects Mining):

1) Consider an input trigger chart (abstract or con-
crete) T’GR and input trace 7. We compute
Inst(TGR,T).

2) We grow TGR by appending (abstract or con-
crete) events one-by-one in a depth-first, lex-
icographic order. We stop growing when the
support of TGRHEVS (where EVS is a
series of abstract events) is below min_sup
x |Inst(TGR,T)|. We output L(T,EVS) if
its support and confidence are greater than the
thresholds.

3) The result of the previous step corresponds to
the set of all abstract effects. The input trigger
TGR and each of the charts TGR+EV S form
an LSC L('GR,TGR+H-EV S), where EV S is
the abstract effect mined.

A different approach is required for mining triggers
given an effect, however. One cannot obtain instances
of the given effect and grow them, in this case “back-
ward”, since this would find ‘necessary triggers’, that
is, sequences without which the effect scenario never
occurs (as in a past temporal logic expression of effect
entails trigger). Although this may be interesting to
compute, this is not what we are looking for. Rather,
we are looking for ‘sufficient triggers’, and want the
confidence value to capture the likelihood of the given
effect to occur after the mined trigger. We outline the
algorithm to do this below.

Algorithm outline 2 (Triggers Mining):

1) Consider an input effect chart (abstract or con-
crete) EF'F' and input trace 7. We compute all
charts e+ FEF'F', where e is a single event and
|Inst(eHEFF)| > min_sup x |Inst(EFF)]|.

Let us refer to these single frequent event es
as FEv — frequent single event triggers. From
apriori property, all triggers whose support is
above min_sup need to be composed by events
in FEv.

2) Starting from a single-event frequent trigger G,
recursively one grows a trigger G by adding
one event from FFEv at a time. At each step
one need to check if we can create instances of
G+re,HEFF, where e, is a new event.

3) If |Inst(G+He,HEFF)] < min_sup,
from apriori property, charts of the form
G+He, HEVSHEFF, where EVS is an
arbitrary series of events, are infrequent ( i.e.,
support is less than min_sup). Hence we do
not need to grow the trigger G-H-¢e,, anymore.

4) For every G to be grown, sup(GHFEFF) >
min_sup. If conf(L(G,EFF)) is also greater
than the minimum confidence threshold, we out-
put LSC L(G,EFF). If L(G,EFF) is output
there is no need to grow G anymore, since other
triggers are non-minimal.

The algorithms perform post-processing to only re-
turn maximal effects and minimal triggers. An effect
is maximal if there is no other significant effect that
is a super-sequence of it. A trigger is minimal if there
is no other significant trigger that is a sub-sequence of
it. Additional details, including pseudo code, are given
in the tech. report [22].

4. Experiments & Early Evaluation

To evaluate our work we created a prototype im-
plementation of our algorithms. We used Apsect] to
monitor programs and generate traces of triplets (caller
identifier, callee identifier, method signature). We re-
port here on the results of some of our experiments
(running on a Pentium M 1.6GHz 1.5GB RAM Win-
dows XP Tablet PC). The algorithms are written using
C#.Net compiled using VS.Net 2005. Complete results
including traces are available from [22].

Below we consider two medium size third party
open source applications; Jeti [4], a popular full fea-
tured instant messaging application, consisting of about
49K LOC, 3400 methods, 511 classes in 62 packages;
and Columba [1], a rich email client application,
consisting of 46K LOC, 6200 methods, 1139 classes
in 226 packages. We refer to the traces generated
from Jeti and Columba by J and MC respectively.
All experiments reported below were conducted with
min_sup = min_conf = 1.

Mining effects We provided 3 intuitive triggers to
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MEJ1 J1 Start Chat 12.61s 5 MTIJ1 J1 Packet Send 0.13s 2
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Table 1. Experiments on Mining Effects

each application and analyzed the mined candidate
specifications. Table 1 shows the experiments details.
The columns (left to right) refer to the experiment id
(e.g., MEJ1 = Mine Effect Jeti 1), trace id, trigger id,
running time, and number of effects mined. The details
of the triggers used are given in Fig. 3 (top).

One of the mined effects and its corresponding LSC
are shown in Fig. 4(a). The trigger is an event called
when the user asks to check for new mails in the server.
The effect is of length 9. It describes the series of
events that complete scenario of user checking email in
the server. First, available email accounts (in our case
only one account) are checked whether they need to be
checked or not (events 1 & 2 in the effect). User can
specify for an email account not to be checked. In this

Table 2. Experiments on Mining Triggers

case, since we specify that the account is to be checked,
the actual check is performed (event 3). Next, the local
directory and the server are synchronized (events 5-7).
Finally, downloaded files are deleted from the main
server if the deletion feature is enabled (the methods
are called in any case) (events 8-9).

Mining triggers We provided 3 intuitive effects to
each application and analyzed the mined specifications.
Table 2 shows the details of our experiments.

The details of the triggers used are given in Fig. 3
(bottom). Two of the mined triggers and their corre-
sponding LSCs are shown in Figure 4(b). The input
effect describes the actual event where a newly formed
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Figure 4. (a) Mine Effect: Check Mail; (b) Mine Triggers: Store Appointment

appointment is stored into the calendar, and we were
interested in finding minimal triggers for this behavior.
Two of these are shown in Fig. 4(b). One of the
triggers is of EditEventDialog, when a user enters
new appointment information success () method is
called. Another trigger is when EditEventDialog
needs to be created. In this case, we can note
that regardless of the event dialog’s “success” (i.e.,
user confirms the addition), the add () method of
LocalCalendarStore is called.

Scalability To check the scalability of our work we
generated traces of length 10K by chatting via Jeti,
and then created longer traces using concatenation.
We created 5 traces of length 1 to 5 million events,
considered the effect and trigger used in experiments
MTIJ1 and MEJI, and measured the running time of
computing the corresponding triggers and effects over
these long traces (Fig. 5). The graphs show that mining
completes in reasonable time even when the trace is 5
million events long, and that running time grows only
linearly with the input traces length.
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Figure 5. Scalability Experiments Results

Note that our original approach to mining a full set
of LSCs, presented in [24], was much less scalable.

While a formal comparison between the two work is
impossible as the problems addressed are different,
it is not surprising that trigger/effect mining is much
more scalable, as the focus on the given trigger/effect
significantly restricts the search space size (roughly,
running time on equal traces was 400 times longer
with the general approach (approx. 8100 sec. vs. 20
sec.)). The special case of scenario-based triggers and
effects mining is thus indeed much more scalable and
hence feasible for engineers’ use.

Lessons learned While the above experiments show
promising results in terms of the quality of scenarios
mined and of the scalability of our approach, we
have also learned some important lessons about the
limitations and challenges faced by our current work,
some of which are briefly listed below. First, results
are most useful when only a small number of charts
is mined, hence there is a need for additional filters
(see the next section). Second, to best take advantage
of the iterative interactive process, a methodology that
integrates our mining approach with software testing
and maintenance tasks using a supporting wizard-like
tool is required. Third, we would like to get additional
information beyond the temporal order of calls, hence
there is a need to consider adding additional data, e.g.,
parameter values, to the traces, or combine with a
miner mining value-based invariants like Daikon [9].
Finally, the visualization using sequence diagrams is
important to the usability of our approach, as textual
representations of scenarios are difficult to understand.

5. Advanced Features & Considerations

Less than perfect confidence While the most natural
confidence value to set is 1, that is, requiring candidate



LSCs to hold as invariants on the input traces, our
work supports setting up a lower confidence level.
This may be appropriate in applications where tracing
may output imperfect traces due to a lossy tracing
mechanism [30], or may help exposing exceptions or
bugs in the program under investigation (see, e.g., [6],
[20], [30]). The support and confidence values for
each mined LSC are included in the algorithms output.
Thus, the option to set a less than perfect confidence
level makes our work more robust and widens its
applicability.

Long triggers Recall that given a trigger, our miner
returns longest effects (main-charts) meeting the con-
fidence threshold, as these are logically stronger post-
conditions. Dually, given an effect, our miner looks for
shortest triggers (pre-charts) meeting the confidence
threshold, as these are logically strongest (following
a ‘weakest pre-condition’ approach). Our experience
(confirmed with experienced users of the Play-Engine
tool [10]), shows that the latter, however correct, is
not the best for all usages; longer triggers, however
logically weaker, may provide the user with important
additional information. Thus, we allow the user to
choose mining of all triggers meeting the threshold,
and presenting them sorted by their length.

Binding preserving abstraction Lifting the concrete
mined scenarios up to class level abstract scenarios in
a sound and complete way requires our algorithms to
respect what we call binding preserving abstraction
(BPA). That is, mining must abstract away concrete
object identifiers while respecting the binding topology
within a scenario. In this work we assume no two
lifelines of the same LSC correspond to the same class,
thus bypassing the need for BPA. We leave BPA for
future work.

Additional user-guided filters and abstractions To
better serve the user’s needs in mining triggers and
effects, and allow the user the use apriori knowledge of
the program under investigation or knowledge acquired
during previous mining, we offer an array of user-
guided filters and abstractions. These include, e.g.,
ignore set, allowing the user to specify a set of method
signatures to be ignored by the miner, and consider
set, allowing the user to instruct the miner to only
mine triggers (or effects) that include events from a
specified set. Additional details may be found in [23].
Using the mined scenarios As mentioned earlier,
our current work is a part of and an example for
a larger framework we are working on, presenting
and examining what we may call user guided mining,
where spec mining is viewed as an interactive iterative
process. In this regard, the end-to-end visual aspect
of our work is an important usability factor. Both the

input for the miner, trigger or effect sub scenarios,
and the output of the miner, a set of LSCs, may be
created and presented visually, within an industrial
modeling tool (in our case, IBM RSA [3]), where they
can be edited, manipulated, printed etc. Moreover, as
shown in [24], the mined LSCs can be programmati-
cally compiled into (monitoring) scenario aspects [26],
serve as scenario-based tests for the application under
investigation, and thus allow to ‘validate’ the mined
LSCs during its subsequent executions.

6. Related Work

Automata-based specification mining Most specifica-
tion miners produce an automaton (e.g., [S]-[7], [25]),
and have been used for various purposes from program
comprehension to verification. Unlike these, we mine
a set of LSCs from traces of program executions. We
believe sequence diagrams in general and LSCs in
particular, are suitable for the specification of inter-
object behavior, as they make the different role of each
participating object and the communications between
the different objects explicit. Thus, our work is not
aimed at discovering the complete behavior or APIs
of certain components, but, rather, to capture the way
components cooperate to implement certain system
features. Indeed, inter-object scenarios are popular
means to specify requirements (see, e.g., [11], [16],
[29]). The specific mining of triggers and effects assists
the user in focusing on investigating the aspects of the
behavior of interest in the context of specific tasks.
Reverse engineering of sequence diagrams Many
work suggest and implement different variants of re-
verse engineering of objects’ interactions from pro-
gram traces and their visualization using sequence
diagrams (see, e.g., [2], [14]), which may seem similar
to our current work. Unlike our work, however, all
consider and handle only concrete, continuous, non-
interleaving, and complete object-level interactions and
are not using aggregations and statistical methods
to look for higher level recurring scenarios; the re-
verse engineered sequences are used as a means to
describe single, concrete, and relatively short (sub)
traces in full (and thus may be viewed not only as
concrete but also as ‘existential’). In contrast, we
look for universal (modal) sequence diagrams, which
aim to abstract away from the concrete trace and
reveal significant recurring potentially universal class-
level abstract scenario-based specification, ultimately
suggesting scenario-based system requirements.
Trigger querying in formal verification In [18],
Kupferman and Lustig introduced and studied the
problem of trigger querying in the context of formal



verification. Given a model M and a temporal formula
o, trigger querying is the problem of finding the set of
scenarios that trigger ¢ in M. That is, if a computation
of M has a prefix that follows the scenario, then its
suffix satisfies ¢. Our current work may be viewed
as a special case of a dynamic analysis variant of
trigger querying. We use (sub) scenarios to specify
both triggers and effects. We investigate both trigger
querying and its dual ‘effect querying’.

7. Conclusion & Future Work

We presented scenario-based triggers and effects
mining, as an interesting and useful special case of
scenario-based specification mining in general. Experi-
ments show promising results in terms of the quality of
scenarios mined and of the scalability of our approach.
The work is part of the larger framework of user guided
specification mining, where specification mining is
viewed as a task oriented iterative interactive process
allowing the user to focus on issues of interest and use
accumulated knowledge about the application under
investigation. It aims to support property discovering
tasks for debugging, evolution, runtime monitoring,
and formal verification.

Based on the lessons learned listed above, future
directions include extending our work to cover a
larger subset of the LSC language (specifically, partial
orders, conditions), making the prototype implemen-
tation available as a packaged tool, and conducting
further experiments.
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