On Semantic Caching and Query Scheduling for Mobile
Nearest-Neighbor Search

Baihua Zheng!* Wang-Chien Lee! Dik Lun Lee'
t Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong
Voice: (852) 23587017
Fax: (852) 23581477
{baihua,dlee}@cs.ust.hk
! The Penn State University, University Park, PA 16802
Voice: (001) 814-8651053
Fax: (001) 814-8653176
wlee@cse.psu.edu

Abstract

Location-based services have received increasing attention in recent years. In this paper, we
address the performance issues of mobile nearest-neighbor search, in which the mobile user issues
a query to retrieve stationary service objects nearest to him/her. An index based on Voronoi
Diagram is used in the server to support such a search, while a semantic cache is proposed to
enhance the access efficiency of the service. Cache replacement policies tailored for the pro-
posed semantic cache are examined. Moreover, several query scheduling policies are proposed
to address the inter-cell roaming issues in multi-cell environments. Simulations are conducted
to evaluate the proposed methods. The result shows that the system performance, in terms
of cache hit ratio, query response time, cell-cross number and cell-recross number, is improved
significantly.

Keywords: location-based services, nearest-neighbor search, Voronoi Diagram, indexing
technique, semantic caching, query scheduling, roaming.

1 Introduction

Owing to increasing demands from mobile users, Location-Based Services (LBSs) have received a
lot of attention in recent years. Examples of queries for location-based services include “find the
nearest gas station from my current location,” “find all the cinemas within 1 km radius,” “which
buses will pass by me in the next 10 minutes?”, and so on. While data objects in the first two
examples are stationary, those in the last example are mobile. In this paper, we focus on queries
issued by mobile users on relatively static data objects, because they are the most common kind
of queries in LBSs. The movement of mobile clients presents many new research problems for
location-dependent query processing [3, 11].

*contact author

There are several technical issues involved with the implementation of an LBS, which include
locating the position of a mobile user, tracking and predicting movements, processing queries
efficiently, and bounding location errors. In this paper, we focus on the efficient processing of
location-dependent queries and, in particular, a sub-class of queries called mobile nearest-neighbor
(NN) search. A mobile NN search is issued by a mobile client to retrieve stationary service objects
nearest to its user!. It is an important function for LBSs, but the implementation is difficult since
the clients are mobile and queries must be answered based on the clients’ current locations. If a
client keeps moving after it issued a query, the query result would continue to change in accordance
with the client’s movement. As such, it is difficult to obtain results which are accurate with respect
to the position at which the user receives them.

Despite the fact that LBSs open up new research opportunities, most of the on-going research
work still concentrates on traditional queries which return answers independent to the locations of
the query issuers. In other words, each data object has only one set of attribute values in the server.
If a client caches a local copy of the data to improve performance, the cached data become invalid
only when the corresponding copy in the server is updated. As for location-dependent queries,
a data object usually has multiple sets of attribute values, each of which is valid only when the
client is located within a specific region. While mobile data caching and invalidation for location-
independent queries has been actively pursued in the mobile computing research community, very
few work had been done on indexing and query processing techniques for location-dependent queries.

In this paper, we propose an elegant indexing mechanism to support mobile nearest-neighbor
search. The index is based on the Voronoi Diagram (VD) [7]. To the best of the authors’ knowledge,
this is the first time that VD is used as the basis for developing indexes for LBSs in mobile envi-
ronments. In addition, to enhance access efficiency of the system, we propose a semantic caching
scheme, which stores along with a data object the valid spatial scope of the data object. Since the
cached data could become invalid due to user mobility, we propose three cache replacement policies
which estimate the potential utilization of the cached data items based on their spatial scopes
and other spatial properties such as velocities. Moreover, we extend our study to a multi-cell en-
vironment, where a client has the freedom to roam across different cells served by different base
stations. By observing the fact that some clients may leave the cell before they receive the answers
for the queries they issued in the cell, we propose several query scheduling schemes for the servers
to provide fair service opportunities to all users. Finally, we conduct a simulation to evaluate the
performance of the proposed schemes with respect to cache hit ratio, query response time, cell-cross
number and cell-recross number. The simulation result demonstrates that the proposed methods
improve system performance significantly.

In addition to identifying and exploring technical problems facing the development of an LBS,
the contribution of this study is four-fold:

e An index based on Voronoi Diagram to support mobile nearest-neighbor search.

e A semantic caching scheme to address issues of access efficiency and user mobility.

e Three cache replacement policies tailored for location-dependent semantic caching.

e Four query scheduling schemes for roaming problem in multiple cell environments.

The rest of this paper is organized as follows. Section 2 provides a brief review of the related
work. A Voronoi Diagram based index is introduced in Section 3. The semantic caching support
for LBSs, along with cache replacement policies for semantic cache, is described in Section 4. The

! A mobile client refers to the device used by a mobile user. When it does not cause confusion, we sometimes use
mobile client to refer to a mobile user.

roaming problem in multi-cell environments and four query scheduling schemes are discussed in
Section 5. We present the simulation model for performance evaluation and the result in Section 6
and Section 7, respectively. Finally, Section 8 concludes our work and points out future research
directions.

2 Related Work

It is clear that many research issues explored in this paper have been pursued in different contexts.
A brief summary of related work is given as follows.

2.1 Voronoi Diagram

Voronoi Diagram (VD) is a traditional data structure in computational geometry [7]. While it has
been employed in similarity search in multimedia databases recently [5, 6], it is useful for many
spatial applications [7], which include:

e Nearest-neighbor queries: Given a point set P and a query point ¢, determine the closest
point in P to gq.

e Facility location: Suppose that a new grocery store is to be opened in an area with several
existing, competing grocery stores. One natural method to ensure the new store’s business is
to locate the new store as far away from the old ones as possible.

e Path planning: Imagine a cluttered environment through which a robot must plan a path.
In order to minimize the risk of collision, the robot may like to stay as far away from all
obstacles as possible.

The VD for n objects on a plane can be constructed at O(nlogn) complexity using a simple
sweep algorithm. However, the maintenance cost is high, especially for high-dimensional space,
thus hindering the application of the VD structure for complex and dynamic datasets. In this
paper, we focus on the application of the VD technique to nearest-neighbor search in LLBSs. These
applications have low dimensional space and mostly static service objects, making VD a promising
indexing method for supporting nearest-neighbor search.

2.2 Caching Techniques

The client cache stores frequently used information so that queries can be answered without con-
necting to a server. In addition to answering queries promptly, the cache may still be able to answer
some queries when a connection can not be established.

e Traditional caching: A cache stores frequently accessed data in the mobile client in order
to save wireless bandwidth and improve access efficiency. Some early work on mobile client
caching can be found in [1, 4]. For location-dependent information, such as local traffic infor-
mation, cached data need to be validated when the client changes location. Xu et al. proposed
a bit-vector approach to identifying the valid scope of the data and investigated a couple of
advanced methods for caches invalidation [19].

e Semantic caching: A semantic cache stores data and a semantic description of the data in
the mobile client [12]. The semantic description enables the cache to provide partial answers
to queries which don’t match the cache data exactly. As such, wireless traffic can be reduced
and queries may be answered in a disconnected mode. This characteristic makes a semantic
cache an ideal scheme for location-dependent queries. A cache method was proposed in [13].
A tuple S = (Sg,S4,Sp,SL,Sc) was used to record data in the local client. Sk and Sy
are, respectively, the relationships and the attributes in S; Sp is the selection conditions that
data in S satisfy; S, is the bound of the location; and S represents the actual content of S.
When a query is received by the client, it is trimmed into two disjointed parts: a probe query
that can be answered by some cached data in the client, and a remainder query that has to
be transmitted to the server for evaluation.

2.3 Continuous Queries

A location-dependent query becomes difficult to answer when it is submitted as a continuous query.
For example, a client in a moving car may submit the query: “Tell me the room rates of all the hotels
within a 500 meter radius from me” and would like to receive updated information continuously in
order to find a cheap hotel. Since the client is moving, the query result becomes time-sensitive in
that each result corresponds to one particular position and has a valid duration because of location
dependency. The representation of this duration and how to transmit it to the client are the major
focuses of Continuous Queries (CQs). Sistla et al. employed a tuple (S, begin, end) to bound the
valid time duration of the query result [16, 17]. Based on this method, they also developed two
approaches to transmitting the results to the client: an immediate approach and a delayed approach.
The former transmits the results immediately after they are computed. Thus, some later updates
may cause changes to the results. The latter transmits S only at time begin, so the results will
be returned to the client periodically, thus increasing the wireless network traffic. To alleviate
limitations of the above two approaches, Periodic Transmission, Adaptive Periodic Transmission,
and Mixed Transmission were proposed [9, 10].

2.4 Roaming

Roaming is a very important property of mobile computing systems. To allow mobile users roam
from cell to cell without interrupting on-going communication and services, hand-off must proceed
transparently. Research on supporting handoff in wireless communication networks has been stud-
ied extensively [2, 8, 18]. However, handoff methods at the query processing level has not been
addressed.

For location-based services, a client may have to resubmit an unfinished query when it roams into
a new cell, because the answer returned may become invalid in the new cell. However, some mobile
clients may happen to stay near the cell boundaries and frequently roam across cell boundaries,
while some other clients may cross several cells in a short period of time. These clients may have to
wait for a long time for the requested information if the submitted queries have to be resubmitted
again every time they enter new cells. Thus, the starvation problem associated with roaming clients
has to be addressed when implementing a location-based service. To the best of our knowledge, no
prior work had considered this problem.

3 VD-Based Index for Mobile Nearest-Neighbor Search

In this section, we present the concept of VD-based index and describe the processing of mobile
NN search. We assume that a mobile client knows its position through, say, GPS. Thus, when a
client issues a query, its current position and velocity can be submitted along with a timestamp.

3.1 Voronoi Diagram

A Voronoi Diagram records information about the closest regions corresponding to a set of geometric
points. Let P = {p1,p2,---,pn} be a set of points in the plane (or in any n-dimensional space).
Each of the points is called a site. V(p;), the Voronoi cell for p;, is defined as the set of points g in
the plane such that dist(q,p;) < dist(q,p;) where ¢ # j. That is, the Voronoi cell for p; consists of
the set of points for which p; is the unique nearest site:

V(pi) = {qldist(q, pi) < dist(q,p;),Vj # i} (1)

Figure 1: Voronoi Diagrams Figure 2: Semantic Cache in Voronoi Diagrams

As shown in Figure 1, all the points in the shadowed region, Area;, have the same nearest fixed
point, namely, O;. In the context of mobile NN search, a Voronoi cell represents the spatial area
within which the corresponding Voronoi site is the valid answer to any NN search issued within the
cell. The readers should also note that the enclosing square in the figure represents the geographical
region monitored by a base station. It is referred to as a cell or a wireless cell.

Since Voronoi Diagram has been studied for a long time in computational geometry, data
structures for storing a Voronoi Diagram and efficient point location methods for locating a point
in a region are available [7]. We use the trapezoidal mapping algorithm to map a given point to
a Voronoi cell. Figure 3(a) shows the final trapezoidal map after decomposition, and figure 3(b)
depicts the corresponding index. There are three kinds of nodes in the index: z-nodes (the circles)
recording the x-coordinate of a vertex, y-nodes (the hexagons) recording a line segment, and leaf
nodes (the rectangles) pointing to the trapezoids. Given a query point p, the search process begins
at the root node and terminates when a leaf node is reached. At an z-node, we determine if p
lies to the left or to the right of the vertical line using the x-coordinate stored. At an y-node, we
determine if p lies above or below the line segment stored. For a point lying in trapezoid E, the
search path is: v, v3, s, vs, E.

3.2 Basic Data Structures

A location-based service can construct a Voronoi Diagram for a particular type of service facility
(e.g., restaurants). Given the position of a mobile client, an NN search can be answered by first
finding the Voronoi cell in which the mobile client is located and then returning the corresponding
Voronoi site (i.e., the restaurant) as the closest service facility to the mobile client. To facilitate
the search, a VD-based index structure has to be maintained at the server.

Efficient disk-resident indexing methods for point location have been proposed [20]. In this
paper, we use three basic data structures to record the constructed Voronoi Diagram. The first one
is edge, denoted by (id, z1,y1, T2, y2), which is used to record the edge id and the endpoints of an
edge. The second one is service object, which records the position of a Voronoi site and its bounding
edges. It is represented by a tuple (id, z,y, number, list), where x and y are the coordinates of the
site, number is the number of edges bounding this site, and list is the list of ids of all the edges.
The last one is edge_service, which records the information between the service objects and the
edges using a tuple (edge_id, serv_object_id;, serv_object_ids). It provides predictive information
to the moving client regarding the time when it would reach the next nearest service. id; and idy
are the sites above and below this edge, respectively.

/
N
/

Figure 3: Index Construction Using Trapezoidal Map

3.3 Discussion

The construction and maintenance cost of VD is high, especially when the dimension of the space is
high or the number of the objects is large. However, it is not an issue for LBSs, because they return
service facilities based on their physical locations. As such, the search space is only two-dimensional.
Furthermore, each base station only maintains the VD for the service facilities under its coverage,
the number of objects indexed by a VD is small. Coupled with the fact that service facilities are not
updated frequently, VD is an attractive indexing method that provides fast retrieval for a popular
class of queries, namely, NN search.

4 Semantic Caching

In this section, we introduce a semantic cache technique tailored for location-dependent information.
By providing the spatial scopes of the data objects, mobile NN search can be answered efficiently
using the semantic cache. In addition, if the velocity of mobile user is known, the duration within
which the returned answer is valid can also be estimated.

4.1 Semantic Circles

Given a Voronoi Diagram and the mobile client’s location p, we can identify the Voronoi cell
containing p and obtain a maximal circle, centered at p, within the cell. We call the circle a
semantic circle because it represents the valid scope of an answer to a mobile NN search. In other
words, the returned nearest service information remains valid as long as the mobile user falls within
the associated semantic circle. An example of semantic circle is shown in Figure 2. When the client
later submits the same query and its location falls within one of the semantic circles associated
with the data object, the cached value can be returned as the answer.

There are clearly more than one way of representing the valid spatial scope of a cached item.
One possibility is to represent the exact shape of the Voronoi cell corresponding to the cached
item. Another possibility is to use the maximal inscribe circle of the Voronoi cell. The tradeoff is
between the storage overhead and the accuracy of the representation, and the cache performance.
For instance, the exact representation obviously requires more computational time, cache space, and
wireless bandwidth for its transmission. On the other hand, the maximal inscribe circle will produce
cache misses for queries issued outside the circle. A separate study on the various representations
had been presented elsewhere [21] and thus is not repeated here. We choose the semantic circle in
this paper because it is compact and is able to predict the next nearest service based on the user’s
movement.

With the assumption that the client moves in the original velocity, the time that it departs the
current cell can be approximated and the next cell that it will reach can be detected. For example,
the dashed line in Figure 2 represents the mobile user’s expected trajectory obtained from the
velocity of the user, which is denoted using the line with an arrow. The distance of this trajectory
divided by the speed is the time that the mobile user leaves her current Voronoi cell. After that
duration, the correct nearest service facility should be Oy, rather than O;.

To support semantic caching, the server returns an answer to a mobile NN search, along with
the semantic circle (i.e., radius) of the returned data object, its predicted valid time duration, and
the next nearest service facility. For example, an answer of (O, 71, t1, O2) means that the current
nearest service facility is Oq, the radius of its semantic circle is 71, this answer is supposed to be
valid in the next t; seconds, and after that duration the next nearest service facility is Oy. There is
no need to transmit the center of a semantic circle, where the query was issued. In the case where
a client changes its velocity after it submitted a query, the prediction (i.e., valid duration and
next nearest service facility) may not be accurate. In order to avoid a false prediction, the client’s
maximum speed can be used. Within the time duration obtained by dividing the radius of the
semantic circle by the maximum speed, the returned answer is guaranteed to be valid. With this
scheme, the client can determine the valid duration conservatively. However, accurate prediction
of the next nearest service facility is not guaranteed, since the direction of the client’s movement
is unknown.

In our proposed semantic cache, we store the tuple (P.z, P.y,radius,O1) in the client cache,
where O; is a data object, P.z and P.y denote the center of the semantic circle associated with Oq,

and radius is the radius of the circle. The readers should note that the cache may contain several
semantic circles corresponding to a data object.

Considering one type of service facilities, e.g., restaurants, if a mobile client issues a query from
a location within one of the semantic circles it caches, the nearest service facility within the circle
is returned locally, without connecting to the server. In other cases, the query is submitted to the
server and a new tuple is cached after the result is obtained.

In a wireless communication environment, the available bandwidth is limited compared to the
wired networks. A dominant factor to access latency is the network latency over the wireless
link. Thus, an approach to improving access latency is to reduce the number of transmissions over
the wireless link. Caching techniques have been shown to be an effective way to reduce network
transmissions. In simulation results shown later, it will be observed that the hit ratio of semantic
caching scheme proposed in this paper is much higher than that of other existing schemes. A lot
of queries can be answered at a client’s cache without making connections to the base station.
Consequently, the average length of service queue can be decreased, which in turn improves the
average access latency of the clients waiting in the queue.

4.2 Query Processing

Taking the semantic caching concept introduced earlier, the following summarizes the steps taken
by both a client and the server to process a mobile NN search:

1. When a query is issued by a mobile client, the local cache is checked to see if semantic circles
corresponding to the current location of the client and the requested service facility type can
be found. If not, proceed to Step 3; otherwise, go to Step 2.

2. If there is a matching service facility data object with a valid semantic circle, the data object
is retrieved locally. Go to Step 5.

3. The current location of a client and its velocity are submitted along with the query to the
server. The server will first locate this client in the Voronoi Diagram index, find the data
object of the nearest service facility based on the client’s query, and compute a semantic circle
to be associated with the data object. Proceed to the next step.

4. Based on the velocity of the client and radius of the semantic circle obtained in the previous
step, the time interval for the client to reach another Voronoi cell is obtained. Proceed to the
next step.

5. A result is returned to the client.

6. After the client receives the result from the server, a new tuple is inserted into the client
cache.

4.3 Cache Replacement Policies

Although there are various reasons for the cached copy of a data object to become invalid, such
as data update at the server, expiration of some time-sensitive data, and so on, we only consider
invalidity caused by client movements. An interesting aspect of location-based cache invalidation
is that when the user has moved out of a semantic circle, it does not mean that the semantic circle

has to be removed from the cache. This is because the user may re-enter the region covered by the
semantic circle and thus the cached item is valid again.

However, with the limited cache memory in mobile clients, cache replacement is a major issue.
When the cache is full, policies have to be employed to select a cache tuple for replacement. We
observe that the size of a semantic circle may correlate to the utilization of the corresponding
cached data. Thus, we develop new cache replacement policies which take the areas of the semantic
circles into consideration. To the best of our knowledge, this is the first attempt that considers
area as a major factor in the design of a cache replacement policy.

Furthest Away Replacement (FAR) is a well known cache replacement policy for location de-
pendent semantic cache [13]. It introduced the concept of moving direction as a factor for cache
replacement. According to the client’s velocity, all the data records in the cache can be divided into
two sets. One contains all the objects that are in the direction of the client’s movement, named
7in” set. The other contains the rest of objects, named ”out” set. The FAR strategy first replaces
the victims from the "out” set according to their distances from the query client. Figure 4 depicts
an example. Circles mean semantic circles stored in the client’s cache, ¢ means the query point,
and the arched line means the moving direction of the client. Although o4 is close to the client, it
is in the reverse to the client’s moving direction and is grouped into the "out” set with o5. All the
others are in the same direction of the client’s movement and are grouped into ”in” set. According
to the distance metric, o5 is the final victim since it is farther away from the client than o4.

Figure 4: An Example of FAR

)

_Qe

In this paper, we propose three new cache replacement policies, namely Area, Dist, and AID,
and later compare them with LRU and FAR. In the following, lost refers to the replacement metric
used to choose a victim.

Area This policy considers the areas of the semantic circles. When the cache is full, the data
object with the smallest semantic circle is replaced. The reasoning behind this policy is that the data
object with a small valid area is less likely to be accessed than the other data objects. Therefore,
its replacement is expected to have small impact on the cache hit ratio. Here, lost; = area;.

Dist This policy takes distance between the center of a semantic circle and the client’s current
position into consideration. A data object with longest distance from the client is least likely to be
accessed for NN search. Thus, it is the best candidate to be replaced. Here, lost; = 1/dist;.

Area-Inverse-Dist (AID) Based on both area and distance, this policy is a hybrid of area
and dist policies. Here, lost; = area;/dist;.

In the above policies, the cached data object that has the smallest lost score is to be replaced.
With the assumption that all the data objects have the same size, we only consider one-by-one
replacement.

5 Query Scheduling for Cross-Cell Roaming

Roaming is a very important property of mobile computing systems. For location-independent
queries, the server may continue to process the query even when the client who issued the query
has left the cell, because the answer obtained is still valid in the new cell and can be forward to
the client there. For mobile NN search, however, the forwarded answer is usually invalid due to
location change. Consequently, a client needs to resubmit the query to the new base station in
order to obtain the correct answer. In this scenario, mobile clients who move around the borders
of the cells or go across cell boundaries frequently may have to wait for a long time to finish a
query (assuming that our clients are all persistent and finish a query only after the needed data
is provided). In order to avoid the starvation problem, we propose the following query scheduling
schemes:

Naive This scheme is used to serve as the bottomline for performance comparison. The server
answers the query based on F'CFS. When a client needs some information, it submits a query to its
base station and then waits for the answer. Once the client detects that it has arrived a new cell
before obtaining the requested information, it resubmits the same query to the new base station.
This procedure is repeated until its query is answered properly. This scheme is simple but the
handoff clients®> sometimes have to wait a long time for the requested data. Thus, starvation
cannot be avoided.

Priority In order to handle the starvation problems of the naive scheme, this scheme gives a
higher priority to handoff clients. There are two query queues maintained in the base station, with
one having a higher priority than the other. The queries submitted by handoff clients are put into
the higher priority queue, and the queries issued by normal clients are put into the other queue.
As long as the higher priority queue is not empty, the server will answer the query from this queue
in FCFS order. With this scheduling scheme, starvation may happen for the normal clients when
there are many handoff clients. Therefore, a control parameter, which equals to the probability of
the server answering a query from the higher priority queue, can be used. Although handoff clients
can obtain service quickly in a new cell, the tradeoff for this scheme is to prolong average response
time of non-handoff clients.

Intelligent This scheme gives priorities to clients who are very likely to leave the cell soon so
that their queries can be answered before they handoff. When a client submits a query, the server
can estimate its departure time based on its current position and velocity. If the time is shorter
than the predefined threshold, this client is expected to handoff soon. Therefore, it is better for
the server to service this client first. Two different priority queues are maintained in the server.
Queries issued by clients expected to leave the cell are put into the high-priority queue, while other
queries are put into the normal queue. When the high-priority queue is not empty, the server
answers the query from this queue first with some predefined probability. This is the same as in the
Priority method. Here, no priority has been given to the handoff clients. The effort is to reduce the
number of handoff clients. The average query response time of the normal clients will be prolonged.
Handoff clients do not receive any benefit.

Hybrid This scheme combines Priority and Intelligent together by giving priorities to both
handoff clients and clients to be handoff soon. The expense of this scheme is put upon the average
query response time of normal clients.

The various schemes introduced above put different emphasis on different aspects of the handoff
problem. Therefore, each one has its own pros and cons, as the performance evaluation presented

2Handoff clients refer to those mobile clients who just enter new cells.

10

in the next section shows.

6 Simulation Model

We conduct simulations to examine the performance of our proposals. In this section, we describe
a simulation model for performance evaluation. CSIM [14], a process-oriented, discrete-event sim-
ulation package, is used for implementation of our simulations.

6.1 System Model

For the sake of generality, we simulate a multi-cell environment even though some of the experiments
can be performed in a single-cell environment. The system has nine cells organized as a 3 x 3 grid®.
Each cell is represented by a square with a side length of SideLen. The clients’ movements follow
a “wrapped-around” moving pattern, i.e., when a client leaves the square from an edge, it will
enter the square from the opposite edge with the same velocity. In each cell, the average number
of clients is denoted as ClientNum.

‘ Parameter H Description ‘
SideLen side length of the square service area
ServNum number of service types
AreaNum number of different facility instances for each service type
DataSize size of a data value

UplinkBand bandwidth of the uplink channel
DownlinkBand | bandwidth of the downlink channel
ClientNum average number of clients within a cell

Table 1: Configuration Parameters of the System Model

The data server maintains ServNum types of services (e.g., restaurants, theaters, and gas sta-
tions). Each type of services has different AreaNum values. Therefore, ServNum x AreaNum
approximates the whole database size. To simplify the simulation, we assume that the distribu-
tions of data values for all the service types are the same. A wireless cell (i.e., the geographical
region monitored by a base station) is evenly divided into AreaNum parts. Then, a service facility
is randomly produced in each part. Given n locations corresponding to the service facility of the
same type, a Voronoi Diagram is constructed using the Triangle algorithm in O(nlogn) time [15].
Figure 5 shows two Voronoi Diagrams produced in our simulation that serve as area distributions in
later experiments. All this work is done in the data preprocessing stage of a location-based service.

We assume point-to-point communication between the server and clients. Thus, an uplink
channel and a downlink channel, with bandwidth UplinkBand and DownlinkBand, respectively, are
created between a client and the server. Table 1 summarizes the configuration parameters of the
system model.

3We find that the size of grid does not influence the simulation result. A small 3 x 3 grid is chosen, because a
square cell has 8 neighbors.

11

(a) Area Distribution 1: (b) Area Distribution 2:
(AreaNum=20) (AreaNum=50)

Figure 5: Two VDs for Performance Evaluation

6.2 Client Model

Each client is modeled by an independent process. It continues to issue queries for NN search
over various service types. A Zipf distribution, with preset # value to control skewness, is used
to model user data access. Before a query is submitted, a client first checks its local cache for
the availability of the requested data. Only when a cache miss happens would the client submit
the query to the server; otherwise, the query is answered locally. The think time between two
successive queries issued by a client is assumed to be exponentially distributed with a mean value
of MeanThinkTime. Here, we assume that the client can detect the current base station. When it
finds a new base station and it has an unfinished query, this client will resubmit the same query to
the new base station.

The client is assumed to have a cache of CacheSize size, which is a CacheSizeRatio ratio of the
database size. We ignore the overhead of the semantic description since it is very small compared
to the size of a data item used in the simulation. A detailed analysis of the relationship between
cache usage and the embedded semantic information is available in [21]. Finally, to simplify our
evaluation, we assume that the velocity of a mobile user does not change, since this problem is out
of scope of this study. In our experiments, we specify a range of clients’ speed with MazSpeed and
MinSpeed. The direction of motion is chosen randomly.

6.3 Server Model

The server is modeled by a single process that serves requests from clients. In the first part
of the simulation, we compare the performance of traditional cache and semantic cache, along
with various cache replacement policies. In this part, only one infinite queue is maintained in
the server. The server answers the queries in FCFS order. To answer an NN search for certain
service type, the server first employs the trapezoidal mapping algorithm to locate the client in
a Voronoi cell. Then, the service facility located in that Voronoi cell is returned as the answer.
Generally speaking, the algorithm can locate the Voronoi cell of the client in O(logm), where m
is the total number of the edges in this Voronoi Diagram. We assume that the system is heavily
loaded and major congestion occurs in wireless transmission. Thus, the query processing time
is omitted. Given the size of a data object DataSize, the transmission time ServTime equals to

12

‘ Parameter ‘

Description |

MeanThinkTime | average time interval between two consecutive queries issued by a client

MinSpeed minimum moving speed of a client

MaxSpeed maximum moving speed of a client

CacheSizeRatio | ratio of the cache size to the database size

CacheSize cache size of the client

0 skewness parameter for the Zipf access distribution

UrgReq the time threshold used to detect the clients that will be handoff soon

HigherFirstProb | the probability that a server answers the query from a higher priority
queue first

Table 2: Configuration Parameters of the Client and Server Models

(DataSize + Overhead)/DownlinkBand. Overhead here refers to the spatial scope information
of semantic circles. In this simulation, each service type is treated independently and the clients
can only query one type of services at a time.

In the second part of simulation, various query scheduling schemes are evaluated. Two infinite
queues are maintained in the server; one has a higher priority than the other*. UrgReq is defined
as the time threshold to determine whether a client is to handoff soon or not. HigherFirstProb is
the probability that the server will answer the query from the higher priority queue first when it is
not empty. Table 2 summarizes the configuration parameters of the client and server models.

7 Performance Evaluation

Based on the simulation model described earlier, experiments have been conducted to evaluate the
access performance of mobile NN search. We first compare the performance of systems with seman-
tic cache, traditional cache, and no cache. Then, we compare several cache replacement policies
designed for the semantic cache used in our study. Finally, the impacts of various query scheduling
schemes, which address the roaming problem, are examined. Table 3 shows the parameter settings
for our experiments. All the experiments use these settings unless noted explicitly.

‘ Parameter ‘ Setting H Parameter ‘ Setting
SideLen 1000 meters MeanThinkTime | 20.0 seconds
ServNum 20 MinSpeed 10 meters/second
AreaNum 20, 50 MazSpeed 20 meters/second
DataSize 512 byte CacheSizeRatio | 10%
DownlinkBand | 1.25 x 10° byte/second | UrgRegq 100 x ServTime seconds
ClientNum 1000 HigherFirstProb | 70%

Table 3: Parameter Settings for Performance Evaluation

4For naive scheduling scheme, only one queue is used.

13

7.1 Experiment #1: Caching Techniques

In this section, we compare the average query response time of mobile clients with 1) no cache,
2) traditional cache, and 3) semantic cache. For a mobile client without cache, it has to submit
its query to the server and waits for the response. For a mobile client with a traditional cache, it
issues a query to the server if the answer is not available in cache. The returned answer is cached
for future use. Since we only consider mobile NN search in this study, the cached answers can only
be reused when the client submits the same query at the same location. For a mobile client with
a semantic cache, it issues a query to the server just like a client with a traditional cache, if the
answer is not available in cache. The returned data object, along with a semantic circle, is cached
to answer the same query in the future as long as the client is located within the semantic circle. To
provide a fair comparison between traditional caching and semantic caching techniques, we choose
LRU as the cache replacement policy for this experiment.

21 T T T T
D a—— 209 F T o T No-Cache o—
T] — No-Cache o - 208 Traditional-Cache: LRU ——-
o Traditional-Cache: LRU —+— 4 ’ Semantic-Cache: LRU -5~
£ Semantic-Cache: LRU -8-- £ 20.7 - E
2 208} - 2
é ,GE) 206 -
% 207 5 2T i
% ' % 204 -
& 206} . g 03r i
g‘ %‘ 202 B
= =}
(o4 205 + . (o4 201 B
20gF-----o- I S Seeeneeenaan P PR 1
204 B B R R g 19.9 L L L L
1 12 14 16 18 2 1 1.2 14 1.6 1.8 2
Number of Queries (* 10"6) Number of Queries (* 10"6)
(a) Area Distribution 1 (AreaNum=20) (b) Area Distribution 2 (AreaNum=>50)

Figure 6: Average Query Response Time vs. Caching Techniques

Figure 6 and 7 show the simulation result in terms of average query response time and cache
hit ratio, respectively. By increasing the simulation time, represented by the number of queries
processed, we observe that the response time reaches a steady state. The simulation result shows
that the traditional data cache does not improve the performance much over no-cache approach.
This is due to the location dependency of mobile NN search, i.e., cached data can only be reused
when the client submits the same query at the same location. On the other hand, cache hit ratio of
traditional cache is close to zero, which shows the ineffectiveness of the traditional caching technique
on location-dependent queries. The semantic caching technique simply outperforms the other two
methods. In terms of query response time, it improves about 2.61% over traditional cache for the
first distribution and 4.84% for the second distribution, respectively. In terms of cache hit ratio,
the superiority of semantic cache is overwhelming.

7.2 Experiment #2: Cache Replacement Policies

This experiment is to compare the impact of different cache replacement policies on semantic cache.
A good cache replacement policy will maintain a high cache hit ratio and thus improve the system
performance. In this experiment, we examine the semantic caching technique with Area, Dist, AID,

14

0.04 T T T T 0.05 T T T T
0.035 - PE O FER PR 4 0.045 th---------- G- L L - 1
0.04 - No-Cache -— 4
0.03 - No-Cache -— A Traditional-Cache: LRU -+
Traditional-Cache LRU ——- 0.035 | Semantic-Cache: LRU -5--
& 005 Semantic-Cache: LRU -8-- | =
B B oot -
T 0.02 - B T 0.025 B
£ 2 0.02
8 oo5| - 8 -
0.015 B
0.01 B
0.01 | B
0.005 - 1 0.005 |- g
0 S S A s O S S e s
1 12 14 16 18 2 1 1.2 14 1.6 1.8 2
Number of Queries (* 10"6) Number of Queries (* 10"6)
(a) Area Distribution 1 (AreaNum=20) (b) Area Distribution 2 (AreaNum=>50)

Figure 7: Average Cache Hit Ratio vs. Caching Techniques

FAR, and LRU cache replacement policies.

As shown in Figure 8, cache replacement policies do have a significant impact on cache perfor-
mance. We found that Area and AID outperform others significantly. From the experiments, it is
observed that area is a major factor that affects the cache hit ratio for location-dependent queries.
While AID performs better than Area, the improvement is not distinguishable, only about 0.19%
for distribution 1 and nearly zero for distribution 2. Surprisingly, the LRU performs slightly better
than the Dist and FAR. One reason for this is that, in this experiment, we do not consider the
impact caused by the clients’ moving patterns and assume the clients move in a constant velocity.
FAR actually outperforms LRU when the queries issued have high locality. Our later study shows
the impact of clients’ movement on the cache replacement strategies in detail [21].

0.1 T T T T 0.11 T T T T
,,,,, - ————H
0.09 o e e = 0.1 @_7”7,7@ ’’’’’ B a8 i
0.08 |- Semantic-Cache: LRU <— 0.09 Semantic-Cache: LRU <— A
Semantic-Cache: FAR -+~ Semantic-Cache: FAR -+~
2 oo7f Semantic-Cache: Area -8-- £ o008t Semantic-Cache: Area -2-- |
° ' Semantic-Cache: Dist - ° Semantic-Cache: Dist -
= Semantic-Cache: AID -4~ = Semantic-Cache: AID -4~
T 0.06 - T 0.07 |
[Q
.é =
8 oosf - 8 oo -
0.04 B 0.05 | B
ooz L L - S g 004 % e S S S
0.02 1 1 1 1 003 — T iiiiiiiii T 777777777 T N T
1 12 14 16 18 2 1 1.2 14 1.6 1.8 2
Number of Queries (*10"6) Number of Queries (* 10"6)
(a) Area Distribution 1 (AreaNum=20) (b) Area Distribution 2 (AreaNum=>50)

Figure 8: Cache Hit Ratio vs. Cache Replacement Policies

Another observation is that the performance of semantic cache improves gradually with the
increase of total query numbers, which is particularly obvious in distribution 2. This is also impacted

15

by the area factor. Area and AID take area as the major replacement metric. As a result, a
data object with small area is more likely to be replaced than a data object with large area.
Consequently, the total area covered by all the cached semantic circles improves along with the
increase of simulation time. Cache hit ratio, which is expected to be equal to the proportion
between cached area over the area of the Voronoi cell, becomes higher and the query response
time is reduced. However, the cache hit ratio will not continue to increase, because the maximal
semantic circle of an area is less than or equal to its inscribe circle.

In addition to the above experiment, we evaluate the cache replacement policies by varying the
ratio of cache size to database size, i.e., CacheSizeRatio, from 5% to 20%. The objective of this
experiment is to examine the impact of cache size on hit ratio of cache replacement policies. As
illustrated in Figure 9, while the cache size increases, hit ratio is improved as we expected.

T T
0.16 - Sementic-Cache: LRU —~— 1 14 F ic-Cache: LRU —o— _
Semantc-Cache FAR -+~ O T Smantc e FAR —
0.14 |- Semantic-Cache: Area -8-- A Semantic-Cache: Area -5-- "
Semant_lc-Cachq Dist -x o 0.12 | Semantic-Cache: Dist -x B T
012 | Semantic-Cache AID —&-— , — - Semantic-Cache: AID &=~
(=} o ~
3 3 01 - 8
4 @
s T 008
= =
@ 2
o o
0.06
0.04
0 1 1 1 0.02 ',?""“//| 1 1
5 8 10 15 20 5 8 10 15 20
Cache Size Ratio (%) Cache Size Ratio (%)
(a) Area Distribution 1 (AreaNum=20) (b) Area Distribution 2 (AreaNum=>50)

Figure 9: Cache Hit Ratio vs. Cache Sizes

7.3 Experiment #3: Query Scheduling Schemes

The main objective of this experiment is to evaluate the performance of different query scheduling
schemes which addresses the query resubmission problem caused by roaming. In addition to the
performance metrics used in previous experiments, we introduce two more performance metrics:
cross number, denoting the number of handoff clients, and recross number, denoting the number
of clients that have been handoff several times before receiving answers to their queries. Each
client has a local semantic cache employing Area as the cache replacement scheme since it provides
better performance in most cases as illustrated in our previous experiments. Default values of the
parameters related to clients’ cache are used. In this experiment, we keep track of the average query
response time of normal clients who have not been given any priority but received the requested
data in the cell where they issue the queries.

Figure 10 shows the mobile clients’ query response time corresponding to various query schedul-
ing schemes. Only the result based on distribution 1 is shown here. The other distribution produces
a similar result so we omitted it to save space.

As illustrated in Figure 10(a), hybrid has the best performance in query response time of
all mobile clients, which includes both the handoff clients and normal clients. As far as query
response time is concerned, hybrid outperforms naive by about 4.74%. Compared with naive, the

16

167 T T T ’f 20 T T T T
w , = ‘
o 16.6 - Naive -— o 2 ' ' ' T T
g Priority -+~ 2 19 | Naive =—
S 165f Inelligent & - 5 9 Priority
§ Hybrid - O Intelligeht -&--
5 164F g P R . T 18 Hybrid - i
S 163 . S
< 5
E 162 - o 17 :
% E
S =
16.1 | -
é‘ . % 16 | -
o 16 | E
> foo oo Armmmmmee oo T T ?g
L - X N
8‘ 159 X % S F F = TR, P F I 1
15.8 1 1 1 1 8 1 1 1 1
1 12 14 16 18 2 1 12 14 16 18 2
Number of Queries (* 10"6) Number of Queries (* 10"6)
(a) Query Response Time of All Clients (b) Query Response Time of Normal Clients

Figure 10: Query Response Time vs. Query Scheduling Schemes

improvement is about 4.36% and 1.76% for priority and intelligent, respectively. Figure 10(b)
shows the average response time of the queries issued by the normal clients, which are not given
any priority. Since intelligent detects the clients who will be handoff soon and tries to answer
requests before they leave the cell, those clients receive responses quickly. These clients are also
considered as normal clients, consequently, the average query response time of normal clients of
intelligent is shortened compared with naive. For the other two scheduling schemes, i.e., priority
and hybrid, the query response time for normal clients is increased.

Figure 11 and 12 show the experiment results in terms of cross and recross numbers. These two
metrics gauge the severity of query resubmission due to roaming. Therefore, a goal of scheduling
schemes is to reduce both the cross and recross numbers so as to maximize the number of mobile
clients which will receive their responses before they leave their current cells. As illustrated, priority
has a higher cross number than naive, because it provides service to handoff clients first. Therefore,
the query response time of normal clients is inevitably increased and the cross number is increased.
However, this scheme does reduce the recross number. As shown in Figure 12, its recross number
is nearly zero. In terms of recross number, all the proposed schemes outperform naive and the
improvement is very significant.

500000 : : : :] 45000 : : :
} Naive —
Naive —— - L e
450000 |- Priority —+— P oo [- g
'nte#}'/%% o ey y 35000 Hy%rid X b
. .
2 400000 £ 30000 .
= > n
z z -
% 350000 . g 25000 B i
=} =
5 § 20000 e .
© 300000 - 4
g 18000 _.-F -
»
Z 250000 g S 10000 | 4
200000 | . 5000 - A
0 * * * *
150000 i 1 1 1 1 1 1 1 1
1 12 14 16 18 2 1 12 14 16 18 2
Number of Queries (*10"6) Number of Queries (*10"6)
Figure 11: Average Cross Number Figure 12: Average Recross Number

17

In the experiments shown above, all the parameters use default values. Actually, some param-
eters may impact the final performance. As for the priority scheduling scheme, Higher Fiirst Prob
decides the probability that a higher priority is assigned to a handoff client. With the increase
of Higher FirstProb, from 0.3 to 1.0, only recross decreases monotonously. The average response
time reaches the optimal value when Higher FirstProb is set around 0.9, while the response time of
normal clients reaches the peak value when Higher FlirstProb is near 0.8. Due to space constraint,
the details are omitted in this paper.

8 Conclusion

Mobile nearest-neighbor (NN) search is a basic but important function for LBSs. A Voronoi
Diagram based index has been introduced in this paper to answer queries for finding the nearest
service facilities based on mobile clients’ locations. Due to the limited resources in mobile devices
and realtime requirement of location-based services, we propose a semantic cache to address the
access efficiency of mobile NN search. Several cache replacement policies, tailored for the proposed
semantic cache, are proposed and examined. Moreover, we extend our study from a single-cell
environment to a multi-cell environment. Considering the fact that mobile clients may roam across
cells, it’s likely for a mobile client to leave a cell without receiving the response for the query
it issued there. This requires the resubmission of the query in the new cell and thus results in
performance degradation. In order to reduce the number of query resubmissions, four different
query scheduling schemes have been proposed.

A series of experiments have been conducted to evaluate the performance of our proposals in this
paper. The result shows that the VD-based index is an efficient solution for NN search in mobile
environments. Enhanced with semantic cache, query processing efficiency is greatly improved. We
compared several cache replacement policies for semantic cache and found that the areas of the se-
mantic circles associated with the cached data are the major factor that impacts cache performance
in terms of query response time and hit ratio. By taking roaming issues into consideration, our
experiments compare four different query scheduling schemes which aim at reducing the cell-cross
number and cell-recross number. It is shown that no single scheduling scheme outperforms all the
others in all aspects. The appropriate scheduling scheme must be chosen based on the application’s
requirements.

This study represents the first step into a very important field of location-dependent query
processing. In this paper, we have explored some of the research issues in the field, but fur-
ther studies are needed. Two directions will be pursued in our follow-up studies. First, location
dependent queries other than the basic mobile NN search will be examined. Secondly, different
communication mechanisms between the base station and mobile clients will be studied. While the
point-to-point communication is employed in this paper, we will investigate corresponding problems
in broadcast-based systems.

9 Acknowledgments
We thank the special issue editors and the anonymous reviewers for their valuable comments and

suggestions, which have improved the quality of this article. The Research Grant Council, Hong
Kong SAR, China supported this research under grant number HKUST6079/01E.

18

References

1]

[10]

[11]

[12]

[13]

[14]

S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management for
asymmetric communications environments. In Proceedings of ACM SIGMOD Conference on
Management of Data, pages 199-210, San Jose, CA, USA, May 1995.

A. Bakre and B. R. Badrinath. Handoff and systems support for indirect tcp/ip. In 2nd Useniz
Symposium on Mobile and Location-Independent Computing, April 1995.

D. Barbara. Mobile computing and databases — a survey. IEEE Transactions on Knowledge
and Data Engineering, 11(1):108-117, January/February 1999.

D. Barbara and T. Imielinski. Sleepers and workaholics: Caching strategies for mobile envi-
ronments. In Proceedings of ACM SIGMOD Conference on Management of Data, pages 1-12,
Minneapolis, MN, USA, May 1994.

S. Berchtold, B. Ertl, D. A. Keim, H. P. Kriegel, and T. Seidl. Fast nearest neighbor search
in high-dimensional space. In Proceedings of the Fourteenth International Conference on Data
Engineering (ICDE’98), pages 209-218, February 1998.

S. Berchtold, D. A. Keim, H. P. Kriegel, and T. Seidl. Indexing the solution space: A new tech-
nique for nearest neighbor search in high-dimensional space. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 12(1):45-57, January/February 2000.

M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications, chapter 7. Springer-Verlag, New York, NY, USA, 1996.

T. Camp, J. C. Lusth, and J. Matocha. Reduced cell switching in a mobile computing envi-
ronment. In Proceedings of the sixth annual international conference on Mobile computing and
networking (MobiCom’00), pages 143154, August 2000.

H. G. Gok. Processing of continuous queries from moving objects in mobile computing systems.
Master’s thesis, Bilkent University, 1999.

H. G. Gok and O. Ulusoy. Transmission of continuous query results in mobile computing
systems. Information Sciences, 125(1-4):37-63, 2000.

D. L. Lee, W.-C. Lee, J. Xu, and B. Zheng. Data management in location-dependent infor-
mation services. IEEE Pervasive Computing, 1(3):65-72, July-September 2002.

Q. Ren and M. H. Dunham. Semantic caching and query processing. Technical Report 98-
CSE-04, Southern Methodist University, May 1998.

Q. Ren and M. H. Dunham. Using semantic caching to manage location dependent data in
mobile computing. In Proceedings of the 6th Annual ACM/IEEE International Conference
on Mobile Computing and Networking (MobiCom’2000), pages 210-221, Boston, MA, USA,
August 2000.

H. Schwetman. CSIM user’s guide (version 18). Mesquite Software, Inc,
http://www.mesquite.com, 1998.

19

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay triangulator.
In First Workshop on Applied Computational Geometry, pages 124-133, May 1996.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects.
In Proceedings of the 13th International Conference on Data Engineering (ICDE’97), pages
422-432, Birmingham, UK, April 1997.

P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the Uncertain Position of Moving
Objects, pages 310-337. Springer Verlag, 1998.

S. Tekinay and B. Jabbari. Handover and channel assignment in mobile cellular networks.
IEEFE Communications Magazine, pages 42-46, November 1991.

J. Xu, X. Tang, D. L. Lee, and Q. L. Hu. Cache coherency in location-dependent information
services for mobile environments. In Proceedings of the 1st International Conference on Mobile
Data Access (MDA’99), pages 182-193, Hong Kong, December 1999.

J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy efficient index for querying location-
dependent data in mobile broadcast environments. In Proceedings of the 19th IEEE Interna-
tional Conference on Data Engineering (ICDE’03), Bangalore, India, March 2003.

B. Zheng, J. Xu, and D. L. Lee. Cache invalidation and replacement strategies for location-
dependent data in mobile environments. IEEE Trans. on Computers, Special Issue on Database
Management and Mobile Computing, 51(10):1141-1153, October 2002.

20

