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Abstract—During software maintenance, testing is a crucial
activity to ensure the quality of code as it evolves over time. With
the increasing size and complexity of software, adequate software
testing has become increasingly important. Code coverage is an
important metric to gauge the effectiveness of test cases and the
adequacy of testing. However, what is the coverage level exhibited
by large-scale open-source projects? What is the correlation
between software metrics and the code coverage of the software?

In this study, we investigate the state-of-the-practice of testing
by measuring code coverage in open-source software projects.
We examine over 300 large open-source projects written in Java,
to measure the code coverage of their associated test cases. We
analyse correlations between code coverage and relevant software
metrics such as lines of code, cyclomatic complexity, and number
of developers. Our results show that the coverage level decreases
with the increase in size and complexity of the software, whereas
the number of developers has an insignificant correlation with
the code coverage. However, considering individual files, coverage
increases with the size and complexity, whereas the number of
developers has no correlation with the code coverage. Our results
highlight the strengths and weaknesses of testing in open-source
projects and make recommendations for future research.

Keywords—Code coverage, Software testing, Test adequacy,
Software metrics

I. INTRODUCTION

Recent years have seen a substantial increase in the im-
portance of open-source software: the Linux operating system
is used on platforms ranging from embedded systems to
supercomputers, Android has captured a majority share of
the smartphone and tablet market, and applications such as
Firefox, Eclipse, and LibreOffice are used across the desktop
computing spectrum. Furthermore, the open-source developer
community is becoming increasingly professionalized, with
large organizations investing time, effort and money in open-
source development. The increasing reliance on open-source
software implies that it is important to investigate potential
weaknesses in its development process.

Years of software engineering research and practice have
shown that adequate testing is critical to the development of
reliable software [1]. Inadequate testing implies that develop-
ers are dependent on users to validate the software, which
risks alienating the user base, and, increases the difficulty
of identifying and resolving bugs. Nevertheless, developing
thorough test cases is hard, and is not essential to the process of
implementing a given functionality, and thus we conjecture that
open-source developers,1 who may not be forced to do so by

1In this paper, we define developers as the people who write code as well
as those who write test cases.

an employer, will not write adequate test cases for their code.
Indeed, a decade ago a study of open source developers found
that over 80% of the open-source developers surveyed admitted
that their projects lack testing plans, even though most projects
spend nearly 40% of the time in the testing phase [2].

One metric that is commonly used to measure the adequacy
of testing is code coverage, that is, a measure of the set of
lines of code or code paths that are executed by a set of tests.
Quality managers can use coverage information to assess test
suites, decide when to stop testing and examine portions of
the code that are not covered and thus may contain faults [3].
Judicious use of code coverage can help in finding new defects
and increasing the robustness of the software [4]. Furthermore,
software cost models based on coverage information can be
used to estimate the cost of testing, the cost of removing faults
and the potential risk caused by bugs emerging from uncovered
code [5]. Measuring coverage alone, however, is not enough to
obtain a complete picture of the state of testing in open-source
software. To understand, and potentially improve, the state of
testing in open-source software, it is necessary to correlate
code coverage information with other software metrics that can
characterize the software development process, such as lines
of code, cyclomatic complexity, and number of developers.
These easy-to-collect metrics can help characterize projects in
which testing is insufficient, and thus can help developers and
managers assess when more testing effort for their software
may be required.

In this study, we investigate over 300 open-source Java
projects from the GitHub2 hosting site and Debian3 Linux
distribution. GitHub hosts millions of software projects includ-
ing some well-known projects, such as Hadoop4 from Apache
and Aether5 from Eclipse, whereas Debian is a popular Linux
distribution and contains projects such as the Jetty6 server from
Eclipse and the Netty7 client-server framework. We examine
the adequacy of testing of the selected projects by analysing
the code coverage reported by executing the test cases present
in these projects. We also investigate the relationships between
various project characteristics and code coverage. The metrics
that we use are well-known, and have been used in many past
studies to characterize various software projects [6], [7], [8],
[9].

2https://github.com/
3https://www.debian.org/
4http://hadoop.apache.org/
5http://www.eclipse.org/aether/
6http://www.eclipse.org/jetty/
7http://netty.io/

1



We examine the following research questions:

RQ1: What are the coverage levels and test success densi-
ties exhibited by different projects?

RQ2: What are the correlations between various software
metrics and code coverage at the project level?

RQ3: What are the correlations between various software
metrics and code coverage at the source code file
level?

We find that only 40 out of the 327 projects have coverage
levels between 75 and 100 percent. The average and median
coverage levels are only 41.96% and 40.30%, respectively. We
also find that projects of larger sizes or higher complexities
exhibit lower coverage levels. This highlights the need to
improve state-of-the-art test generation techniques, e.g., [10],
[11], [12], [13], which have often only been demonstrated to
work on small to medium size programs. Nevertheless, we do
find that developers care about large or complex files: larger
or more complex files exhibit higher code coverage. Finally,
there is no or insignificant correlation between the number of
developers and code coverage.

The contributions of this paper are as follows:

1) We conduct a large-scale study on over 300 open-source
software projects with the objective of understanding the
state-of-the-practice of testing in open-source projects.

2) We examine the adequacy of testing by executing the test
cases that come with these projects and measuring the
code coverage. We report some statistics that depict the
test adequacy levels across the projects.

3) We investigate the relationships between various project
characteristics, measured by various software metrics, and
code coverage, at the project and file levels.

The structure of this paper is as follows. In Section II, we
briefly describe test adequacy criteria, and some tools and ser-
vices that we use in collecting information about open-source
projects. We elaborate on our empirical study methodology in
Section III. In Section IV, we explain the statistical analysis
we performed on the data along with our answers for the
three research questions. We discuss our findings and describe
threats to validity in Section V and Section VI, respectively.
Section VII describes related work. We conclude and mention
future work in Section VIII.

II. BACKGROUND

In this section, we discuss test adequacy criteria, and then
briefly describe the various tools on which we rely: Sonar,
the tool we used for collecting software metrics, GitHub &
Debian, the platform and the Linux distribution from which
we have collected the projects for our study, respectively, and
Maven,8 the automation tool used to build the projects.

A. Test Adequacy Criteria

Software testing is used to assess the functionalities of
a program or system and to investigate whether the tested
entity produces the expected results based on a set of inputs
and execution contexts. A test case is an input on which the

8http://maven.apache.org/

program under test is executed during testing. A test suite is
a set of test cases. A test adequacy criterion is a predicate
that defines the properties that must be satisfied to constitute
a thorough test [14].

Test adequacy is commonly measured in terms of some
form of code coverage, which is a measurement of the portion
of the code that is executed by running test cases. A set of test
cases that satisfies the coverage criterion is said to be adequate.
Code coverage can be measured in terms of lines, branches etc.
Line and branch coverage, which are often used in practice,
are defined as follows

Line coverage: Line coverage reports the thoroughness of
testing in terms of which lines of code were executed during
testing. The associated adequacy criterion requires execution
of all the lines. The percentage of executed lines indicates the
adequacy of testing.

Branch coverage: Branch coverage reports the thorough-
ness of testing in terms of the set of branches that were
executed during testing. The associated adequacy criterion
requires execution of all the branches. The percentage of
executed branches indicates the adequacy of testing.

We use Sonar, described below, to collect coverage infor-
mation. When unit test cases are run, Sonar reports overall
coverage9; overall coverage combines line and branch cover-
age as follows:

Overall Coverage =
CT + CF + LC

2 ∗B + EL
(1)

CT is the number of branches that evaluate to ’true’ at least
once; CF is the number of branches that evaluate to ’false’ at
least once; B is the total number of branches; EL (Executable
Lines) is the number of lines that could be covered by unit
tests, i.e., lines of code, excluding blank and commented
lines; LC (covered lines) is the difference between EL and
the number of lines of code not covered by any unit tests.

B. Sonar

Sonar10 is an open-source platform to manage software
quality. It is designed as a web-based application that can be
installed standalone or can be integrated into an existing Java
Web Application Container such as Tomcat. Sonar integrates
seamlessly with build automation tools such as Maven and Ant.
It supports analysis of design, architecture and object-oriented
metrics for Java applications.

Sonar combines various existing tools, such as JaCoCo,11

for getting code coverage, and Surefire,12 for executing unit
test cases. Sonar can also compute the various software metrics
that we use in this study, such as lines of code, cyclomatic
complexity, number of test cases etc. Sonar considers each
method in a test case file as one test case. In terms of code
coverage, Sonar gives information about line coverage, branch
coverage and overall coverage. Thus, Sonar provides a single
platform to collect all of the data that we are interested in,
which is the reason we pick Sonar for this study.

9http://docs.codehaus.org/display/SONAR/Metric+definitions
10http://www.sonarsource.org/
11http://www.eclemma.org/jacoco/
12http://maven.apache.org/surefire/maven-surefire-plugin/
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C. Maven

Maven is a build automation tool that primarily supports
projects implemented in Java. Projects using Maven can be
built using information stored in the project object model
(POM) file, i.e., pom.xml. This file provides information about
the project, its dependencies on other modules and plug-ins
and the order in which the project’s components will be built.
Maven dynamically downloads all the dependent plug-ins and
Java libraries and adds all these artefacts to the local repository.
Sonar leverages Maven’s project directory structure to gather
information such as the number of lines of code, the number of
test cases, the number of packages, and the number of classes
and to run test cases to collect the coverage level of the project.

D. GitHub & Debian

GitHub is a web-based project-hosting platform based on
the git13 revision control system. GitHub has become one of
the largest collaboration networks of software developers, host-
ing more than 3,000,000 users and over 5,000,000 repositories.
GitHub hosts project repositories ranging from gaming, to
operating systems to web servers, written in various languages.
This makes it an interesting source on which to conduct an
empirical study. We clone the git repositories of projects that
use Maven. Based on this criterion, GitHub provided an initial
set of 757 projects.

Debian is one of the most popular Linux distributions. It
provides a wide range of open-source software, some of which
use the Maven build system. We cloned the repositories of
projects that use Maven when possible using the URL provided
in the Debian metadata. In total, we got 228 projects. These
projects use different version control systems including git, svn
and mercurial.

We took the union of these projects collected from GitHub
and Debian, removing duplicates when projects appear in both
sources. Overall, our dataset consists of 945 projects which we
use for further analysis.

III. METHODOLOGY & BASIC STATISTICS

We now describe how we collect data for the empirical
study. We also provide some statistics describing the collected
dataset.

A. Methodology

For our empirical study, we downloaded the projects from
GitHub and the projects distributed by Debian. Our dataset in-
cludes projects developed by well-known organisations such as
The Apache Software Foundation and The Eclipse Foundation.

We clone projects that use Maven as the project manage-
ment tool. Out of 945 projects, 872 projects contain test suites.
We analyse these projects and run test cases. For project set-up,
we run the command mvn clean install, which clears
any pre-compiled files of previous builds, builds a dependency
tree for all the sub projects specified in the pom.xml (the root
POM) and compiles all the .java files. Then, we run Sonar
using the command mvn sonar:sonar, which performs
dynamic analysis by running test cases and then creates reports
based on the results. Unfotunately, many of the projects had

13http://git-scm.com/

compilation errors and dependencies on unavailable external
libraries. This observation is consistent with the results of
others [15]. We tried to resolve these issues, however, if after
some effort the project still failed, we discarded the project. In
the end, we have 327 projects that successfully compile, run
test cases and produce coverage.
B. Statistics

We now present some statistics describing the data col-
lected in our empirical study. We compute these statistics to
characterize the projects in our dataset and assess the suitability
of these projects as representative samples to answer our three
research questions. These basic statistics also describe the
range of values of the various metrics for the projects in our
dataset. We analyse the correlations of these metrics with code
coverage in Section IV.

a) Lines of code (LOC): We used Sonar to count the lines
of code of projects in our dataset, excluding comments, blank
lines and test cases. Figure 1a depicts the distribution of the
number of lines of code of the projects in our dataset. 90
projects have between 1 and 5,000 LOC, 56 projects have
between 5,000 and 10,000 LOC, 129 projects have between
10,000 and 50,000 LOC, and 25 projects have between 50,000
and 100,000 LOC and 27 projects have more than 100,000
LOC. The mean size of the projects is 31,120.71 LOC and the
median size is 11,484 LOC. The largest project in our dataset
is Apache Hadoop, which contains 454,137 LOC.

b) Test Cases: We use Sonar to collect the total number
of test cases for each project. Sonar also gives information
about the number of test cases that failed and the number of
test cases that were skipped. Test cases can be skipped due to
compilation errors, missing dependencies, etc.

Figure 1b shows the distribution of test cases across
projects. 147 projects have fewer than 100 test cases, whereas
41 projects have more than 1,000 test cases. 96 projects have
between 100 and 500 test cases and 43 projects have between
500 to 1,000 test cases. The number of test cases varies from 1
to 31,414. The mean number of test cases per project is 563.97
and the median value is 141.

c) Cyclomatic complexity: Cyclomatic complexity is a
measure of the number of linearly independent paths through
the source code of a software program [16]. Cyclomatic
complexity is particularly useful in approximating the number
of test cases necessary for independent path testing [17]. A
program with low cyclomatic complexity is typically easier to
maintain [18].

Figure 1c depicts the distribution of cyclomatic complexity
of projects in our dataset. 86 projects have complexity between
1 and 1,000, 140 projects have complexity between 1,000 and
5,000, 46 projects have complexity between 5,000 and 10,000
and 34 projects have complexity between 10,000 and 25,000.
21 projects have complexity above 25,000 with the highest
complexity value being 114,045. We can observe that most of
the projects have complexity below 10,000.

d) Developer contributions: Our projects use different
version control systems such as git, svn and hg (mercurial), so
we use git log, svn log, and hg log, respectively, to examine
the commit history of all the projects and to extract the names
of all of the developers working on these projects. We also
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(a) Number of Lines of Code (b) Test Cases (c) Cyclomatic Complexity (d) Number of Developers

Figure 1: Distribution of Projects

collect developer information at the file level, i.e., the number
of developers who have made changes to each file.

Figure 1d shows the distribution of the number developers
of all the projects. 128 projects have between 1 and 10
developers, 130 projects have between 10 and 25 develop-
ers, 48 projects have between 25 and 50 developers and 11
projects have between 50 and 75 developers. 10 projects have
more than 75 developers, with the project Netty having the
highest number of developers i.e., 146. The mean and median
numbers of developers across all the projects are 18.15 and
13, respectively.

IV. EMPIRICAL STUDY RESULTS

In this section, we examine the research questions and
report the results of our empirical study.

A. RQ1: What are the coverage levels and test success densi-
ties exhibited by different projects?

Motivation: Investigating test cases and coverage level of
a project is important in understanding the reliability of the
software project. A test suite with high coverage is likely
to have a higher fault detection capability and to better help
developers find bugs than the one with low coverage [19].

Findings: Table I shows the distribution of coverage levels.
Most of the projects exhibit low coverage levels, as the average
coverage (i.e., sum of coverage of all projects divided by
number of projects) is only 41.96% and the median coverage is
only 40.30%. Almost one-third of the projects have coverage
between 0% and 25%.

Table I: Project Distribution across Coverage Levels
Coverage Level (%) Number of Projects
0-25 105
25-50 90
50-75 92
75-100 40

Coverage indicates the amount of code touched by the test
cases, but does not ensure that the program runs correctly on
the tests. We thus next calculate test success density as the
number of test cases that are executed successfully out of the
total number of test cases. Figure 2 depicts the test success
density of all the projects in our dataset. We observe that
254 projects have test success density greater than or equal
to 98%, out of which 200 projects have 100% success density.

45 projects have test success density between 75% and 98%,
and 6 projects exhibit success density between 25% and 50%.
Only 9 projects in our dataset show a success rate below 25%.

Figure 2: Test Success Density

The levels of coverage varies from 0.1% to 98.2% with an
average value of 41.96%. Almost one-third of the projects
have coverage levels between 0% to 25% which highlights
that projects have low code coverage. 61.16% of the projects
have 100% test success density.

B. RQ2: What are the correlations between various software
metrics and code coverage at the project level?

In this research question, we examine the correlation be-
tween code coverage and various software metrics such as lines
of code, complexity, number of developers, age of the project,
and popularity of the project.

Motivation: Software metrics, such as lines of code, code
coverage, cyclomatic complexity, etc., give quantitative mea-
surements of the degree to which a software project and
its development process exhibit a particular attribute. These
metrics can be used to improve the software quality, to analyse
the productivity of a software project team, to anticipate
the future needs of developers and to estimate the amount
of maintenance required for the project. Comparing various
metrics with code coverage can help us understand which
project attributes are correlated to the adequacy of testing. This
understanding can help us identify characteristics of projects
that are prone to inadequate testing.
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(a) Number of Lines of Code vs. Coverage (b) Cyclomatic Complexity vs. Coverage (c) Number of Developers vs. Coverage

Figure 3: Scatter Plots (Project Level)

Findings: First, we analyse the correlation between lines
of code and amount of code coverage. As the quality of
the software is related to coverage [20], we believe that the
coverage should either remain the same or increase with an
increase in LOC to ensure that new parts are covered by test
suites.

The scatter plot (Figure 3a) between the number of lines
of code and coverage shows that as the number of lines of
code increases, the coverage level actually decreases. The
Spearman’s ρ for the distribution is -0.306 with p-value =
1.566e−08, which shows that there is a negative correlation
between number of lines of code and code coverage.

Cyclomatic complexity of software generally increases
with an increase in the number of lines of code [8], [21]. As the
complexity of a software project increases above a threshold,
the software becomes error prone [17]. Figure 3b depicts the
scatter plot between coverage and cyclomatic complexity. The
coverage level decreases with an increase in the complexity of
the code. Spearman’s ρ for the distribution is -0.276 (p-value
= 3.665e−07), which shows a negative correlation between
cyclomatic complexity and code coverage.

The above observations highlight that open-source de-
velopers need to increase the testing effort, to maintain or
increase the code coverage level with the increase in size
or complexity of the software. Cyclomatic complexity has
a significant impact on testing [17]. Thus, developers who
are working on large and complex projects should put more
emphasis on testing to improve the reliability of the software.

Test cases are contributed by the developers of a software
project. These developers play a significant role in writing
and running these test cases. Figure 3c depicts the scatter
plot between the number of developers and the code coverage
of the project. We observe from the graph that the coverage
slightly decreases when the number of developers increases.
The Spearman’s ρ value is 0.016, with a p-value of 0.763,
which shows that the correlation between the coverage level
and the number of developers is insignificant.

The largest projects exhibit lower coverage levels. Also,
coverage levels of the projects decrease with the increase
in cyclomatic complexity. The number of developers has an
insignificant correlation with the coverage of the projects.

C. RQ3: What are the correlations between various software
metrics and code coverage at the source code file level?

Motivation: The coverage level of the overall software
gives an idea of how well a project is tested. However, a
project may consist of many files having diverse properties.
So, we want to additionally examine the software metrics at
the file level, which can help us to study how these metrics,
which vary from file to file, are correlated to code coverage.
This can enhance our understanding of the characteristics of
files that are inadequately tested.

Findings: We extract the number of lines of code and
coverage level for all of the files that constitute a project. In
total, we have 107,762 Java class files accumulated over all
the projects. Figure 4a shows the scatter plot of the number
of lines of code and coverage. The results are contrary to the
correlation between LOC and coverage at project level (Figure
3a). The Spearman’s ρ for the distribution is 0.180 (p-value <
2.2e−16) depicting a small positive correlation.

We proceed to investigate the correlation between complex-
ity and coverage at the file level. In Figure 3b we observed
that with an increase in the complexity of the system, the
coverage of the system drops. We want to determine if more
complex files are less covered than less complex files, which
would lead to an overall reduction in the coverage of the
software. We draw a scatter plot depicting the relationship
between complexity and coverage level of source code files
in Figure 4b. The Spearman’s ρ for the distribution is 0.221
(p-value < 2.2e−16), which shows that there is small positive
correlation between cyclomatic complexity and code coverage.
The results are contrary to the correlation of complexity and
coverage for the overall project.

Finally, we examine the correlation between the number
of developers and the coverage levels of files created by those
developers. For each file, we consider the number of developers
to be the number of people who have been the author of at
least one commit that touches the file. Figure 4c depicts the
correlation between the number of developers and coverage for
all the files contained in the projects. There is no correlation
between the number of developers and coverage level of the
files. The Spearman’s ρ value is 0.050 with p-value < 2.2e−16.

5



(a) Number of Lines of Code vs. Coverage (b) Cyclomatic Complexity vs. Coverage (c) Number of Developers vs. Coverage

Figure 4: Scatter Plots (File Level)

At the file level, the results are contrary to the results at the
project level. Coverage level increases with the increase in
size as well as complexity of the files. However, there is no
correlation between the number of developers and coverage
at the file level.

V. DISCUSSION

Despite the benefits of software testing, our study finds
that most open-source projects are poorly tested – the median
coverage across the 327 projects is only 40.30%. Our study is
the first to demonstrate this phenomenon over large software
projects. Our results suggest that open-source developers pay
little attention to testing. This is undesirable as open-source
software development is arguably as important as its closed-
source counterpart. This is supported by the fact that many real
systems are built on top of open-source projects and libraries,
e.g., hadoop, struts, etc. Hence, the quality of many open-
source projects is important, as bugs and failures can adversely
affect many users. Furthermore, a past study has indicated
that software quality is correlated to coverage [20]. Therefore,
there is a need to further improve software testing, in general,
and test coverage, in particular, in open-source projects. This
highlights the need for additional research in the software
engineering research community to promote new tools that
can be easily used by these developers so that the quality of
software testing can improve for many open-source systems.

From the results of RQ2, we observe that larger and more
complex projects are likely to have lower test coverage levels.
This indicates that it is harder for developers to keep up with
software testing efforts for larger or more complex projects.
Indeed, for larger projects, there are more lines to cover;
for more complex projects, it is harder to achieve a higher
coverage when test cases are added. Thus, there is a need for
more help to cover larger software systems. There have been a
number of studies on test generation techniques which can help
developers achieve a higher coverage during testing [10], [11],
[12], [13]. However, most of these studies, have often only
been applied to very small (<1 kLOC), small (<10 kLOC),
or medium sized programs (<100 kLOC). Thus, there is a
need to develop test generation techniques that could work on
large projects as these projects would benefit most from test
generation techniques.

Our experiments also shed light on the behaviours of

software developers in testing their projects. From the results
of RQ3, we find that larger and more complex files are likely to
have higher test coverage levels. This indicates that developers
pay more attention to files that are large or complex. Research
has shown that such files are more likely to be buggy [22]. We
also find that the correlation between the number of developers
and coverage is insignificant. This indicates that adding more
developers to a project does not necessarily increase coverage
– the new developers can help to develop more features rather
than focus on testing efforts.

VI. THREATS TO VALIDITY

As with any empirical study, we also have several threats
to validity. Some of these threats are described below:

Threats to external validity relate to the generalizability
of our results. We have investigated over 300 open-source
projects of substantial size from GitHub, which is one of
the most popular super-repositories, and from Debian, which
is a popular Linux distribution. Projects in GitHub are not
restricted to a particular domain. Debian also includes projects
from different domains. Thus, we believe there is little threat
by only analysing these projects. All the projects that we
analyse are written in Java. It is unclear if the results would be
the same for projects written in other programming languages.
In the future, we plan to reduce these threats to external validity
by extending our study to also analyse projects written in
various programming languages.

Threats to internal validity relate to the conditions under
which the experiments are performed. We use Sonar to find
software metrics such as lines of code, number of tests, cyclo-
matic complexity and code coverage. Sonar relies on Maven,
implying that non-Maven projects are not taken into account,
and that projects that do not fully conform to the Maven direc-
tory structure may be interpreted incorrectly. The latter issue
could lead to incorrect calculations of some software metrics
such as lines of code. Similarly, during dynamic analysis, i.e.,
running of test cases, there may be cases where Sonar is not
able to find and run all of the test cases, leading to a wrong
coverage value. We have, however, manually checked some
of the projects, and these appear to fully conform to Maven
directory structure. For all the projects in our dataset, we use
the latest revision of the repository, rather than a released
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version. We do so to check whether project is regularly tested
by the developers before it is available to the users. We
calculate the number of developers for a file as the number of
people who have committed at least one change that modifies
the file. It is possible that a developer only makes non-essential
changes to a file; still we include that developer. We also only
run the Junit tests that Sonar identifies; there could be some
test files that are missed by Sonar and these might impact the
coverage levels.

Threats to construct validity relate to the suitability of the
metrics that we investigate in this study. We use standard
metrics, e.g., code coverage, cyclomatic complexity, lines of
code, etc. These metrics have often been used to characterize
software systems [6], [16].

VII. RELATED WORK

Here, we describe past studies on testing, code coverage
and GitHub. Our survey here is by no means complete.

A. Studies on Testing & Code Coverage

Numerous studies have investigated the importance of
testing and code coverage on the overall quality and reliability
of the software. Mockus et al. study two industrial software
projects (Windows Vista from Microsoft and an application
from Avaya) to understand the importance of test coverage
on test effectiveness and analyse the required test effort with
different levels of test coverage [20]. The results of their
study show that increased coverage leads to a reduction in
the number of post-release defects but increases the amount
of test effort. Cai and Lyu study the relationship between
code coverage and fault detection capability using coverage
testing and mutation testing [23]. They analyse a large project
to understand the relationship under different conditions of
coverage metrics and testing profiles. Cai performs an em-
pirical investigation to find the effect of code coverage on
fault detection and finds that this effect varies under different
testing profiles [24]. The results show that there is strong
correlation between code coverage and fault detection for
exceptional test cases. Shamasunder perform an empirical
study to analyse the impact of different kinds of coverage on
test suite effectiveness [25]. The results show that branch and
block coverage have a higher correlation with fault detection as
compared to path coverage. The above studies show the need
for achieving good test coverage to improve the reliability of
systems. In this work, we investigate the state-of-the-practice
of testing by analysing over 300 projects. We measure code
coverage of the projects that successfully compile and analyse
the relationships between various project characteristics (e.g.,
size, complexity, etc.) with code coverage. Our study shows
that despite the importance of testing, for many projects, the
code coverage is low.

Gopinath et al. investigate the correlation between test
suite coverage and its effectiveness in killing mutants [15].
They start with more than 1,000 GitHub projects but need to
remove most of them due to compilation, etc. errors. They
end up with around 200 GitHub projects for their analysis.
Most of the projects analysed are small (less than 1000 lines
of code). They find that there is a correlation between test
suite coverage and effectiveness. Our work complements this

work by addressing a different set of research questions. We
also study a larger set of projects and most of them are of
larger sizes (more than 10,000 lines of code). Inozemtseva
and Holmes also investigate the correlation between test suite
coverage and its effectiveness in killing mutants on 5 large Java
programs [26]. They find that there is a weak to moderate
correlation between test suite coverage and its effectiveness.
Our work complements this work by addressing a different
set of research questions. We also study a large set of projects
instead of only 5 projects. Many of the projects that we analyse
are as big as the projects that are analysed by Inozemtseva and
Holmes (more than 100,000 lines of code).

Several studies have proposed new techniques and methods
to increase code coverage. Thummalapenta et al. develop
an approach that takes as input a user-specified intent and
produces programs in the form of method sequences to produce
the object state specified by user [27]. Their approach uses
data from static as well as dynamic analysis and is able to
produce higher coverage than existing approaches. Pandita et
al. propose an approach to produce test inputs to achieve logi-
cal coverage and boundary-value coverage using existing test-
generation approaches [28]. Their approach is able to increase
the coverage and improves the fault detection capability of new
test cases. Park et al. propose a new approach, which combines
random testing with techniques such as static program analysis
and concolic execution [29]. They tested their approach on
twelve Java applications and their results show that their
approach performs better than some previous approaches such
as pure random, adaptive random, and Directed Automated
Random Testing (DART). Our work provides added motivation
to studies on automatic test generation, including the above
mentioned work. We notice that in practice, for many projects,
open-source developers do not test their code sufficiently. We
also highlight a need to make automated test generation tech-
niques more scalable since coverage tends to go down when
project size increases. Thus, large projects are the ones that
would benefit more from automated test generation techniques.

In our previous paper, we investigated the correlation of
the number of test files with the number of developers, the
number of bugs, the number of bug reporters and programming
languages [30]. We used a heuristic, i.e., treat all the files
whose names contain the word test as test files, to identify
files that contain test cases. In this project, we use Sonar to
identify and run test cases. We study code coverage rather than
the number of test files.

B. Studies on GitHub

In this work, we investigate over 300 projects from GitHub
and Debian. Many other studies also investigate GitHub al-
beit for different purposes. Dabbish et al. examine the value
of transparency of large-scale distributed collaborations and
communities on GitHub [31]. They interviewed several GitHub
users to understand how a user infers the technical goals and
vision of others based on the code they edit. Pham et al. con-
duct interviews with several users of GitHub to understand the
impact of transparency on the testing culture [32]. They present
several strategies and challenges faced by collaborating devel-
opers and project managers. Further, they give suggestions to
mitigate these risks to improve the testing behavior of people
working on the same project. Bissyandé et al. investigate the
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popularity of different programming languages used in tens
of thousands of projects hosted in GitHub [33]. Thung et
al. investigate the network structure of projects hosted on
GitHub [34]. They show that social coding enhances the col-
laboration among open-source developers. Jing et al. analyse
many GitHub repositories and users that participate in them to
study project dissemination characteristics [35]. They find that
social links play an important role in project dissemination.

VIII. CONCLUSION AND FUTURE WORK

During software maintenance, testing is a crucial activity to
ensure the reliability of systems. Many past studies have shown
that test coverage has an effect on the quality of software
systems. In this work, we investigate the state-of-the-practice
of testing in the open source community. We examine over 900
open-source projects and investigate the relationships between
project characteristics, measured by various software metrics,
and code coverage for 327 projects which sucessfully compile
and produce coverage.

Our empirical study highlights the following results:

1) Most of the projects have low coverage levels, with an
average of 41.96%.

2) 254 out of the 327 projects that build successfully have
test success density above 98%.

3) Code coverage of a project decreases with the increase in
the size as well as cyclomatic complexity of the project.

4) However, at the file level, coverage increases with the
increase in the size of the file as well as its complexity.

5) The number of developers has an insignificant correlation
with the coverage at the project level and no correlation
with the coverage at the file level.

Our results suggest that many open source developers do
not test their code sufficiently. There is a need for additional
tools and techniques to help developers increase coverage,
especially for large or complex projects. Unfortunately, many
current test generation techniques only work on small or
medium size projects. Our results also highlight the behaviours
of software developers in testing their projects: developers
are often aware of the risk of large or complex source code
files and put more effort into testing such files, and adding
developers does not necessarily increase coverage.

In the future, we plan to expand our study to include
more projects to mitigate the threats to external validity.
Furthermore, we intend to include other software metrics such
as number of defects. As a large number of projects show low
coverage, we also plan to analyse the amount of effort required
to attain a particular level of coverage.
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