
Diffusion of Software Features: An Exploratory Study

Ferdian Thung, David Lo, and Lingxiao Jiang
School of Information Systems

Singapore Management University, Singapore
{ferdianthung,davidlo,lxjiang}@smu.edu.sg

Abstract—New features are frequently proposed in many
software libraries. These features include new methods, classes,
packages, etc. These features are utilized in many open source
and commercial software systems. Some of these features are
adopted very quickly, while others take a long time to be
adopted. Each feature takes much resource to develop, test, and
document. Library developers and managers need to decide
what feature to prioritize and what to develop next. As a
first step to aid these stakeholders, we perform an exploratory
study on the diffusion or rate of adoption of features in Java
Development Kit (JDK) library. Our empirical study proposes
such questions as how many new features are adopted by
client applications; how long it takes for a new feature to
spread to various software products; what features are diffused
quickly; and what features are diffused widely. We perform an
exploratory study with new features in Java Development Kit
(JDK, from version 1.3 to 1.6) and provide empirical findings
to answer the above research questions.

I. INTRODUCTION

Different from heavy machinery that changes slowly,
software systems change frequently. New features are con-
tinually added to a system. These features, often expressed
as new APIs (e.g., methods or classes that can be used by
other programs or users), range from new functionalities,
new user interfaces, improved compatibility, optimized re-
implementation of old functionalities for better performance
and scalability, and much more.

Introducing new features, however, incurs cost. They need
time to be developed. Testing and validation efforts are also
needed to ensure that the new features work as intended. In
addition, introducing new features might also introduce risks
as old features that are previously working fine may now
stop working due to incompatibilities with the new features.
Such cost should be justified properly when resources are
dedicated to develop the new features. The justification often
comes when the new features are used by and benefit end
users. For software libraries, a successful feature is one that
is used widely by many client applications.

In the industry setting, the decision to incorporate new
features are often made by market analysts. They often look
for features that are well sought after by potential customers
and thus the features are expected to be more “marketable”
when introduced. Marketable features are diffused widely
in the community of adopters. Analysts often investigate
historical data and the characteristics of features that are

previously marketable and base their decisions on such
investigations. There have been many studies in the business
and management community on factors that affect the
diffusion of various products [21], [23], [24].

Despite the proliferation of such studies in the marketing
community, there has been little research in the software en-
gineering community that investigates the diffusion, or rate
of adoption, of various software features. Such knowledge is
important to guide decision makers in prioritizing features
to be released first and in developing features that would
be well adopted. Poor decisions in a commercial setting can
prove detrimental to a company (c.f. [14]). Thus, there is
a need for more studies that can guide decision makers in
deciding properly what features to focus on first.

In this study, as a first step to fill the above mentioned
need, we perform an exploratory study that analyzes the
diffusion, or rate of adoption, of software features. We are
interested to investigate how fast features get adopted and
what kind of features get adopted quickly. We focus in
particular on new features introduced in software libraries,
such as Java Development Kit (JDK).

To perform this study, we download various versions
of JDK and enumerate all new features in a downloaded
version against its previous version. Also, we track a pool
of 15 medium-large Java applications implementing various
functionalities and see when they incorporate these new
features (if ever). We then analyze the distribution of
different rates of adoption and characterize features that are
well adopted (or diffused) and those that do not.

The contributions of this study are as follows:

1) To the best of our knowledge, this is the first study that
investigates the diffusion of software features.

2) We analyze a large collection of software features in
JDK and track the diffusion of these features in a
collection of Java applications.

3) We present a characterization of features that are well
diffused and those that do not.

The structure of this paper is as follows. In Section II,
we present our methodology and data collection steps. In
Section III, we present our research questions and empirical
findings. We discuss interesting issues in Section IV. We
present related work in Section V. We conclude with future
work in Section VI.



II. METHODOLOGY

Our approach is divided into three stages as illustrated
in Figure 1: (1) new feature extraction that extracts new
methods introduced by a new version of a library, (2) feature
tracking that extracts all used methods in an application and
decides the origins of the code that uses the methods, and (3)
feature analysis that analyzes how new methods introduced
by a program are diffused to and used in other programs.

Figure 1. Process Overview

Software 
Libraries 

(JDK) 

New Feature 
Extraction 

(BCEL) 

List of 
New 

Features 

Software 
Applications 

(Java) 

Extraction of 
Used Features 

(BCEL) 

List of 
Used 

Features 

Origin 
Analysis 

(git blame) 

List of 
Used New 
Features 

with Their 
Origins 

Diffusion 
Results 

Analysis 

Compare 
List of 

Used New 
Features 

A. New Feature Extraction

In this step, we extract new features from software
libraries. We compare and contrast pairs of versions of a
software library to detect new methods that only exist in the
newer version. For each JDK version, we use Byte Code
Engineering Library (BCEL) [1] to extract all methods that
appear in all classes in the version. We then compare and
contrast the list of methods from two consecutive versions
to get a list of new public methods introduced in the newer
version. In the list of new methods introduced, we use the
date when the newer version of JDK was released to the
public as the date when the methods were introduced.

B. Feature Tracking

In this step, we track which and when new features are
used in the potential client population. In this paper, we
take a sample client population which is comprised of 15
medium to large Java applications implementing various
functionalities. For each application, we clone its Git [2]
repository and analyze the latest version of the application
to find out all of the new features of a particular version of
JDK that are used in this application. The algorithm we use
to identify the new features used in an application and the
time they are first used is illustrated in Figure 2.

In the algorithm, given an application, we first extract the
list of all method invocations together with their signatures
and the line numbers corresponding to the call locations by
using Byte Code Engineering Library (BCEL) (lines 1-3).
We then only keep the methods that are new features of a
particular version of JDK (lines 4-7). At this point, we get
the new features used in the application.

When analyzing the diffusion of new features, we
should only consider features that are explicitly used by
programmers, excluding ones that are only implicitly used
due to automatic program transformation done by Java
compilers. Thus, in the feature tracking algorithm, we only

Procedure GetUsedNewFeatures
Inputs:
new : new features in JDK
client : client application
git repo: clone of client application git repository
Output:
Result : A set of used new features and

the time when they are first used
Methods:
1 : Let Lc be a set to contain all method invocations together

with their signatures and the line numbers in source code;
2 : For each method invocation m in client
3 : Add m’s signature together with its line number to Lc;
4 : Let Lz be a set to contain used new features in client;
5 : For each item in Lc

6 : If the method in item is in new and is an explicit call
7 : Add item to Lz ;
8 : For each item in Lz

9 : Run git blame for item’s line in git repo;
10: Get the time the method invocation was introduced;
11: Add the method together with the time to Result;
12: Output Result;

Figure 2. Feature Tracking Procedure

keep explicit methods (line 6-7). We do this by checking
the extracted method (from Java bytecode) against the actual
line of code in the source file. If that line actually contains a
method name matching the extracted method invocation, we
consider it as explicit, otherwise we consider it as implicit.

In addition, since we want to understand how quickly JDK
new features are adopted by Java applications, we also need
to find out the time when the features are used in each
application. For this purpose, we utilize git blame [3]
command on the given application’s Git repository. This
command would tell us the time when a given line of code
in the application is last modified or added. When the line
contains a call to a new feature of a JDK version, the time
from git blame likely indicates the time when the new
feature is used in the application (line 9). This is often called
origin analysis in the literature [4], [11], [16], [22], [26].
When multiple lines of the application contain calls to the
same feature, we take the earliest time from multiple git
blame commands as the time when the new feature is first
used in the application (line 10-11). Note that git blame
is only performed for explicitly called methods (line 5-11).

C. Feature Analysis

At the end of the above steps, we would have retrieved all
of the new features that are used in an application together
with the time when they are first used in the application.

For each feature, we compute the period of time that has
lapsed since the new feature was introduced to the public,
and consider this period of time as the time needed for the
feature to be diffused to the target application.

We perform the above steps for every application and
perform a number of analysis for new features, such as
what is the distribution of the time needed for a feature
to be adopted and how many applications use each feature.
We also compare and contrast such information for various
versions of JDK (1.3-1.6). Furthermore, we show some
features that have been diffused quickly and widely (in
Section III).



Table I
JDK RELEASE DATE

JDK Release Date Size(kLOC)
J2SE 1.2 (December 8, 1998) 484.801
J2SE 1.3 (May 8, 2000) 572.312
J2SE 1.4 (February 6, 2002) 1,179.732
J2EE 5.0 (September 30, 2004) 1,883.740
Java SE 6 (December 11, 2006) 2,033.103

Table II
NUMBER OF NEW FEATURES FOR JDK VERSIONS 1.3-1.6

JDK # Features # New Features
1.3 26759 5262
1.4 44449 18923
1.5 47079 10303
1.6 53780 7861

III. EXPERIMENTS

We describe our dataset, research questions, and empirical
findings.

A. Dataset

In this paper, we analyze new features introduced in JDK
versions 1.3 to 1.6, and thus need to download JDK versions
1.2 to 1.6. We ignore JDK 1.0 and 1.1 as many open source
projects written in Java did not exist at the time when older
versions of JDK were released and JDK may not be mature
enough at that time. We also ignore latest versions of JDK
(1.7 and above) as it is not old enough to be diffused to
various applications. Table I show the various versions of
JDK that we use and their release dates.

For JDK versions 1.3 to 1.6, we extract newly introduced
methods in each version by constrasting all methods
contained in the version and its previous version as explained
in Section II. The numbers of new methods (i.e., new
features) for the JDK versions are shown in Table II along
with the total numbers of methods. To find how well diffused
these new features are, we collect a set of 15 open source
Java projects shown in Table III which use these features.

B. Research Questions

RQ1. How many new features in a library are utilized by
client applications?

Table III
CLIENT PROJECTS ANALYZED IN THIS STUDY

Project History Size(kLOC) Functionality
ant 13/01/00-28/12/11 204.024 Java build tool
batik 01/10/00-12/01/12 337.176 SVG manipulation toolkit
derby 11/08/04-13/01/12 1,167.936 Relational database
fop 31/10/99-10/01/12 237.788 XSL-FO implementation
hadoop 27/01/06-18/06/09 327.743 Large cluster application

framework
ivy 16/06/05-15/01/12 74.140 Project dependencies tool
junit 03/12/00-31/12/11 11.989 Unit testing tool
log4j 16/11/00-17/01/12 43.788 Logging tool
lucene 11/09/01-25/11/09 81.300 Text search engine library
nutch 23/01/05-14/01/12 29.800 Web-search software
poi 31/01/02-17/01/12 156.776 APIs for Microsoft’s OLE 2

Compound file formats
santuario-
java

28/09/01-13/01/12 51.008 XML primary security stan-
dards

tomcat 27/03/06-17/01/12 336.703 Web server and servlet con-
tainer

xalan-j 09/11/99-1/01/12 186.617 XSLT processor
xerces2-j 09/11/99-2/01/12 193.041 XML manipulation library

Table IV
NUMBERS OF NEW FEATURES USED BY THE SAMPLE PROJECTS

JDK Version # New Features Used Proportion
1.3 15 0.285%
1.4 595 3.144%
1.5 181 1.757%
1.6 160 2.035%

RQ2. How long would it take for a new feature to
spread to various applications? What features are
diffused quickly? What are some characteristics of
the features that are diffused quickly?

RQ3. How many applications would adopt a new fea-
ture? What features are diffused widely to many
applications? What are some characteristics of
features that are diffused widely?

We present our empirical findings for answering the above
research questions in the following subsections based on the
dataset described in Section III-A.

C. RQ1: Utilization of New Features

To answer this question, we analyze the numbers of newly
introduced methods for various versions of JDK used in the
15 software projects. Table IV provides this information.

We notice that 595 new features of JDK 1.4 are used by
the 15 applications. On the other hand, only 15 new features
of JDK 1.3 are used in the applications. Proportion wise,
we find that only a small percentage of new features are
used (0.265%-2.969%). This shows that most features are
not widely diffused to many software applications.

D. RQ2: Speed of Diffusion

We define speed as the measure of how fast the new
features were used in the client applications after the
corresponding JDK version was released publicly. There are
two parts to this research question: first, we would like to
find the diffusion speed of various new features; second, we
want to find features that have the highest diffusion speed.

To answer the first part, Figure 3 (left) plots the period
of time that has elapsed until a feature is adopted (x-axis)
versus the number of new features with this behavior (y-
axis). Figure 3 (right) is the corresponding cumulative graph.
We note that only 77 features (8% of all adopted features)
are adopted within 100 days. The 600-700 days time interval
bucket has the highest number of features. It can also be
noted that 50% of all new features that are eventually
adopted are used in less than 1000 days (i.e., 2.74 years).
From the graph, we can also infer that the likelihood of a
feature being adopted decreases over time. Thus unpopular
features are likely to remain unpopular.

We also compare the average, minimum, and maximum
diffusion speeds of adopted features for different versions
of JDK. We show these in Table V. The last column of
the table is the average adoption time of features that are
adopted within 5 years. We use 5 years as this is the period
time that has elapsed since the introduction of JDK 1.6 to



Table V
AVERAGE DIFFUSION SPEED PER JDK VERSION (IN DAYS)

JDK Avg Min Max Median Avg 5 Years
1.3 1513.67 228 3425 1039 414.375
1.4 1243.44 8 3569 1112 647.2
1.5 1186.23 145 2661 1145 865.02
1.6 849.28 238 1803 605 849.28

today. We notice that the averages generally increase (except
from JDK 1.5 to 1.6) with each newer JDK version. This
might be due to the increasing maturity of Java API such
that more functionalities could be done easily with existing
set of features.

To answer the second part, Table VI highlight the top
10 features that has the highest speed of diffusion. The top
10 features include methods related to DOM and XML.
These methods are the core methods in their corresponding
classes. The fast adoption of these features is affected
by the popularity of DOM and XML which are the “hot
technologies” in the market at that time. We also note that
all the top-10 features with highest diffusion speed comes
from JDK 1.4.

We also show the top-3 features with the highest diffusion
speed per JDK version in Table VII. The top-3 features of
JDK 1.3 consists of methods related to sound functionality.
The top-3 features of JDK 1.4 are related to DOM. The top-
3 features of JDK 1.5 are related to DOM and XML. The
top-3 features of JDK 1.6 are related to general data types
and structures.

E. RQ3: Breadth of Diffusion

We define breadth as the measure of how many client
applications adopt the new features. Again, there are two
parts to this research question: first, we would like to find
the breadth of diffusion of various new features; second, we
want to find features that has the widest diffusion breadth.

To answer the first part, Figure 4 (left) plots the number
of adopting client applications (x-axis) versus the number
of new features with this behavior (y-axis). Figure 4 (right)
is the corresponding cumulative graph. It can be noted that
most adopted software features are only used in one project.
This shows that many new features are very specific to a
particular need and thus only affect a small subset of the
client applications.

We also compare the average, minimum, and maximum
diffusion breadths of adopted features for different versions
of JDK. We show these in Table VIII. The last column of
the table is the average diffusion breadth of features that
are adopted within 5 years. We notice that JDK 1.4 has the
highest average breadth. Upon closer inspection, we find that
this is the case as many of the features released in JDK 1.4
relate to XML or general purpose data structures.

To answer the second part, Table IX highlights the top
10 features that has the widest diffusion breadth. The top
10 features include methods under xml, dom, and lang
packages. We can see that these methods are either XML

Table VIII
AVERAGE DIFFUSION BREADTH PER JDK VERSION

JDK Avg Min Max Median Avg 5 Years
1.3 1.13 1 2 1 1
1.4 1.47 1 5 1 1.53
1.5 1.28 1 4 1 1.31
1.6 1.08 1 4 1 1.08

related methods, or general purpose methods that are used
to manipulate common data structures.

We also show the top-3 features with the widest diffusion
breadth per JDK version in Table X. There are only 2
features of JDK 1.3 that are used in more than 1 client
application. The top-2 features of JDK 1.3 consists of
methods in the URL class and Collection class – both are
data structures commonly used in various applications. The
top-3 features of JDK 1.4 are related to DOM and XML.
The top-3 features of JDK 1.5 and 1.6 are related to general
purpose data structures.

IV. DISCUSSION

We are interested in the diffusion properties of software
features as it will give us some insights about characteristics
of features that are adopted fast or used widely. By knowing
what features are well diffused, developers of programming
language libraries can focus on finishing and releasing these
features first.

The following are the summary of our exploratory study:
1) Most new features are not diffused well in the

applications analyzed in this study. Indeed only up to
3% new features of the various versions of JDK are
used by the applications. This may suggest the need
for promoting the utilization of these features — either
by automatic program transformation or by leveraging
more means (e.g., forums, social media, tutorials, etc.)
to diffuse information to developers.

2) Only a few features (8%) are diffused fast (within
100 days). Most features take time to be adopted.
Only features related to current hot technological trend
get adopted quickly (e.g., in 8 days for some DOM
related methods). Thus developers need to catch latest
technological trend. If they are able to do this, there
would be many adopters to their newly created features.

3) Most features are diffused slowly. A feature not adopted
at a period of time is less likely to be adopted in future.

4) Most Java libraries provide specific features that are
peculiar for a special functionality. However, these
special functionalities are often not widely used. Most
new features of JDK 1.3 to 1.6 are used in only 1 client
out of the 15 client applications analyzed in our study.

5) Adding new functionalities to general purpose data
structures are good as they are often adopted widely
and quickly.

V. RELATED WORK

We present related work on product & information diffu-
sion and feature recommendation in software engineering.



Figure 3. Speed of Diffusion: (Left) Time to Adoption vs. # Features, (Right) Corresponding Cumulative Graph

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

N
u

m
b

e
r 

o
f 

Fe
at

u
re

s

Time (in hundred days)

0

200

400

600

800

1000

1200

<1 <3 <5 <7 <9 <11 <13 <15 <17 <19 <21 <23 <25 <27 <29 <31 <33 <35

N
u

m
b

e
r 

o
f 

Fe
at

u
re

s

Time (in hundred days)

Table VI
TOP 10 NEW FEATURES WITH HIGHEST DIFFUSION SPEED

No Method Signature Speed(days) JDK Version
1 org.w3c.dom.Entity.getNotationName()Ljava/lang/String; 8 1.4
2 org.w3c.dom.Entity.getPublicId()Ljava/lang/String; 8 1.4
3 org.w3c.dom.Entity.getSystemId()Ljava/lang/String; 8 1.4
4 org.w3c.dom.Notation.getPublicId()Ljava/lang/String; 8 1.4
5 org.w3c.dom.Notation.getSystemId()Ljava/lang/String; 8 1.4
6 org.apache.xpath.objects.XObject.execute(Lorg/apache/xpath/XPathContext;)Lorg/apache/xpath/objects/XObject; 26 1.4
7 org.xml.sax.SAXException.getException()Ljava/lang/Exception; 28 1.4
8 org.xml.sax.AttributeList.getLength()I 28 1.4
9 org.xml.sax.Parser.setDocumentHandler(Lorg/xml/sax/DocumentHandler;)V 28 1.4
10 org.xml.sax.AttributeList.getValue(I)Ljava/lang/String; 28 1.4

Table VII
TOP 3 NEW FEATURES WITH HIGHEST DIFFUSION SPEED PER JDK VERSION

No JDK Method Signature Speed(days)
1 1.3 javax.sound.sampled.Clip.open(Ljavax/sound/sampled/AudioInputStream;)V 228
2 1.3 javax.sound.sampled.Clip.loop(I)V 228
3 1.3 javax.sound.sampled.Line.close()V 228
4 1.4 org.w3c.dom.Entity.getNotationName()Ljava/lang/String; 8
5 1.4 org.w3c.dom.Entity.getPublicId()Ljava/lang/String; 8
6 1.4 org.w3c.dom.Entity.getSystemId()Ljava/lang/String; 8
7 1.5 org.w3c.dom.DOMErrorHandler.handleError(Lorg/w3c/dom/DOMError;)Z 145
8 1.5 javax.xml.datatype.Duration.getDays()I 218
9 1.5 javax.xml.datatype.Duration.getHours()I 218
10 1.6 java.util.Queue.add(Ljava/lang/Object;)Z 238
11 1.6 java.util.SortedMap.entrySet()Ljava/util/Set; 254
12 1.6 java.util.SortedMap.keySet()Ljava/util/Set; 254

Figure 4. Breadth of Diffusion: (Left) # Adopting Applications vs. # Features, (Right) Corresponding Cumulative Graph

0

100

200

300

400

500

600

700

800

1 2 3 4 5

N
u

m
b

e
r 

o
f 

Fe
at

u
re

s

Breadth

0

200

400

600

800

1000

1200

<1 <2 <3 <4 <5

N
u

m
b

e
r 

o
f 

Fe
at

u
re

s

Breadth

Table IX
TOP 10 NEW FEATURES WITH WIDEST DIFFUSION BREADTH

No Method Signature Breadth JDK Version
1 javax.xml.parsers.DocumentBuilderFactory.newDocumentBuilder()Ljavax/xml/parsers/DocumentBuilder; 5 1.4
2 javax.xml.transform.TransformerFactory.newInstance()Ljavax/xml/transform/TransformerFactory; 5 1.4
3 org.w3c.dom.Document.getImplementation()Lorg/w3c/dom/DOMImplementation; 5 1.4
4 org.w3c.dom.Element.setAttributeNS(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V 5 1.4
5 java.lang.Boolean.valueOf(Z)Ljava/lang/Boolean; 4 1.4
6 java.lang.Integer.valueOf(I)Ljava/lang/Integer; 4 1.5
7 java.lang.String.replaceAll(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String; 4 1.4
8 java.lang.String.split(Ljava/lang/String;)[Ljava/lang/String; 4 1.4
9 java.lang.StringBuilder.append(Ljava/lang/Object;)Ljava/lang/StringBuilder; 4 1.5
10 java.lang.StringBuilder.append(Ljava/lang/String;)Ljava/lang/StringBuilder; 4 1.5


