
Mining Modal Scenario-Based Specifications from
Execution Traces of Reactive Systems

David Lo† Shahar Maoz‡ Siau-Cheng Khoo†

†{dlo,khoosc}@comp.nus.edu.sg ‡shahar.maoz@weizmann.ac.il
Dept. of Computer Science Dept. of Computer Science and Applied Mathematics

National University of Singapore The Weizmann Institute of Science, Rehovot, Israel

ABSTRACT
Specification mining is a dynamic analysis process aimed
at automatically inferring suggested specifications of a pro-
gram from its execution traces. We describe a novel method,
framework, and tool, for mining inter-object scenario-based
specifications in the form of a UML2-compliant variant of
Damm and Harel’s Live Sequence Charts (LSC). LSC ex-
tends the classical partial order semantics of sequence dia-
grams with temporal liveness and symbolic class level life-
lines, in order to generate compact and expressive specifica-
tions. The output of our algorithm is a sound and complete
set of statistically significant LSCs (i.e., satisfying given
thresholds of support and confidence), mined from an in-
put execution trace. We locate statistically significant LSCs
by exploring the search space of possible LSCs and check-
ing for their statistical significance. In addition, we use an
effective search space pruning strategy, specifically adapted
to LSCs, which enables efficient mining of scenarios of arbi-
trary size. We demonstrate and evaluate the utility of our
work in mining informative specifications using a case study
on Jeti, a popular, full featured messaging application.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]:Requirements/Specifications–Tools;D.2.7 [Soft-
ware Engineering]:Distribution, Maintenance and Enhance-
ment–Restructuring, reverse engineering and reengineering
General Terms: Algorithms, Design, Experimentation
Keywords: Specification Mining, Dynamic Analysis, UML
Sequence Diagrams, Live Sequence Charts

1. INTRODUCTION
Analyzing the behavior of software systems, in order to

aid program comprehension, reduce their maintenance costs,
and improve their quality, is a complex and challenging task.
Having incorrect, incomplete, or outdated documented spec-
ifications, as a result of short time-to-market constraints,
changing requirements, and poorly managed product evo-
lution, reduces comprehension of the code base, increases
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maintenance costs, and adds challenges towards verification
of their correctness. One approach to address this challenge
is to automatically infer specifications of a system from its
execution traces by a dynamic analysis process referred to
as specification mining (see, e.g., [6, 19]).

In this work, we focus on mining specifications of reac-
tive systems, discrete event systems which maintain ongo-
ing interaction with their environment, and on their behav-
ioral specification using inter-object scenarios. Scenarios,
depicted using variants of sequence diagrams, are a popu-
lar means to specify the inter-object behavior of systems
(see, e.g., [12]), are included in the UML standard, and are
supported by many modeling tools. In particular, we are
interested in modal scenarios presented using a UML2 com-
pliant variant of Damm and Harel’s Live Sequence Charts
(LSC) [9, 14], which extends the partial order semantics of
sequence diagrams with universal and existential modalities
and allows symbolic class level lifelines, resulting in compact
and expressive specifications. The popularity and intuitive
nature of sequence diagrams as a specification language in
general, together with the additional unique features of LSC,
motivate our choice for the target formalism of our miner.
Moreover, the choice is supported by previous work on LSC
(see, e.g., [16, 18, 22]), which can be practically used to visu-
alize, analyze, manipulate, test, and verify the specifications
we mine.

Our algorithm mines statistically significant LSCs of ar-
bitrary size from program traces. Statistical significance is
based on satisfaction of minimum thresholds of support and
confidence (metrics adopted from data mining [11]). The
algorithm leverages research in the pattern mining domain
where mining is modeled as a search space exploration and
efficiency is improved greatly by performing effective search
space pruning strategy. The following sections describe our
target specification language (i.e., live sequence charts), our
mining algorithm, a case study, and a short discussion of
related work. We conclude with a summary of our contri-
butions and directions for future work.

2. MODAL SCENARIOS
We use a restricted subset of the LSC language. An LSC

includes a set of instance lifelines, representing system’s ob-
jects, and is divided into two parts, the pre-chart (‘cold’
fragment) and the main-chart (‘hot’ fragment), each spec-
ifying an ordered set of method calls between the objects
represented by the instance lifelines. A universal LSC spec-
ifies a universal liveness requirement : for all runs of the
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system, and for every point during such a run, whenever
the sequence of events defined by the pre-chart occurs (in
the specified order), eventually the sequence of events de-
fined by the main-chart must occur (in the specified order).
Events not explicitly mentioned in the diagram are not re-
stricted in any way to appear or not to appear during the
run (including between the events that are mentioned in the
diagram). The semantics of LSC is comparable to that of
various Temporal Logics [17]. For a thorough description of
the language and its semantics see [9].

Syntactically, instance lifelines are drawn as vertical lines,
pre-chart (main-chart) events are colored in blue (red) and
drawn using a dashed (solid) line. LSCs can be visualized
and edited within standard UML2 compliant modeling tools
(e.g., IBM RSA [3]) using the modal profile [14].

3. MINING FRAMEWORK
The input for the mining algorithm are finite traces con-

sisting of events, where each event corresponds to a triplet:
caller object identifier, callee object identifier, and method
signature. The output of our algorithm are statistically sig-
nificant LSCs satisfying user-defined thresholds mined from
the traces. We first define the statistical significance metrics
considered, namely support and confidence – adopted from
data mining [11]. We then describe the mining algorithm.

3.1 Witnesses, Support, and Confidence
To relate between LSCs and execution traces we first in-

troduce notions of positive- and negative- witnesses. These
are then used to compute the support and confidence values
of an LSC with respect to a trace.

We consider traces to be finite words over a finite alpha-
bet of events Σ = {a, b, c...}, where a unique letter cor-
responds to a unique triplet. We use the symbol ++ to
represent the concatenation operator between finite words.
An LSC L(pre, main) defines a word m built from the con-
catenation of its pre-chart and main-chart finite words, i.e.,
m = pre++main. For two words w, u we denote the projec-
tion of w onto the alphabet of events appearing in u by wu.
As an example, abcadbab = abab.

A positive-witness of a word w with respect to a trace T
is defined as a minimal subword s of T such that sw = w.
Positive-witnesses of an LSC L(pre, main) are the positive-
witnesses of the word pre++main. The set of positive-wit-
nesses of a word w (an LSC L) with respect to a trace
T is denoted by pos(w, T ) (pos(L, T )). Consider the trace
T1 = eaeebabcedacbccdaaadabe as a running example. It in-
cludes two positive-witnesses of L1 = (ab, d), which are the
sub-strings abced and acbccd starting at the 6th and 11th
positions of the trace, respectively.

A negative-witness of an LSC L(pre, main) with regard to
a trace T , is a positive-witness of the word pre that cannot
be extended to a positive-witness of L. The set of negative-
witnesses of an LSC L with respect to a trace T is denoted
by neg(L, T ). Using the previous example, T1 includes two
negative-witnesses of L1, corresponding to the sub-strings
aeeb and ab starting at the 2nd and 21st positions of the
trace, respectively.

The semantics of LSC (like most formal specification lan-
guages used for reactive systems, e.g., LTL [15]) is origi-
nally defined over infinite paths. The traces we consider,
however, are, of course, finite, and we do not want the
arbitrary truncation of the trace to affect our confidence
of the suggested universal liveness requirement specified by

the LSC. We therefore need to adapt the semantics of LSC,
and specifically, the definition of negative-witnesses, to fi-
nite (so called ‘truncated’) paths using a notion of strong-
negative-witness. Roughly, a strong-negative-witness is neg-
ative because it explicitly violates the order specified by the
main part of the LSC and not because it reaches the end
of the trace. Formally, a strong-negative-witness of an LSC
L(pre, main) with regard to a trace T , is a positive-witness
of pre, p, such that for any word w, p cannot be extended
to a positive-witness of L over T++w. The set of strong-
negative-witnesses of an LSC L with respect to a trace T
is denoted by strong neg(L, T ). Using the example above,
note that the second negative-witness of L1 in T1 ends at
the end of the trace and is not a strong-negative-witness.

We use the above notions of witnesses to define the sta-
tistical support and confidence metrics for LSC. Given a
trace T , the support of an LSC L(pre, main), denoted by
sup(L), is simply defined as the number of positive-witnesses
of L found in T . The confidence of an LSC L, denoted by
conf (L), measures the likelihood of a subword in T satisfying
pre to be followed by a subword satisfying main or the end
of the trace is reached. Hence, confidence is expressed as the
ratio between the number of non-strong-negative-witnesses
of the LSC and the number of positive-witnesses of the LSC’s
pre-chart. Formally:

sup(L, T ) ≡def |pos(L, T )|
conf (L, T ) ≡def

|pos(L,T )|+(|neg(L,T )|−|strong neg(L,T )|)
|pos(pre,T )|

Notation-wise, when T is understood from the context,
it can be omitted. Using the previous example, we have
sup(L1, T1) = 2, conf (L1, T1) = (2 + 2− 1)/4 = 0.75.

The support metric is used to limit the extraction of com-
monly observed interactions. The confidence metric restricts
mining of such pre-chart that is followed by a particular
main-chart with high likelihood. Note that LSCs with high
but imperfect confidence, i.e., less than 1, are also interesting
to mine (see, e.g., the notion of imperfect traces [24]), since,
in general, these may reveal errors in the program or in the
trace generation process (see, e.g., [6, 10, 24]). The support
and confidence values for each mined LSC are included in
the algorithms output.

3.2 Algorithm
We are now set to describe the basic LSC mining algo-

rithm and sketch its soundness and completeness.
Many previous algorithms used for specification mining,

e.g., [24], need to explicitly check all possible specifications
obeying a certain template. These do not scale for speci-
fications of an arbitrary size since the number of possible
specifications is arbitrarily large. Rather than checking for
all possible LSCs, we immediately prune search spaces con-
taining statistically insignificant LSCs using the following
property.

Property 1 (Monotonicity of Support). For a trace T ,
an LSC L(pre, main), and a word w: |pos(pre++main, T )| ≥
|pos(pre++main++w, T )|.

Intuitively, the above property means that if a certain
LSC does not meet the minimum support threshold, all its
extensions will not meet the minimum support threshold.

An outline of the algorithm is given in Fig. 1. Its input
includes a trace and thresholds for support and confidence,
and its output is a set of LSCs. The algorithm starts by

2



mining a complete set of words, each having the number
of positive instances greater than or equal to the support
threshold. Next, it continues to compose these words into
LSCs meeting the confidence threshold.

The main algorithm is given in procedure MineLSC, which
calls the procedure MineSupportedWords to mine a com-
plete set of words that meet the support threshold (line
1). MineSupportedWords calls MineRecursive to recursively
add events to the current set of words in a depth first fash-
ion. Once an extended word does not meet the support
threshold (line 16), we know all its extensions will not meet
the support threshold either (from Property 1), and thus
we can stop recursing. After the set of words meeting the
support threshold is mined, the algorithm continues to com-
pose these words into LSCs meeting the confidence threshold
(lines 3-8).

Our algorithm for LSC mining is sound and complete; i.e.,
not only all the output LSCs are statistically significant (i.e.,
meet the support and confidence thresholds), but also all
the possible LSCs that are statistically significant are indeed
included in the output. Soundness follows immediately from
the algorithm. Completeness follows from the monotonicity
property. The formal proof is outside the scope of this paper.

Procedure MineLSC
Inputs: TR : Input Trace; min sup: Min. Sup. Thresh.;
min conf : Min. Conf. Thresh.
Output: A set of statistically significant LSCs
1: Let WSet = MineSupportedWords(TR,min sup)
2: Let LSCResult = {}
3: For every word w in WSet
4: For every prefix pfx of w
5: Let main = sfx, where pfx ++ sfx = w
6: Let NewLSC = Create new LSC (pfx, main)
7: If (conf (NewLSC) ≥ min conf)
8: Output NewLSC

Procedure MineSupportedWords
Inputs: TR : Input Trace; min sup: Min. Sup. Thresh.
Output: A set of supported words
9: Let EV = Single-events appearing ≥ min sup in TR
10: Let WSet = {}
11: For every f ev in EV
12: Call MineRecurse(TR,min sup,EV,f ev,WSet)
Return WSet

Procedure MineRecurse
Inputs: TR : Input Trace; min sup: Min. Sup. Thresh.;
EV : Frequent Events; curW : Current word considered;
WSet: Current set of supported words
Output: Updated supported words set (WSet)
13: Add curW to WSet
14: For every f ev in EV
15: Let nxtW = curW++f ev
16: If (|pos(nxtW,TR)| ≥ min sup)
17: Call MineRecurse(TR,min sup,EV ,nxtW,WSet)

Figure 1: Outline of the mining algorithm

The mined set of LSCs is post-processed to identify class
level LSCs (see LSC symbolic instances [23]). In addition,
we provide an array of additional user-guided filters and
abstractions to further refine the resulting set of mined sce-
narios and reduce the complexity of the mining process. A
complexity analysis of the basic algorithm and more details
about its extensions are available in the technical report [21].

4. CASE STUDY
We demonstrate our approach using Jeti [4], a popular

full featured open source instant messaging application. We

used AspectJ to instrument the application and created trace
files by recording interactions between several Jeti clients.
Each of the files is approximately 1K events long (consisting
of about 120 unique methods and 600 unique events). We
also analyzed one long trace of 10k events. In general, the
mining time for a 1K-long trace ranged between a few sec-
onds and several minutes on a Pentium IV 3Ghz PC with
2GB memory.

Many statistically significant LSCs were mined, revealing
informative scenarios. We refer interested readers to down-
load the complete traces from [5], which also provides details
on mining parameters used, runtime required, and mined re-
sults for each experiment on the traces. Two of the mined
LSCs are highlighted below.

First, a mined LSC involving sending of messages when
one client starts communicating with another is shown in
Fig. 2 (Top). The scenario starts whenever a user uses the
roster tree to select a party to communicate with. Then, the
roster tree will initiate the chat and set up the chat window.
After several resources and identifiers of communicating par-
ties are obtained, eventually, an initial message is sent via
the Backend/Connect/Output channel. Second, from traces
involving the use of Jeti’s group whiteboard, the miner has
captured a scenario of drawing a line and sending it to the
other chat users (see Fig. 2 (Bottom)).
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Figure 2: Mined LSCs: Start chat & Draw line

We have implemented a programmatic translation of the
mined suggested LSCs (represented in simple textual for-
mat) into UML2 Sequence Diagrams, using the Eclipse UML2
APIs [2] and the modal profile [14]. Thus, we viewed selected
results from Jeti visually inside IBM Rational Software Ar-
chitect (RSA) [3] (see Fig. 3). In addition to the visual
representation itself, which helped a lot in understanding
the mined scenarios, we were able to use RSA to edit and
manipulate the mined LSCs, group them into use cases, an-
notate them, print them, etc.

Finally, we used the S2A compiler [13], developed at the
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Figure 3: A mined LSC shown inside IBM RSA.

Weizmann Institute of Science, to programmatically com-
pile selected LSCs into (monitoring) scenario aspects [22].
These served as scenario-based tests for Jeti and allowed us
to ‘validate’ selected mined LSCs during subsequent execu-
tions.

Additional results and details are available in the technical
report [21].

5. RELATED WORK
Most specification miners produce an automaton (e.g., [6,

8, 19]). Unlike these miners, we mine a set of LSCs from
traces of program executions. Sequence diagrams in general
and LSCs in particular specify inter-object behavior, where
the different role of each participating object and the com-
munications between the different objects are made explicit.

In [24], Yang et al. present an interesting work of min-
ing two-event temporal logic rules (i.e., of the form G(a →
XF (b)), where G, X, and F are LTL operators [15]), which
are statistically significant with regard to a user-defined ‘sat-
isfaction rate’. The algorithm presented, however, does not
scale to multi-event rules of arbitrary length. To handle
longer rules, Yang et al. suggest a partial solution based on
concatenation of mined two-event rules. Yet, the method
proposed might miss some multi-event rules or introduce
superfluous rules that are not statistically significant – it is
neither sound nor complete. In contrast, we mine LSCs of
arbitrary size; scalability is accomplished by utilizing our
own search space pruning strategy adapted from data min-
ing domain. The method is sound and complete as all mined
LSCs are statistically significant and all statistically signifi-
cant LSCs are mined. The semantics of LSC includes order-
ing constraints which are not considered in [24].

Some work consider mining frequent patterns of software
behavior (e.g., [20]). In contrast to our work, the patterns
mined do not express inter-object behavior depicted using
sequence diagrams.

Many work suggest and implement different variants of
reverse engineering of objects’ interactions from program
traces and their visualization using sequence diagrams (see,
e.g., [1, 7]), which may seem similar to our work. Unlike our
work, however, all consider and handle only concrete, con-
tinuous, non-interleaving, and complete object-level interac-
tions and are not using aggregations and statistical methods
to look for higher level recurring scenario patterns; the re-
verse engineered sequences are used as a means to describe
single, concrete, and relatively short (sub) traces in full (and
thus may be viewed as ‘existential’). In contrast, we are
looking for universal (modal) sequence diagrams, which aim
to abstract away from the concrete trace and reveal statis-

tically significant recurring potentially universal scenario-
based patterns, at the object-level as well as the class-level,
ultimately suggesting scenario-based system requirements.

6. CONCLUSION AND FUTURE WORK
In this paper we have proposed a novel method to mine

a sound and complete set of statistically significant modal
scenarios from program execution traces. Our work takes
advantage of the unique features of LSC as a specification
language and of the available tools to visualize and use the
mined specifications. The presented case study shows the
utility of our approach. Our current method is limited to
mining of total order LSCs. In the future, we plan to mine
for additional features of sequence diagrams in general, such
as explicit partial order, various structural constructs (alter-
natives, loops, etc.), and functional state invariants.
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