Information Retrieval Based Nearest Neighbor
Classification for Fine-Grained Bug Severity Prediction

Yuan Tian', David Lo!, and Chengnian Sun?
!Singapore Management University, Singapore
*National University of Singapore, Singapore
{yuan.tian.2011,davidlo}@smu.edu.sg, suncn@comp.nus.edu.sg

ABSTRACT

Bugs are prevalent in software systems. Some bugs are criti-
cal and need to be fixed right away, whereas others are minor
and their fixes could be postponed until resources are avail-
able. In this work, we propose a new approach leveraging
information retrieval, in particular BM25-based document
similarity function, to automatically predict the severity of
bug reports. We investigate similar bug reports reported in
the past and assign severity labels to newly reported bug re-
ports. Duplicate bug reports are utilized to determine what
bug report features, be it textual, ordinal, or categorical,
are important. We focus on predicting fine-grained sever-
ity labels, namely the different severity labels of Bugzilla
including: blocker, critical, major, minor, and trivial.
Compared to existing state-of-the-art study on fine-grained
severity prediction, namely the work by Menzies and Mar-
cus, our approach brings significant improvement.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining; D.2.7 [Software|: Software Engineering—
Distribution, Maintenance, and Enhancement

General Terms
Algorithms, Experimentation

Keywords

Severity Prediction, Software Defects

1. INTRODUCTION

Software systems usually contain defects that need to be
fixed after releases, and in some projects users are allowed
to feedback on these defects that they encounter through bug
reporting systems such as Bugzilla. With Bugzilla, users can
report not only the description of the bug but also estimate
the severity of the reported bugs. Unfortunately, although
guidelines exist on how severity of bugs need to be assigned,
the process is inherently manual that is highly dependent on

the expertise of the bug reporters in assigning correct labels.
Novice bug reporter might find it difficult to decide the right
severity level. Developers (aka. Bugzilla assignee) can later
adjust the severity [1] and use this severity information to
prioritize which bugs to be fixed first.

As the number of bug reports made is large, a number of
past studies have proposed approaches to help users in as-
signing severity labels, and development team in validating
bug report severity [19, 15, 16]. All these approaches com-
bine text processing with machine learning to assign severity
labels from the textual description of the reports. Menzies
and Marcus develop a machine learning approach to assign
the severity labels of bug reports in NASA [19]. More re-
cently, Lamkanfi et al. develop another machine learning
approach to assign severity labels of bug reports in sev-
eral Bugzilla repositories of open source projects [15]. In
a later work, Lamkanfi et al. have also tried many different
classification algorithms and investigate their effectiveness
in assigning severity labels to bug reports [16]. Menzies and
Marcus assign fine-grained labels (5 severity labels used in
NASA), while Lamkanfi et al. assign coarse-grained labels
(i.e., binary labels: severe and non-severe).

The bug severity prediction tools are not perfect though and
there are still rooms for improvement. Menzies and Marcus
reported an F-measure score of 0.14 to 0.86 for the different
severity labels [19]. Lamkanfi et al. reported an F-measure
score of 0.65 to 0.75 on Bugzilla reports from different soft-
ware systems [15]. Thus there is a need to improve the
accuracy of the prediction tools further.

In this work, we propose an information retrieval (IR)-based
nearest neighbor solution to predict the severity labels of
bug reports. We first measure the similarity of different bug
reports and based on this similarity we recover past bug
reports that are most similar to it. There are various mea-
sures that have been proposed in the information retrieval
community to measure the similarity between two textual
documents [23, 31, 28, 27]. Some of the popular techniques
are BM25 and its extensions [27]. BM25 technique and its
extensions require some parameters to be learned. We lever-
age bug reports that have been marked as duplicate with one
another to set these parameters. Our hypothesis is that du-
plicate bug reports would help us to identify what features
are important and what are not to measure the similarity
between two bug reports. Based on a set of k nearest neigh-

bors, the labels of these k similar bug reports are then used
to decide the appropriate severity label for a new bug report.

In this work, we focus on predicting fine-grained bug severity
labels. We investigate the effectiveness of our proposed ap-
proach as compared to the past studies by Menzies and Mar-
cus [19]. Since our approach requires duplicate bug reports,
we do not use the NASA data investigated by Menzies and
Marcus. Rather, we analyze a large number of bug reports
stored in Bugzilla of Eclipse, OpenOffice, and Mozilla. We
focus on predicting five severity labels of Bugzilla namely:
blocker, critical, major, minor, and trivial. Following
the work of Lamkanfi et al. [15, 16], we do not consider
the severity label normal as this is the default option and
“many reports just did not bother to consciously assess the
bug severity” [15, 16]. Thus we treat this data as unlabeled
data and do not use it for our testing.

Our experiments show that we could achieve a precision, re-
call, and F-score of up to 75%, 73%, and 74% for predicting
a particular class of severity labels. Precision measures the
amount of false positives, while recall measures the amount
of false negatives. F-score is the harmonic mean of preci-
sion and recall. Comparing with the state-of-the-art work
on fine-grained severity level prediction, we show that for
most bugs and most severity label we could improve their
approach by up to more than a hundred times more accu-
rate, especially on hard-to-predict severity labels.

The following lists our contributions:

1. We propose an information retrieval based nearest neigh-
bor solution, by leveraging duplicate bug reports, to
predict fine-grained severity labels.

2. We have experimented our solution and compare it
with the state-of-the-art work over a collection of more
than 65,000 bug reports from three medium-large soft-
ware systems: OpenOffice, Mozilla, and Eclipse.

3. We show that we can achieve an improvement of up
to more than a hundred times more accurate for fine-
grained bug severity prediction, especially on hard-to-
predict severity label, over the state-of-the-art work.

The structure of this paper is as follows. In Section 2, we
describe some background material related to bug report-
ing and text pre-processing. In Section 3, we elaborate our
approach. We present our experiments and their results in
Section 4. We discuss related work in Section 5. We con-
clude and describe future work in Section 6.

2. BACKGROUND

In this section, we describe the bug reporting process, then
present standard approach to pre-processing textual docu-
ments, and finally highlight BM25F.,; to measure the simi-
larity between structured documents.

2.1 Bug Reporting

To help improve the quality of software systems, software
projects often allow users to report bugs. This is true for
both open-source and closed-source software developments.

Bug tracking systems such as Bugzilla are often used. Users
from various locations can log in to Bugzilla and report new
bugs. Users can report symptoms of the bugs along with
other related information to developers. These include tex-
tual descriptions of the bug either in short form or detailed
form, product and component that are affected by the bug,
and the estimated severity of the bug. The format of bug
reports vary from one project to another, but they typically
contain the fields described in Table 1.

Developers (in particular bug triagers) would then verify
these symptoms and fix the bugs. They could make adjust-
ment on the severity of the reported bug. There are often
many reports that are received and thus developers would
need to prioritize as to which reports are more important
than others — the severity field is useful for this purpose. As
bug reporting is a distributed process, often the same bug is
reported by more than two people in separate bug reports.
This is known as duplicate bug report problem. The devel-
oper /triager would also need to identify these duplicate bug
reports so as not to waste different developers effort in fixing
the same bug.

2.2 Text Pre-Processing

Tokenization. A token is a string of characters, and includes
no delimiters such as spaces, punctuation marks, and so
forth. Tokenization is the process of parsing a character
stream into a sequence of tokens by splitting the stream at
delimiters.

Stop-Word Removal. Stop words are non-descriptive words
carrying little useful information for retrieval tasks. These
include link verbs such as “is”, “am” and “are”, pronouns
such as “I”, “he” and “it”, etc. Our stop word list contains 30
stop words, and also common abbreviations such as “I’'m”,

“that’s”, “We’ll”.

Stemming. Stemming is a technique to normalize words to
their ground forms. For example, a stemmer can reduce
both “working” and “worked” to “work”, thus for computers
to capture the similarity between the two words. We used
Porter’s stemming algorithm [26] to process our text.

2.3 BMZ25F and Its Extension

We present BM25F, and BM25Fc;:. The first is a stan-
dard document similarity function, the latter is the extended
BM25F proposed in [27] to handle longer query documents.

BM25F Similarity Function. BM25F is a function to
evaluate the similarity between two structured documents [22,
32]. A document is structured if it has a number of fields. A
bug report is a structured document as it has several textual
fields, i.e., summary and description. Each of the fields in
the structured document can be assigned different weight to
denote its importance in measuring the similarity between
two documents.

Before we proceed further, let’s define a few notations. Con-
sider a document corpus D consisting of N documents. Also,
each document d has K fields. Let’s denote the bag of words
in the " field as d[f] for 1 < f < K.

Table 1: Fields of Interest in a Bug Report

[Field]

Description

Summ| Summary: Short description of the bug which typically contains only but
a few words.
Desc | Description: Detailed description of the bug. This includes information
such as how to reproduce the bug, the error log outputted when the bug
occurs, etc.
Prod | Product: The product that is affected by the bug.
Comp| Component: The component that is affected by the bug.
Sev Severity: The estimated impact of the bug to the workings of the soft-
ware. In Bugzilla, there are several severity levels: blocker, critical,
major, normal, minor, and trivial. There is also another severity level,
enhancement which we ignore in this work, as we are not interested in
feature requests but only defects.
Table 2: Examples of Bug Reports from Mozilla Bugzilla
| | ID [Summary | Product | Component | Severity |
1 525359 | replying to an HTML message which includes a contented- Thunderbird Message major
itable div leaves Thunderbird compose unusable until restart Compose
(from incredimail for example) Window
543032 | Impossible to answer a mail from thunderbird 3.01 after Thunderbird Message critical
viewing an e-mail sent by Incredimail Compose
Window
9 537897 | No way to select engines when setting up to use an existing | Mozilla Services | Firefox Sync, normal
account Backend
543686 | Everything is synced when logging in to an existing account | Mozilla Services | Firefox Sync, normal
Ul
3 538953 | Using Search bar AND a proxy with password authentifica- Firefox Search normal
tion ... keeps asking the password at any key entered
544836 | Proxy authentication broken while typing in the search field Firefox Search major

BM25F similarity function has two primary components which
assign global and local importance to words. The global im-
portance of a word ¢ is based on its inverse document fre-
quency (IDF). This IDF score is inversely proportional to
the number of documents containing a word; it is defined in
Equation 1.

IDF(t) = log% (1)

In Equation (1), N¢ is the number of documents containing
the word ¢.

Another component prescribes the local importance of a
word t in a document d. This local importance, denoted as
TFp(d,t), is defined in Equation 2). This is the aggregation
of the local importance of the word t for each of document
d’s field.

wy X occurrences(d[f],t)
b s Xsizey (2)

avg,sizef

K
TFp(d,t) =
= 1—bs+

In Equation (2), wy is the weight of field f, occurrences(d[f],t)

is the number of times the word ¢ occurs in field f, sizey is
the number of words in d[f], avg_sizey is the average size of
d[f] for all documents in D, and by, which takes the value
between 0 to 1, is a parameter that controls the contribution
of the size of the fields to the overall score.

Based on the global and local term importance weights,
given two documents d and ¢, each of which is a bag of
words, the BM25F score of d and q is:

TFp(d, t)

BMESF(dq) = Y IDF() x o Si)s (3

tedng

In Equation (3), the word ¢ is common in d and ¢, and k,
whose value is greater or equal to zero, is a parameter that
controls the contribution of TFp(d,t) to the overall score.
We notice that BM25F has a set of free parameters that
need to be tuned: wy and by for each document’s field, and
k. Given a document containing K fields, BM25F requires
(142K) parameters to be tuned. An optimization technique
based on stochastic gradient descent has been used to tune
these BM25F parameters [30].

BM25F . Similarity Function. BM25F is particularly

developed to compute the similarity of a short document
(i-e., query) with a longer document. It is typically used
for search engines, where user queries are usually short and
consist of only a few words. However, bug reports are longer
textual documents — the description field of a bug report can
contain a few hundred words. Thus, since we want to have
a similarity function that measures the similarity of two bug
reports each of which are relatively long textual documents,
there is a need to extend BM25F. Sun et al. [27] address
this need by proposing BM25F.,; which considers the term
frequencies in queries; it has the following form.

TFp(d,t)
BM25F s (d, q) = IDF(t) X ————F—
25 t(q) Z ()Xk+TFD(d,t)XWQ
tednq
(I+1) x TFg(q,t)
h -
where Wg I+ TFo(g, 1)
K
TFq(q,t) = wa x occurrences(q[f],t) (5)
f=1

In Equation (4), for each common word ¢ appearing in docu-
ment d and query g, its contribution to the overall BM25F .
score has two components: one is the product of IDF and
TFp inherited from BM25F'; and the other is the local im-
portance of word ¢ in the document ¢ — denoted as Wg. Wqo
follows the word weighting scheme of Okapi BM25 [17]. Pa-
rameter [, whose value is always greater than or equal to 0O,
controls the contribution of the local importance of word ¢
in q to the overall score — if [= 0, then the local importance
of t in q is ignored, and BM25F.;; becomes BM25F .

In Equation (5), the contribution of each word ¢ is the sum-
mation of the product of wy, which is the weight of field f,
with the number of occurrences of ¢ in the f* field of g.
Different from TFp of Equation 2, we do not perform any
normalization as retrieval is being done with respect to a
single fixed query — we want to find rank bug reports based
on their similarity to a given query bug report.

BM25F . requires an additional free parameter [in addition
to those needed by BM25F. This brings the number of total
parameters for BM25F to (2 4+ 2K). These parameters can
be set by following a gradient descent approach presented
in [27].

3. PROPOSED APPROACH

In this section, we describe our proposed approach. We
first summarize our approach. We then highlight two major
components of our approach.

3.1 Overall Framework

Our framework assigns severity label to a bug report B
in question by investigating prior bug reports with known
severity labels in the pool of bug reports BPool. The high-
level pseudocode of our approach, named IR Based Nearest
Neighbour Severity Prediction Algorithm, is shown in Fig-
ure 1. The algorithm would first find the top-k nearest

neighbors (Line 1) and then predict label by considering the
labels of these nearest neighbors (Lines 2-3).

Our framework thus consists of two major components: sim-
ilarity computation, which is an integral part of finding near-
est neighbors, and label assignment. In the similarity com-
putation component, we measure the similarity between two
bug reports. We leverage duplicate bug reports as training
data to assign features that are important to measure how
similar two reports are. We use an extended BM25 docu-
ment similarity measure for the purpose. In the label as-
signment component, given a bug report whose severity is
to be predicted, we take the nearest k bug reports based on
the similarity measure. These k£ bug reports are then used
to predict the label of the bug report.

Procedure INSPect

Inputs:

BQ: Bug report in question

BPool: Historical bug report pool

Output: Predicted bug report severity label

Methods:

1: Let NNSet = Find top-K nearest neighbors of BQ in BPool
2: Let PredictedLabel = Predict label from NNSet

3: Output PredictedLabel

Figure 1: IR Based Nearest Neighbour Severity
Prediction Algorithm

3.2 Similarity Computation

A bug report contains more than textual features, it also
contains other information such as product, component, etc.
We want to make use of all these features, textual and non-
textual, to detect the similarity among bug reports. To do
this, given two bug reports d and ¢, our similarity function
REP(d,q) is a linear combination of four features, with the
following form where w; is the weight for the i-th feature
feature;.

4
REP(d,q) = Zwi X feature; (6)
i=1

Each weight determines the relative contribution and the
degree of importance of its corresponding feature. Features
that are important to measure the similarity between bug
reports would have a higher score. Each of the four features
along with their definitions are given in Figure 2. There are
two types of features: textual and non-textual; we elaborate
them in the following paragraphs.

Textual Features. The first feature of Equation (7) is the
textual similarity of two bug reports based on the summary
and description fields as measured by BM25F.;; similarity
function described in Section 2. The second feature is the
similar to the first one, except that summary and description
fields are represented by bags of bigrams (a bigram is two
words that appear consecutively one after the other) instead
of bags of words (or unigrams).

Non-Textual Features. The other two features have bi-

nary values (0 or 1) based on the equality of the product and
component fields of d and q.

feature, (d, q) BM25F ¢ (d, q) //of unigrams (7)
feature,(d,q) = BM25Fcy(d,q) //of bigrams (8)

1, if d.prod = q.prod
9)

0, otherwise

features(d,q) = {

1, if d.comp = q.comp

feature,(d,q) = { (10)

0, otherwise

Figure 2: Features in the Retrieval Function

The similarity function REP defined in Equation (6) has 16
free parameters in total. For feature; and features, we com-
pute textual similarities of d and q over two fields: summary
and description. Computing each of two features requires
(242 x 2) = 6 free parameters. Also, we need to weigh
the contributions of each of the 4 features in Equation (6).
Thus overall, REP requires (2 X 6 + 5) = 16 parameters to
be set. Table 3 lists all these parameters.

Table 3: Parameters in REP

Parameter| Description

w1 weight of feature; (unigram)

w2 weight of feature, (bigram)

w3 weight of feature; (product)

wyq weight of feature, (component)

W™ weight of summary in feature;
Z:L?mm weight of description in feature,

b b of summary in feature,

pymgram b of description in feature,

Eymorem k1 in feature,

k%””gmm k3 in feature,

w_i’i%‘:nm weight of summary in featureo

wZigf”” weight of description in feature,

blLgram b of summary in feature,

phgrem b of description in feature,

kingmm k1 in feature,

k:gigmm k3 in feature,

The above metric is similar to the one proposed by Sun
et al. [27] except we remove several features: one is a bi-
nary feature that compares the type of the reports: defect,
enhancement, etc., another is a feature that computes the
difference between the reported severity, and the other is a
feature that computes the difference between the versions.
Since we only consider defects, and we assume that severity
label is not available, we could not use the first two of the
three omitted features to compute the similarity between
bug reports. We do not use the last features as we do not
have the complete data which require manual crawling of the
web. The parameter tuning for REP is based on gradient
descent. We take a training set consisting of duplicate bug
reports, and follow the same approach as proposed in the
work by Sun et al. [27]. We include the above description to
ensure that our paper is self-explanatory.

3.3 Label Assignment

Leveraging the similarity measure, we locate the top-k near-
est neighbors of a bug report in question. We then aggregate
the contribution of each bug report to predict the label of
the bug report. We compute the weighted mean of the la-
bels of the neighbors as the predicted label. We map the
labels into integers and order them from the most severe to
the least severe. The labels blocker, critical, major nor-
mal, minor, and trivial are mapped to 0, 1, 2, 3, 4, and 5
respectively.

Consider a set of nearest neighbors NNSet of a bug re-
port BQ. Also let NNSet[i] be the ith nearest neighbor,
NNSet[i]. Label be the label of the ith nearest neighbor (ex-
pressed in integer), and NNSet[i].Sim be the similarity of
BQ with NNSet[i]. The predicted label is computed by the
following formula:

S J(NNSet[i].Sim x NNSet[i]. Label)
SF o (NNSet[i].Sim)

+0.5

The above formula aggregates the label of each neighbor
based on its similarity with the target bug report BQ. The
higher is a neighbor similarity with BQ, the more powerful
it is in influencing the label of BQ. The formula ensures
that the label would fall into the range. We use the floor
operation and the “4 0.5” to round the resultant label to the
nearest integer.

Remember, that we ignore the bug reports with normal
severity from the classification process. The neighbors re-
turned however could belong to this category. Thus, we
exclude all neighbors with normal severity from the above
formula that predicts the label of a new unknown bug re-
port. In case, all the k neighbors belong to the label normal,
we simply assign label major to it. By default we set the
value of k to be 20.

Example. To illustrate the above, we present an example.
Consider a bug report BQ, with top-3 neighbors Ni, Na,
and N3 with labels 5, 4, and 3 respectively. Let the REP
similarity score of BQ) with each of the neighbors to be:

REP(BQ,N;) =05
REP(BQ, N») = 0.45
REP(BQ, Ns) = 0.35

The assigned label for BQ would then be:

>3 _o(REP(BQ,N;)x N;.Label)
SF_((REP(BQ,N;))

+ 0.5J

(0.5+0.45+0.35)

{ (0.5X5+0.45x440.35x3) 4 5J
{(2 5+1 8+1 %) 4 0. 5J
4

4. EXPERIMENTS

In this section, we highlight the datasets that we use in
this study, followed by our experimental settings. We then
present the measures used to evaluate the approaches, fol-
lowed by our results. Finally, we also mention some threats
to validity.

4.1 Datasets

We chose the bug repositories of three large open source

projects: OpenOffice, Mozilla and Eclipse, as the three projects

have different backgrounds, implementation languages and
users, which can help generalizing the conclusions of our ex-
periments. In particular, OpenOffice is a multi-platform and
multi-lingual office suite. Mozilla is a non-for-profit commu-
nity producing open-source software and technologies used
by other applications, such as Firefox browser and Rhino
JavaScript interpreter. Eclipse is a large project aiming to
build a flexible development platform for all lifecycles of soft-
ware development.

We extracted three datasets from them by choosing reports
submitted within a period of time. Each dataset only con-
tains defect reports, whereas feature requests and mainte-
nance tasks are filtered away. Table 4 details the three
datasets. We construct training set by selecting the first
M reports of which 200 reports are duplicates, in order to
tune the parameters in the retrieval function REP. Those
M reports are also used to simulate the initial bug reposi-
tory for all experimental runs. The rest of the reports are
used for testing the prediction approach, shown in column
Testing Reports.

4.2 Experimental Settings

We propose an online evaluation approach that mimics how
severity prediction could be used in practice. At each ex-
perimental run, we iterate through the reports in the set
of testing reports in chronological order. Omnce we reach
a report R, we apply a severity prediction tool to predict
the severity label of R. This would be the recommendation
given to the user/developer on the severity of the bug re-
port. At the beginning of the next iteration, we add R and
its true report to the pool of bug report BPool in Figure 1.
After the last iteration is done, we measure how good the
recommendations are.

Unfortunately, the classification based approaches employed
in [19] (i.e., Severis) is slow. For less than 4,000 bug re-
ports of OpenOffice, employing the online evaluation ap-
proach would mean re-training the classification model for
around 4,000 times. This took us more than 10 hours. As
the number of bug reports increases the runtime increase in
a super-linear fashion as at each step in the online evaluation
approach more bug reports need to be investigated to train
the model. Thus, we also evaluate the existing approach in
an offline manner — we take a set of bug reports that we use
to train REP to train Severis. We then use Severis to assign
label to the remaining set of bug reports.

We perform both offline and online evaluation for Severis
on OpenOffice bugs. We show that the results of these two
evaluation approaches do not differ much for Severis. We
only perform offline evaluation for Severis on the other two
bug report datasets: Mozilla, and Eclipse. As our approach

Table 5: Precision, Recall, and F Measure for IN-
SPect on OpenOffice

Severity | Precision | Recall | F-Measure
critical 54.1% 29.2% 37.9%
major 75.1% 73.0% 74.0%
minor 51.1% 24.4% 33.0%
trivial 46.7% 7.1% 12.3%

is fast and relies on nearest neighbors, we only do the online
strategy.

4.3 Evaluation Measures

We use the standard measures of precision, recall, and F-
measure for each bug report category to evaluate the effec-
tiveness of Severis and INSPect. The same measures were
used by Menzies and Marcus to evaluate Severis [19]. The
definitions of precision, recall, and F-measure are given be-
low:

Number of severe reports correctly labeled
Number of reports labeled as severe

precision =

Number of severe reports correctly labeled

recall =
Number of severe reports

F1 Score — 2 x precision X recall

precision + recall

4.4 Comparison Results
We compare INSPect and Severis on the three datasets. We
present the results in the following sub-sections.

4.4.1 OpenOffice Results

The result of INSPect on bug reports of OpenOffice is shown
in Table 5. Different from the other three programs in
OpenOffice there are only five severity levels [20]. We map
them to critical, major, normal, minor, and trivial. Again
we drop normal from our analysis. We note that we can
predict the critical, major, minor, and trivial severity
labels by an F measure of 37.9%, 74.0%, 33.0%, and 12.3%
respectively. The F measure is very good for major severity
label but is poorest for trivial severity label.

The result for Severis (offline) is shown in Table 6. We note
that Severis can predict the critical, major, minor, and
trivial severity labels by an F measure of 25.6%, 75.1%,
20.5%, and 1.2% respectively. Comparing these with the
result of INSPect (in Table 5, we note that we can improve
the F measure for critical, minor, and trivial labels by
a relative improvement of 48%, 60%, and 926% respectively.
For the major label, INSPect lose out to Severis by only
1%. Thus for OpenOffice, in general our proposed approach
INSPect performs better than Severis.

Although expensive (in terms of runtime; it takes more than
10 hours to complete), we also run Severis (online) and show
the result in Table 7. We notice that the result using the

Table 4: Details of Datasets

Dataset Period Training Reports Testing Reports
From To #Duplicate | #AIl | #AIl - #Normal #AIl #AIl - #Normal
OpenOffice | 2008-01-02 | 2010-12-21 200 2,986 617 20,438 3,356
Mozilla 2010-01-01 | 2010-12-31 200 4,379 1,273 68,049 16,490
Eclipse 2001-10-10 | 2007-12-14 200 3,312 500 175,297 43,587

Table 6: Precision, Recall, and F Measure for Sev-

Table 9: Precision, Recall, and F Measure for Sev-

eris [Offline] on OpenOffice

Severity | Precision | Recall | F-Measure
critical 40.7% 18.6% 25.6%
major 63.9% 91.0% 75.1%
minor 39.0% 13.9% 20.5%
trivial 6.7% 0.7% 1.2%

Table 7: Precision, Recall, and F Measure for Sev-

eris [Online] on OpenOffice

Severity | Precision | Recall | F-Measure
critical 58.5% 15.4% 24.4%
major 63.2% 96.2% 76.3%
minor 42.2% 7.7% 13.0%
trivial 60.0% 1.0% 2.0%

eris on Mozill
Severity | Precision | Recall | F-Measure
blocker 100% 0.2% 0.4%
critical 82.6% 53.7% 65.1%
major 43.9% 93.1% 59.7%
minor 50.5% 1.8% 3.4%
trivial 19.7% 1.1% 2.2%

Table 10: Precision, Recall, and F Measure for IN-

SPect on Eclipse

Severity | Precision | Recall | F-Measure
blocker 43.6% 4.8% 8.6%
critical 28.2% 35.3% 31.4%
major 58.8% 58.4% 58.6%
minor 51.1% 21.7% 30.6%
trivial 46.6% 10.0% 16.4%

online evaluation, although requires much more computa-
tion time, does not affect performance by much. There is
a small improvement in F measure for major and trivial;
However, for critical and minor there is a small reduction
in F measure.

4.4.2 Mozilla Results

The result of INSPect on bug reports of Mozilla is shown in
Table 8. We note that we can predict the blocker, crit-
ical, major, minor, and trivial severity labels by an F
measure of 13.9%, 65.3%, 55.8%, 22.9%, and 20.6% respec-
tively. The F measure is very good for critical severity
label but is poorest for blocker severity label.

The result for Severis is shown in Table 9. Note that we only
run the offline version of Severis as the online version takes
much time, and our experiment with OpenOffice shows that
it does not improve performance by much. We note that
Severis can predict the blocker, critical, major, minor,
and trivial severity labels by an F measure of 0.4%, 65.1%,
59.7%, 3.4%, and 2.2% respectively. Comparing these with
the result of INSPect (in Table 8, we note that we can im-
prove the F measure for blocker, critical, minor, and
trivial labels by a relative improvement of 3380%, 0.3%,

Table 8: Precision, Recall, and F Measure for IN-

SPect on Mozilla
Severity | Precision | Recall | F-Measure
blocker 53.4% 8.0% 13.9%
critical 69.6% 61.6% 65.3%
major 52.0% 60.2% 55.8%
minor 42.0% 15.7% 22.9%
trivial 60.5% 12.4% 20.6%

572%, and 836% respectively. For the major label, INSPect
lose out to Severis by 6.5%. Thus for OpenOffice, in gen-
eral our proposed approach INSPect performs better than
Severis.

4.4.3 Eclipse Results

The result of INSPect on bug reports of Eclipse is shown in
Table 10. We note that we can predict the blocker, crit-
ical, major, minor, and trivial severity labels by an F
measure of 8.6%, 31.4%, 58.6%, 30.6%, and 16.4% respec-
tively. The F measure is very good for major severity label
but is poorest for blocker severity label.

The result for Severis is shown in Table 11. We note that
Severis can predict the blocker, critical, major, minor,
and trivial severity labels by an F measure of 0.0%, 28.5%,
56.0%, 0.2%, and 0.0% respectively. The F measure scores
of Severis are zeros for blocker and trivial as it does not
assign any bug report to those severity label. Comparing
these with the result of INSPect (in Table 8, we note that
we can improve the F measure for blocker, critical, ma-
jor, minor, and trivial labels by a relative improvement
of infinity, 10%, 5%, 15,200%, and infinity, respectively. IN-
SPect does not lose out to Severis for any label. Thus for
Eclilpse, clearly our proposed approach INSPect performs
better than Severis.

4.5 Sensitivity Analysis

Our proposed approach INSPect takes in one user defined
parameter k£ whose default value is set to 20. We want to
investigate the effect of changing the parameter k on the
overall accuracy of our solution. We plot the effect of varying
k from 1 to 20 on F measure for predicting severity labels of

Table 11: Precision, Recall, and F Measure for Sev-

eris on Eclipse

blocker
0.9 —4— critical |
—A— major
0.8 —e— minor
—w— trivial

Severity | Precision | Recall | F-Measure
blocker 0.0% 0.0% 0.0%
critical 22.3% 39.7% 28.5%
major 48.2% 66.8% 56.0%
minor 7.6% 0.1% 0.2%
trivial 0.0% 0.0% 0.0%
1
—4— critical
0.9+ —A— major
—@— minor
081 —w— trivial
A A
0.7F 1
o 0.6f f
§ 0.5 1
€
R S A e {
03} - " b
0.2‘[\1\,—:
01 y
0 ‘
1 5 10 20

Figure 3: OpenOffice: Varying k and Its Effect on F1
Score

OpenOffice, Mozilla, and Eclipse in Figures 3, 4, & 5. When
we increase k, we consider more nearest neighbors. This
might increase accuracy as in effect we are tapping more to
the “wisdom of the masses”. However, this might also reduce
accuracy as the neighbor might not be that similar anymore
to the target bug report.

From the figures, for OpenOffice, the F measure scores are
fairly stable as we increase k for all the severity labels. For
Mozilla, the F measure scores of two severity labels: blocker
and trivial decrease significantly as we increase k. This
might be the case as there is more noise as more neigh-
bors are considered. For Eclipse, similar to Mozilla, the F
measure scores of two severity labels: blocker and trivial
decrease significantly as we increase k.

4.6 Threats to Validity

We consider three threats of validity: threats to construct
validity, threats of internal validity, and threats of external
validity.

Threats to construct validity relates to the suitability of our
evaluation metrics. We use standard metrics used in clas-
sification and prediction namely: precision, recall, and F
measure. These measures have been used before by Menzies
and Marcus to evaluate Severis [19].

Threats of internal validity refers to errors in our exper-
iments. We extract the labels from the various Bugzilla
repositories. We assume that except the normal label, the
severity labels recorded in Bugzilla are the final severity la-
bels that are deemed correct. We use these ground truth

F measure

0.1 b

Figure 4: Mozilla: Varying k and Its Effect on F1 Score

blocker
0.9r —4— critical |
—4A— major
0.8r —@&— minor
—¥— trivial
0.7r 1
o 0.6 A A ——a
>
@
S 0.51 b
£
w 0.4»\ 1
& A
03¢—— ¥ &
Y
0'2\7\7‘;
y
0.1r !
6 ‘ ‘ |
1 5 10 20

Figure 5: Eclipse: Varying k and Its Effect on F1 Score

labels to measure how good our predictions are. A similar
assumption and experimental setting was also made in prior
studies [15, 16].

Threats of external validity refers to the generalizability of
our findings. We consider repositories of three large software
systems: Eclipse, OpenOffice, and Mozilla. We consider a
total of more than 65,000 bug reports. This is larger than
the number of bug reports considered in prior studies [19, 15,
16]. Furthermore, the three projects are written in different
programming languages, and have different background and
user groups. Also, all our studies make use of open source
repositories where data is publicly available. We do not use
the datasets from NASA used in [19] and made available in
Promise repository as they do not have information on du-
plicate bug reports which are typically available in Bugzilla
repositories.

S. RELATED WORK

In this section, we highlight related studies on bug severity
prediction, bug report analysis, and text mining for software
engineering.

5.1 Past Studies on Bug Severity Prediction
There are a number of studies that predict the severity of
bug reports [16, 15, 19]. We highlight these studies in the
following paragraphs.

Menzies and Marcus predict the severity of bug reports in
NASA [19]. They first extract word tokens from bug re-
ports, and then perform stop word removal and stemming.
Important tokens are then identified using the concept of
term frequency-inverse document frequency, and informa-
tion gain. These tokens are then used as features for a clas-
sification approach named Ripper rule learner [6]. Their
approach is able to identify fine grained bug report labels,
which are the the 5 severity levels used in NASA.

More recently, Lamkanfi et al. predict the severity of bug re-
ports from various projects’ Bugzilla [15]. They first extract
word tokens and pre-process them. These tokens are then
fed to a Naive Bayes classifier to predict the severity of the
corresponding bug. Different from the work by Menzies and
Marcus, the predict coarse grained bug severity: severe, and
non-severe. Three of the six classes of severity in Bugzilla
(blocker, critical, and major) are grouped as severe, two
of the six classes (minor, and trivial) are grouped as non-
severe, and the normal severity bugs are omitted from their
analysis.

Extending the above work, Lamkanfi et al. also try out
various classification algorithms to predict the severity of
bugs [16]. They show that Naive Bayes perform better than
other mining approaches on a dataset of 29,204 bug reports.

Our approach extends the above research studies. Simi-
lar to Menzies and Marcus’s work, we detect fine grained
bug report labels. Similar to the work by Lamkanfi et al.
we consider bug reports on Bugzilla repositories of various
open source projects. We compare our approach to their
approaches on a dataset containing more than 65,000 bug
reports and show that we could gain significant F measure
improvements.

5.2 Other Studies Analyzing Bug Reports

In a related research area, recently a number of techniques
are proposed for duplicate bug report retrieval [23, 31, 14,
28, 27]. Many of these approaches propose various ways
to measure the similarity of bug reports to help developers
in assigning bug reports as either duplicate or not. Rune-
son et al. propose a formula that considers the frequency
of common words appearing in both documents as a simi-
larity measure [23]. Wang et al. use both term frequency
and inverse document frequency as a similarity measure [31].
They also consider a special situation where runtime traces
are available and could be used to compute the similarity
between bug reports. In practice, however, only a small mi-
nority of bug reports come with runtime traces. Jalbert and
Weimer propose yet another term frequency based similarity
measure [14]. Sun et al. propose a technique that leverages
SVM for duplicate bug report detection [28]. In their later
work, Sun et al. propose an approach to measuring the sim-
ilarity of bug reports using an enhanced BM25F document
similarity measure [27]. These recent advances in bug re-
port similarity measurement could potentially be leveraged

to categorize bug reports into various severity classes. Our
work shows that they are indeed useful for this purpose.

Another line of research is categorization of bug reports for
better maintenance. Anvik et al. [2], Cubranic and Mur-
phy [7], Tamrawi et al. [29] propose various techniques based
on text categorization to automatically assign the right de-
veloper for a new report. Huang et al. categorize bug reports
into those related to capability, security, performance, reli-
ability, requirement, and usability [12]. Pordguski et al [21]
and Francis et al. [8] propose automated support for classify-
ing reported software failures, by analyzing the correspond-
ing execution traces, into groups, with reports of each group
sharing the same or similar causes. Gegick et al. identify
security bug reports using text mining [9]. The approach to
some extent is similar to the work of Lamkanfi et al. [15], in
that it categorizes bugs into two categories. However rather
than categorizing bug into: severe and not-severe, it catego-
rizes bug into: security-related and non-security-related.

Previous work also conducts empirical studies on bug repos-
itories. The study [3] by Anvik et al. is focused on the char-
acteristics of bug repositories and shows interesting findings
on the number of reports that a person have submitted and
the proportion of various resolutions. In the work by San-
dusky et al. [24], the nature, impact and extent of a bug re-
port network is investigated in one large F/OSS development
community. Based on statistically analyzing surface features
in over 27,000 bug reports in OSS projects, Hooimeijer and
Weimer propose a novel descriptive model to predict the
quality of bug reports [11]. Bettenburg et al. develop a
standard of a good bug report by surveying the developers
involved in Eclipse, Mozilla and Apache projects [4].

5.3 Text Mining for Software Engineering
There are many studies that utilize various forms of text
analysis for software engineering purposes. Haiduc et al.
propose a method to summarize source code to support
program comprehension [10]. The work proposes an ap-
proach to extract informative yet succinct text to charac-
terize source code entities so that developers can better un-
derstand a large piece of code. Sridhara et al. propose an
approach to detect code fragments implementing high level
abstractions and describe them in succinct textual descrip-
tions [25].

Marcus and Maletic propose an approach to link documen-
tation to source code traceability links via Latent Semantic
Indexing [18]. Chen et al. has also proposed an approach to
link textual documents to source code by combining several
techniques including regular expression, key phrases, clus-
tering and vector space model [5]. Huang et al. propose an
approach to assess software system risk by using text min-
ing [13]. In the paper, they utilize closed frequent itemset
mining to recover risk association rules.

Similar to the above studies, we also extend text mining
approach to solve problem in software engineering. Differ-
ent from the above studies, we investigate a new problem
namely to predict fine-grained bug report severity from its
text. Our approach combines nearest neighbor search with
an extension of BM25 document similarity function.

6. CONCLUSION AND FUTURE WORK

Severity labels are important for developers to prioritize
bugs. A number of existing approaches have been proposed
to infer these labels from the textual fields of bug reports.
In this work, we propose a new approach to infer severity
labels from various information available from bug reports:
textual, and non-textual. We make use of duplicate bug re-
ports to weigh the relative importance of each pieces of infor-
mation or features to determine the similarity between bug
reports. This similarity measure is then used in a nearest-
neighbor fashion to assign severity labels to a bug report.
We have compared our approach to the state-of-the-art ap-
proach on fine-grained severity prediction, namely Severis
proposed by Menzies and Marcus. Extensive experiments on
tens of thousands of bug reports taken from three large soft-
ware systems: Eclipse, OpenOffice, and Mozilla, have been
performed. The result shows that we can improve the state-
of-the-art approach by up to more than a hundred times
more accurate, especially on hard-to-predict severity labels.

As future work, we plan to improve the accuracy of the pro-
posed approach further. We also plan to embed our solution
into Bugzilla to let it be used by many people.

7. REFERENCES
[1] http://wiki.eclipse.org/WTP /Conventions_of

_bug_priority_and_severity#How_to_set_Severity_and_Priority.

2

J. Anvik, L. Hiew, and G. Murphy. Who should fix
this bug? In proceedings of the International
Conference on Software Engineering, 2006.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In ETX, pages 35-39, 2005.

[4] N. Bettenburg, S. Just, A. Schroter, C. Weiss,

R. Premraj, and T. Zimmermann. What makes a good
bug report? In SIGSOFT FSE, pages 308-318, 2008.

[6] X. Chen and J. C. Grundy. Improving automated
documentation to code traceability by combining
retrieval techniques. In ASE, pages 223-232, 2011.

[6] W. Cohen. Fast effective rule induction. In ICML,
1995.

[7] D. Cubranic and G. C. Murphy. Automatic Bug
Triage Using Text Categorization. In Proceedings of
the Sizteenth International Conference on Software
Engineering & Knowledge Engineering, pages 92-97,
2004.

[8] P. Francis, D. Leon, and M. Minch. Tree-based
methods for classifying software failures. In ISSRE,
2004.

[9] M. Gegick, P. Rotella, and T. Xie. Identifying security
bug reports via text mining: An industrial case study.
In MSR, pages 11-20, 2010.

[10] S. Haiduc, J. Aponte, and A. Marcus. Supporting
program comprehension with source code
summarization. In ICSE (2), pages 223-226, 2010.

[11] P. Hooimeijer and W. Weimer. Modeling bug report
quality. In ASE, pages 34-43, 2007.

[12] L. Huang, V. Ng, 1. Persing, R. Geng, X. Bai, and
J. Tian. AutoODC: Automated generation of
orthogonal defect classifications. In ASE, 2011.

[13] L. Huang, D. Port, L. Wang, T. Xie, and T. Menzies.

Text mining in supporting software systems risk

assurance. In ASE, pages 163-166, 2010.

[14] N. Jalbert and W. Weimer. Automated duplicate
detection for bug tracking systems. In DSN, 2008.

[15] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals.
Predicting the severity of a reported bug. In MSR,
2010.

[16] A. Lamkanfi, S. Demeyer, Q. Soetens, and
T. Verdonck. Comparing mining algorithms for
predicting the severity of a reported bug. In CSMR,
2011.

[17] C. D. Manning, P. Raghavan, and H. Schtze.
Introduction to Information Retrieval, pages 232—233.
Cambridge University Press, New York, NY, USA,
2008.

[18] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In ICSE, pages 125-137,
2003.

[19] T. Menzies and A. Marcus. Automated severity
assessment of software defect reports. In ICSM, 2008.

[20] www.openoffice.org/qa/ooQAReloaded/Docs/QA-
Reloaded-ITguide.html#priorities.

[21] A. Podgurski, D. Leon, P. Francis, W. Masri,

M. Minch, J. Sun, and B. Wang. Automated support
for classifying software failure reports. In Proceedings
of the 25th International Conference on Software
Engineering, pages 465-475, 2003.

[22] S. Robertson, H. Zaragoza, and M. Taylor. Simple

BM25 Extension to Multiple Weighted Fields. In

Proceedings of the thirteenth ACM international

conference on Information and knowledge

management, pages 42-49, 2004.

[23] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In ICSE, pages 499-510, 2007.

[24] R. J. Sandusky, L. Gasser, and G. Ripoche. Bug report
networks: Varieties, strategies, and impacts in a f/oss
development community. In International Workshop
on Mining Software Repositories, pages 80-84, 2004.

[25] G. Sridhara, L. L. Pollock, and K. Vijay-Shanker.
Automatically detecting and describing high level
actions within methods. In ICSE, pages 101-110, 2011.

(26]

www.ils.unc.edu/~keyeg/java/porter/PorterStemmer.java.

[27] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards
more accurate retrieval of duplicate bug reports. In
ASE, 2011.

[28] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In ICSE, 2010.

[29] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N.
Nguyen. Fuzzy set-based automatic bug triaging (nier
track). In ICSE, pages 884-887, 2011.

[30] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson,
and C. Burges. Optimisation methods for ranking
functions with multiple parameters. In Proceedings of
the 15th ACM international conference on Information
and knowledge management, pages 585593, 2006.

[31] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In ICSE,
pages 461-470, 2008.

[32] H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and
S. E. Robertson. Microsoft cambridge at trec 13: Web
and hard tracks. In TREC, 2004.

