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Abstract Traditional nearest-neighbor (NN) search is based on two ba-
sic indexing approaches: object-based indexing and solution-based indexing.
The former is constructed based on the locations of data objects: using some
distance heuristics on object locations. The latter is built on a pre-computed
solution space. Thus, NN queries can be reduced to and processed as simple
point queries in this solution space. Both approaches exhibit some disad-
vantages, especially when employed for wireless data broadcast in mobile
computing environments.

In this paper, we introduce a new index method, called the grid-partition
index, to support NN search in both on-demand access and periodic broad-
cast modes of mobile computing. The grid-partition index is constructed
based on the Voronoi Diagram; i.e., the solution space of NN queries. How-
ever, it has two distinctive characteristics. First, it divides the solution space
into grid cells such that a query point can be efficiently mapped into a grid
cell around which the nearest object is located. This significantly reduces
the search space. Second, the grid-partition index stores the objects that
are potential NNs of any query falling within the cell. The storage of ob-
jects, instead of the Voronoi cells, makes the grid-partition index a hybrid
of the solution-based and object-based approaches. As a result, it achieves a
much more compact representation than the pure solution-based approach
and avoids backtracked traversals required in the typical object-based ap-
proach, thus realizing the advantages of both approaches.

We develop an incremental construction algorithm to address the issue
of object update. In addition, we present a cost model to approximate the
search cost of different grid partitioning schemes. The performances of the
grid-partition index and existing indexes are evaluated using both synthetic
and real data. The results show that overall, the grid-partition index signif-
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icantly outperforms object-based indexes and solution-based indexes. Fur-
thermore, we extend the grid-partition index to support continuous-nearest-
neighbor search. Both algorithms and experimental results are presented.

Key words nearest-neighbor search – continuous-nearest-neighbor search
– index structure – location-dependent data – wireless broadcast

1 Introduction

Location-dependent information services (LDISs) refer to services that an-
swer queries based on where the queries are issued. Due to the popularity of
personal digital devices and advances in wireless communication technolo-
gies, LDISs have received a lot of attention from both the industrial and
academic communities [13,18]. In its report “IT Roadmap to a Geospatial
Future” [18], the Computer Science and Telecommunications Board (CSTB)
predicted that LDISs will usher in the era of mobile/pervasive computing
and reshape the mass media, marketing, and various other aspects of our
society in the decade to come.

A very important class of problems in LDISs is nearest-neighbor (NN)
search. An example of NN search is: “Show me the nearest restaurant.” A
lot of research has been carried out on how to solve the NN search problem
in the traditional domain of spatial databases [17,21,26] and research areas
involving high-dimensional spaces such as multimedia databases and OLAP
[1,5,6,8,16,28]. Different from these efforts, in this paper, we study the NN
search problem in wireless environments, which are most attractive to LDIS
users [13]. Data access in wireless environments has unique characteristics
which are different from those of traditional disk-based environments. In
addition to the traditional on-demand access supported by point-to-point
communication, periodic broadcast is an alternative to disseminate data to
mobile users (see Section 2.1 for a detailed discussion of these two data ac-
cess modes). Traditional disk-based indexing techniques can be employed to
speed up query processing for on-demand access, while periodically broad-
casting the index along with the data can guide the clients to intelligently
listen to useful data only. Moreover, disks support random access, whereas
the access in periodic broadcast is sequential. In addition, mobile and disk-
based environments have different performance requirements; i.e., mobile
clients are concerned not only with access latency but also with energy con-
sumption [10,11,27]. This calls for the development of new index and search
techniques. On the other hand, we shall focus ourselves on a low dimensional
space, because most, if not all, LDISs are based on a two-dimensional space.

Although people are more familiar with point-to-point wireless connec-
tions, satellite-based broadcast has been used for many years by compa-
nies, such as Hughes Network System, to provide broadband data services.
Broadcast dissemination has also been adopted by Microsoft Smart Personal
Objects Technology (SPOT) to send timely, location-aware information to
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customers via the DirectBand network. This demonstrates the industrial
interest as well as commercial feasibility of broadcast methods for large-
scale data delivery. Data broadcast allows simultaneous access of data by
an arbitrary number of mobile clients at a constant cost, thus increasing the
flexibility and scalability of the system. It is efficient in terms of power and
resource consumption because broadcast is an inherent capability of wire-
less communication and does not require sophisticated protocols for channel
setup and data exchange, making it very suitable for resource-constrained
mobile environments. An additional benefit of broadcast is that clients can
fetch any desirable information from the broadcast channel without reveal-
ing to the server their specific queries. For example, in the context of this
paper, the user can retrieve the nearest objects from a broadcast channel
without needing to send the server details of his physical location. Thus, the
privacy of the user is protected. These benefits motivate us to investigate
in this paper the nearest-neighbor problem in both wireless broadcast and
point-to-point environments.

Most of the existing studies on NN search are based on indexes that
store the locations of the indexed objects, e.g., the well-known R-tree [17].
We call them object-based indexes. Recently, Berchtold et al. proposed a
method for NN search based on indexing the pre-computed solution space
[1]. We refer to this as a solution-based index. Both object-based indexes
and solution-based indexes have advantages and disadvantages. For exam-
ple, object-based indexes incur a low storage overhead, but they rely on
backtracking to obtain query results. Backtracking is not a major constraint
for random-access media (e.g., disks) but is a serious problem for sequential-
access media (e.g., wireless channels with data broadcast; see Section 2.2
for details). Solution-based indexes overcome the backtracking problem by
answering an NN query in a single linear scan of the index. As such, they
work well for sequential-access media. Nevertheless, since the solution space
typically consists of complex shapes (e.g., polygons), the solution-based in-
dex generally has a larger index size than that of the object-based index.
Finally, solution-based indexes are tailored for a particular type of queries.
They are expected to be incorporated in a spatial DBMS to provide efficient
support for popular types of queries such as NN search. This is analogous
to relational DBMSs that support both the hash index for efficient equality
match and B+-tree for more general queries.

In a previous paper, we proposed a novel grid-partition index that com-
bines the strengths of object-based indexes and solution-based indexes [29].
The basic idea is as follows. First, the solution space of NN queries is parti-
tioned into disjoint grid cells. For each grid cell, all of the possible NNs for an
arbitrary query point within the cell are indexed. This approach effectively
shrinks the initial search space to a grid cell by quickly locating the grid
cell containing the query point. Moreover, since the object locations (rather
than the complex shapes of solution space) are indexed, the index size is
small. Three partitioning algorithms, namely fixed partition, semi-adaptive
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partition, and adaptive partition, were developed. In this paper, we extend
the previous work in the following aspects:

– A new index construction algorithm based on Delaunay Triangulation
is proposed to support incremental update of the index. The method
described in [29] was directly based on the Voronoi Diagram and update
issues were not addressed.

– A cost model is derived to approximate the grid-partition index’s per-
formance in terms of index search cost.

– An extensive simulation is conducted to compare the performance of the
grid-partition index with representative object-based and solution-based
indexes in both air indexing and traditional disk indexing environments,
whereas only an air indexing environment was considered in [29]. In
addition, this paper includes more datasets and performance metrics
to provide a thorough comparison between the grid-partition index and
other indexes.

– A continuous-nearest-neighbor search algorithm is developed based on
the grid-partition index. The experimental performance results are pre-
sented.

The rest of this paper is organized as follows. Section 2 provides the
background for supporting NN search on air and analyzes the constraints
of existing index structures. Section 3 introduces the basic idea of the grid-
partition index, together with an incremental index construction approach,
the NN search algorithm, and the cost model. A performance evaluation
of the grid-partition index is presented in Section 4. Section 5 extends the
usage of the grid-partition index to solve the continuous-nearest-neighbor
problem in wireless environments. Finally, we conclude the paper with a
roadmap of future work in Section 6.

2 Background

The goal of our study is to address the NN search issue in mobile com-
puting environments, in which the data is delivered via wireless networks.
In the following, first, we describe two typical mobile data dissemination
approaches in wireless networks and their performance concerns; then, we
review existing index structures for NN queries.

2.1 Mobile Data Dissemination and Performance Metrics

LDISs are very attractive in a mobile and wireless environment, where
mobile clients enjoy unrestricted mobility and ubiquitous information ac-
cess [13]. There are basically two approaches to disseminating location-
dependent data to mobile clients:
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– On-Demand Access: A mobile client submits a request, which consists
of a query and the query’s issuing location, to the server. The server
returns the result to the mobile client via a dedicated point-to-point
channel.

– Periodic Broadcast: Data are periodically broadcast on a wireless
channel open to the public. After a mobile client receives a query from
its user, it tunes into the broadcast channel to receive the data of interest
based on the query and its current location.

On-demand access is particularly suitable for light-loaded systems when
contention for wireless channels and server processing is not severe. How-
ever, as the number of users increases, the system performance deteriorates
rapidly. Compared with on-demand access, broadcast is a more scalable ap-
proach since it allows simultaneous access by an arbitrary number of mobile
clients.

Access efficiency and energy conservation are two critical issues for mo-
bile clients. Access efficiency concerns how fast a request is satisfied, while
energy conservation concerns how to reduce a mobile client’s energy con-
sumption when it accesses the data of interest. In the literature, two perfor-
mance metrics, namely access latency and tuning time, are used to measure
access efficiency and energy conservation, respectively [10,11]:

– Access latency: The time elapsed between the moment when a query
is issued and the moment when it is satisfied.

– Tuning time: The time a mobile client stays active to receive the re-
quested data.

While access efficiency is a constantly tackled issue in most system and
database research, energy conservation is very critical due to the limited
battery capacity on mobile clients, which ranges from only a few hours to
about half a day under continuous use. Moreover, only a modest improve-
ment in battery capacity of 20-30% is expected over the next few years [11].
To facilitate energy conservation, a mobile device typically supports two op-
eration modes: active mode and doze mode. The device normally operates
in active mode; it can switch to doze mode to save energy when the system
becomes idle.

With on-demand access, the query processing is the same as in tradi-
tional client-server mode, except that the query and result are transferred
via a wireless network. The client tuning time (for sending the query and
receiving the result) is independent of query processing strategies. Hence,
the focus of this paper for on-demand access is to employ disk indexing
on the server to expedite query processing. It is understood that disk I/O
rather than CPU is the performance bottleneck for most disk-based data-
base applications. Therefore, the design objective is to minimize the index
search cost in terms of the number of index pages accessed during query
processing (since indexes are accessed in the unit of page). However, the
improvement of query latency due to an index structure comes at the cost
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of storing and maintaining the index on disk. Fortunately, as disk storage
is getting cheaper and bigger, the index storage overhead would not be a
major concern.

With data broadcast, clients listen to a broadcast channel to retrieve
data based on their queries and hence are responsible for query processing.
Without any index information, a client has to download all data objects
to process NN search, which will consume a lot of energy since the client
needs to remain active during a whole broadcast cycle. A solution to this
problem is air indexing [11]. The basic idea is to broadcast an index before
data objects (see Figure 1 for an example). Thus, query processing can be
performed over the index instead of actual data objects. As the index is
much smaller than the data objects and is selectively accessed to perform
a query, the client is expected to download less data (hence incurring less
tuning time and energy consumption) to find the NN. In fact, the tuning
time is proportional to the index search cost in terms of the number of
index pages accessed during the search. The disadvantage of air indexing
however, is that the broadcast cycle is lengthened (to broadcast additional
index information). As a result, the access latency would be worsen. It is
obvious that the larger the index size, the higher the overhead in access
latency.

An important issue in air indexing is how to multiplex data and index
on the sequential-access broadcast channel. Figure 1 shows the well-known
(1, m) scheme [11], where the index is broadcast in front of every 1

m
fraction

of the dataset. To facilitate the access of index, each data page includes an
offset to the beginning of the next index. The general access protocol for
processing NN search involves the following steps:

– Initial probe: The client tunes into the broadcast channel and determines
when the next index is broadcast.

– Index search: The client tunes into the broadcast channel again when
the index is broadcast. It selectively accesses a number of index pages
to find out the NN object and when to download it.

– Data retrieval: When the page containing the NN object arrives, the
client downloads it and retrieves the NN.
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Fig. 1 Air Indexing in Wireless Broadcast Environments

In general, low index search cost and small index size cannot be achieved
simultaneously. In order to correlate the index search cost and index size,
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we present a flexible performance measure, indexing efficiency (denoted by
η). It is defined as the ratio of the reduced index search cost to the enlarged
index size against a naive scheme, where each index segment stores the
locations of all the objects and a client needs to conduct an exhaustive
search to find its NN object. Formally, the indexing efficiency metric is
defined as:

η(i) =

(

(Tnaive − Ti)/Tnaive

)α

(

(Si − Snaive)/Snaive

) (1)

where Ti is the average index search cost of an index i, Si is the size of
index i, and α is a constant parameter to weigh the importance of the saved
search cost and the index overhead. The setting of α could be adjusted for
different application scenarios. The larger the value of α, the more important
the index search cost compared with the index size. This metric will be used
as a performance guideline to tune the tradeoff between the index search
cost and index size in constructing the grid-partition index.

To summarize this section, for on-demand access, the objective of disk
indexing is to reduce the latency of query processing; for data broadcast, the
objective of air indexing is to trade access latency for tuning time. Although
the ultimate performance objectives are different in these two scenarios, they
are essentially determined by the index size (for access latency in air index-
ing) and the index search cost in terms of index page accesses during query
processing (for query latency in disk indexing and tuning time in air index-
ing). Therefore, the goal of this paper is to design new index structures that
minimize the index search cost and index size for NN search. In addition,
we require the indexes to support efficient NN search on sequential-access
broadcast channels.
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Fig. 2 A Running Example

2.2 Indexes for NN Queries

According to the information indexed, the existing index structures for
NN search can be classified into two categories: object-based indexes and
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solution-based indexes. A running example consisting of four objects in
search space A is introduced to illustrate the basic ideas of these indexes
(see Figure 2(a)).

Object-Based Indexes The indexes in this category are built upon
the locations of data objects. The representative is R-tree [7], where objects
are indexed using minimal bounding rectangles (MBRs). Most of the other
indexes in the category were derived from R-tree. The MBRs for the objects
in the running example and the corresponding R-tree index are shown in
Figure 3, given that the node fan-out is two. If the objects to be indexed are
all available, a packing algorithm, such as the Hilbert sort [12] or STR [14],
can be employed to build the index so that both the index size and index
search cost are reduced by improving the page occupancy.

o1

o2

o3

o4

1R

2R
q2

q1

A

(a) MBR Struc-
tures

o 2o 1 o 3 o 4

R2R1

R1 R2Root

To Data Buckets

(b) R-tree Index

Fig. 3 R-tree Index for the Running Example

To perform NN search, a branch-and-bound approach is employed to
traverse the index tree. At each step, a heuristic is applied to choose the
next branch to traverse. At the same time, information is collected to prune
the future search space. Various search algorithms differ in terms of the
searching order and the metrics used to prune the branches [3,9,17]. For
example, suppose that there are two query points, q1 and q2, as shown
in Figure 3(a). For query point q1, after accessing the root, it visits R2

first since it is closer to R2 than R1. In R2, the NN of q1 is o4. Hence,
it records the current minimal distance, dist(q1, o4). Because dist(q1, o4) is
shorter than the minimum distance from q1 to R1, the search is stopped
here. Similarly, for query point q2, first it examines the root and then R2.
Next, it examines R1 since the current minimal distance, dist(q2, o2), is
longer than the minimum distance from q2 to R1.

As illustrated, NN search for R-tree dynamically traverses the MBRs
according to the given query point. This introduces two major weaknesses.
First, since it relies on the heuristic to gradually prune the search space, the
performance really depends on whether the heuristic has pruning power. A
foreseeable effect is the great variance of the search performance. Second,
the branch-and-bound search approach involves a lot of backtracking which
works well for random-access disks only but not for sequential-access broad-
cast channels. Let’s look at an example. Suppose that the index tree in our
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running example is broadcast once in a pre-order traversal in a broadcast
cycle (see Figure 4(a)). If we preserve the search order for q2 (i.e., first the
root, followed by R2, followed by R1) based on the original R-tree search
algorithm, a significant access delay is incurred. This is because after ac-
cessing R2, we have to wait for the next broadcast to access R1 since R1

has already been broadcast in the current cycle (as illustrated by the sec-
ond arc in Figure 4(a)). Such a delay is incurred for every inconsistency
between the searching order and the broadcasting order of MBRs. There-
fore, the branch-and-bound search approach is inefficient in access latency.
Alternatively, we may just access R1 and R2 sequentially (see Figure 4(b)).
However, this method is not the best in terms of the tuning time since un-
necessary accesses may be incurred. For example, accessing R1 for q1 is a
waste of tuning time.
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Fig. 4 Sequential Access on a Wireless Broadcast Channel

Vector-Approximation (VA) file is another representative index for NN
search [25], which was proposed for efficient similarity search in high di-
mensional spaces. The basic idea is to assign bj bits to represent the jth
dimension; i.e., by dividing the space along the jth dimension into 2bj parti-
tions, each containing about the same number of objects. The server records
a set of marks (mj [1], · · · , mj [2

bj ]) to capture the partitioning coordinates
in the jth dimension. Therefore, the original d-dimensional space is divided
into 2b cells, with b equal to

∑d

j=1
bj , and each cell is represented by a b-bits

vector. Since an object falls into one and only one cell, it can be associated
with the cell’s vector. With such a flat structure, VA-file reduces the in-
dex size and expedites the sequential scan, which is unavoidable when the
number of dimensions exceeds 10 [24,25]. Nevertheless, as a space partition-
ing method, it performs much worse than R-tree in low-dimensional spaces,
where the sequential scan is often not needed. Therefore, R-tree is employed
in this paper as a representative of location-based indexes.

Another object-based index structure related to ours is the grid file,
which was originally designed for multi-key file access [15]. The basic ideas
behind the grid file and our proposed grid-partition index are different. In
the grid file, the space is partitioned into grid cells according to the objects’
distribution and each grid cell indexes only the objects inside its cell. On the
contrary, in our proposed index, the space is partitioned into grid cells based
on the solution space, and each object might be associated with several grid
cells. A grid cell actually indexes all the objects that are potential NNs of



10 Baihua Zheng et al.

query points inside the cell. The objective of our grid-partition index is to
efficiently solve NN search in mobile computing environments.

Solution-Based Indexes An object-based index is a generic index
structure that supports various spatial operations such as joins besides NN
search, and solution-based indexes are constructed for serving a specific type
of queries. Motivated by the observation that the performance of object-
based index for NN search decreases as the dimension of space increases,
solution-based indexes have been proposed to build an index based on the
pre-computed solution space [1]. For an NN search, the solution space can
be represented by the Voronoi Diagram (VD) [2]. Let O = {o1, o2, · · · , on}
be a set of points. V(oi), the Voronoi cell (VC) for oi, is defined as the set
of points q in the space such that dist(q, oi) < dist(q, oj), ∀ j 6= i. That
is, V(oi) consists of the set of points for which oi is the NN. The VD for
the running example is depicted in Figure 2(b), where P1, P2, P3, and P4

denote the VCs for four objects, o1, o2, o3, and o4, respectively.

Given the VD solution-space, the index is constructed over the VCs. The
NN search problem is thus reduced to the problem of searching the VC in
which a query point is located. The original idea of indexing the solution
space introduced in [1] was for similarity search in multimedia databases;
i.e., for the NN search under high-dimensional spaces. Besides suggesting
the idea of indexing solution space for the first time, the major contribution
of [1] was to propose an approximation scheme for the VCs which could
be very complex in the high-dimensional space and design a decomposi-
tion technique to improve the search performance under high-dimensional
spaces. However, as we mentioned in Section 1, this paper will focus on
a low dimensional space, under which the advantages of previous idea of
indexing the solution space might not be appreciated. On the other hand,
our recently proposed D-tree can be used to index VCs in low dimensional
spaces and showed a better performance than other existing indexes [27].1

As such, D-tree is used as the representative for solution-based indexes to
compare against the proposed grid-partition index.
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Fig. 5 D-tree Index for the Running Example

1 Note that D-tree was proposed for supporting general point-location queries,
not limited to VC searching.
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D-tree is to index any given solution space, like VD for NN search and
the map of delivery areas for ZIP code queries. The basic idea of D-tree
is to index regions in the solution space based on the divisions that form
the boundaries of the regions (VCs are the corresponding regions for NN
search). To construct the index, D-tree recursively partitions a space into
two sub-spaces until each space contains only one region. Consider our run-
ning example: first, polyline pl(v2, v3, v4, v6) partitions the original space
into left subspace and right subspace (denoted by P5 and P6, respectively);
next, pl(v1, v3) and pl(v4, v5) further partition P5 into P1 and P2, and P6

into P3 and P4, respectively. Figure 5 depicts D-tree structure for the run-
ning example. We use an example to illustrate the point query algorithm
with D-tree. Suppose the query point is q1 as shown in Figure 5(a). The
search starts at the root and goes to the right child node since q1 is to the
right of the partition line pl(v2, v3, v4, v6). Next, it follows the right pointer
to access P4 since q1 is again to the right of the partition line pl(v4, v5). By
then, we know the NN to q1 is o4 as P4 is the VC of o4.

Compared with object-based index, search algorithms based on solution-
based index do not bring any backtracking and hence are suitable for the
sequential access media such as wireless channel. However, instead of index-
ing the positions of objects, it has to index all the VCs of the objects which
has definitely enlarged the index size. Since index information also occupies
wireless channels and hence has been also regarded as an important perfor-
mance metric, existing solution-based indexes might not be the best choice
for NN search under mobile devices.

3 A Grid-Partition Index

As mentioned in the previous sections, both object-based indexes and solution-
based indexes for NN search have certain advantages and disadvantages. An
object-based index has a small size, since it only indexes the necessary in-
formation; i.e. the position information of objects. However, it requires lots
of backtracking in the whole search process and hence the index search cost
under sequential-access broadcast mode could be high. On the other hand,
a solution-based index in general avoids the backtracking problem by map-
ping the NN search problem into a point location query. Consequently, it
achieves a good search performance for sequential-access broadcast. How-
ever, it indexes the VCs (in the shape of polygons) rather than data objects
that can be represented by points directly, thus resulting in a large index
size.

In the following subsections, we introduce the structure of the grid-
partition index, which is a hybrid of object-based and solution-based in-
dexes. The goal is to combine the advantages of both indexes. The grid-
partition index starts with the solution space, but instead of indexing the
VCs, it stores the object locations in the index. The following several sec-
tions describe the grid-partition index in detail.



12 Baihua Zheng et al.

3.1 Basic Idea

In object-based indexes, each NN search starts with the whole search space
and gradually limits the space based on some knowledge collected during
the search. We have observed that an essential problem affecting the search
performance is the large overall search space. Therefore, we attempt to
reduce the search space for a query at the very beginning by partitioning
the space into disjoint grid cells. For each grid cell, we index all the objects
that could be NNs of at least one query point inside the grid cell.

Definition 1 An object is associated with a grid cell if and only if it is
the NN of some query point inside the grid cell.

As explained in previous work we have conducted [29], the Voronoi Dia-
gram (VD) mentioned in the last section can be used to conceptually illus-
trate the idea of associating objects to grid cells. Given a VD, an object is
the NN only to the query points located inside its VC. For instance, in Fig-
ure 2(b), object o1 is the NN only to the query points inside P1. Therefore,
for any query point inside a grid cell, only the objects whose VCs overlap
with this grid cell form the candidate set of its NNs.

Given an NN query, first we locate the grid cell in which the query point
lies, then search the answer based on objects associated with that grid cell
only. Since each grid cell only covers a limited part of the search space, the
number of objects associated with each grid cell is expected to be much
smaller than the number of all available objects in the original space. Thus,
if we can quickly locate the grid cell, the search space for an NN query will be
greatly reduced. Therefore, the overall search performance can be improved.
Figure 6(a) shows a possible grid partition for our running example. The
whole space is divided into four grid cells; i.e., G1, G2, G3, and G4. Grid
cell G1 is associated with objects o1 and o2, since their VCs, P1 and P2,
overlap with G1; likewise, grid cell G2 is associated with objects o1, o2, o3,
and so on. If a given query point is in grid cell G1, the NN can be found
among the objects associated with G1 (i.e., o1 and o2), instead of among
the whole set of objects.
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Fig. 6 Fixed Grid Partition for the Running Example

The index structure for the proposed grid-partition index consists of two
levels. The upper-level index is built upon the grid cells, and the lower-level
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index is built upon the objects associated with each grid cell. The upper-
level index maps a query point to the corresponding grid cell, while the
lower-level index facilitates the access to the objects associated with each
grid cell. The advantage is that once the query point is located in a grid
cell, its NN is definitely among the objects associated with that grid cell,
thereby preventing any backtracking operations and enabling a single linear
access of the upper-level index for any query point. In addition, to reduce
the search space as much as possible and to avoid backtracking operations
in the lower-level index, we try to control the size of each grid cell such that
its associated objects can fit into one page. Thus, for each grid cell, a simple
index structure (i.e., a list of object-pointer pairs) is employed. In case the
index for a grid cell cannot fit into one page, it is sequentially allocated to a
number of pages. In each grid cell, the list of object-pointer pairs is sorted
along the dimension (hereafter called the sorting dimension) in which the
grid cell has the largest span. For example, in Figure 6(a), the associated
objects for grid G2, o1, o3, and o2, are sorted according to the y-dimension.
The purpose of this arrangement is to speed up the NN detection procedure,
as we will see in Section 3.3.

3.2 Associating Objects to Grid Cells

In the last subsection, we explained how to associate objects to grid cells
using the VD. However, if there are updates on object locations, we have
to re-construct the VD from scratch and re-establish the association re-
lationships between objects and grid cells. To address the update issue,
we propose an incremental technique based on the Delaunay Triangulation
(DT) for associating objects to grid cells.
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Fig. 7 Object Association based on DT

The DT is the straight-line dual of the VD [2]. In the DT, the vertices
are objects themselves, and every segment connecting two objects represents
some relationship between those two objects, which satisfies the following
property:
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Property 1 Two objects are directly connected in the DT if and only if
their VCs share a common edge.

Figure 7(a) shows seven objects (o1 through o7), their VCs (represented
by dashed polygons), and the DT (represented by solid triangles). One im-
portant property of the DT is that the circum-center of any triangle is one
of the endpoints in the VD. As in Figure 7(a), point a in the VD is the
circum-center of triangle △o1o2o3. Based on this property, we develop an
algorithm (see Algorithm 1) to select the associated objects for a grid cell.
The algorithm assumes that the DT is pre-processed and maintained in
some data structure.

Algorithm 1 Selecting Associated Objects for a Grid Cell

Input: Grid cell, locations of objects, and their DT;
Output: Associated objects of this grid cell;
Procedure:

1: for each object oi do

2: initialize count(oi) = 0; mark(oi) = 0;
3: if oi is inside the input grid cell then insert it into a queue Q

4: end for

5: if Q is empty then

6: find nearest objects of the endpoints of the grid cell, and insert them into
Q

7: end if

8: while Q is not empty do

9: pop the first object oi in the queue
10: for each object oj adjacent to oi do

11: obtain the triangles that have segment ojoi as one edge
12: if there are two such triangles △1 and △2 then

13: let c1 be circum-center of △1 and c2 be circum-center of △2
14: else

15: there is only one triangle △
16: let c1 be circum-center of △ and c3 be the outermost point on the

perpendicular bisector of segment ojoi

17: end if

18: if segment c1c2 or ray −−→c1c3 overlaps with the grid cell then

19: count(oi)++
20: if mark(oj) != 1 then insert it into Q

21: end if

22: end for

23: mark(oi) = 1
24: end while

25: return all the objects with count > 0

The algorithm works as follows. The objects inside the grid cell are
definitely associated with this grid cell (lines 1-4). If there are no objects
inside the given grid cell, the NNs to the four endpoints of the grid cell
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are selected as seed objects (lines 5-7). After obtaining these seed objects,
we check their adjacent objects in a greedy manner (lines 8-24). If one
edge of the adjacent object’s VC overlaps with the grid cell, it is selected.
For each newly added object, its adjacent objects are also checked. The
counter associated with each object is used for update operations, as will
be explained later in this subsection.

Let’s examine an example. Suppose that the grid cell is R in Figure 7(a).
The four objects, o2, o5, o6, and o7, are inside R and hence are selected as
the associated objects with the grid cell. Next, we check the adjacent objects
of o2, namely, objects o1 and o3. For o3, the two triangles that have segment
o2o3 as the common edge are △o1o2o3 and △o2o3o5, which have points a
and c as their circum-centers, respectively. Segment ac overlaps with R.
Thus, object o3 is also an associated object of R. For o1, the corresponding
ray emanating from a does not overlap with R. Thus, o1 is not selected.
Similar operations are performed on unmarked adjacent objects of o5, o6,
o7, and o3. Finally, objects o2 through o7 are identified as the associated
objects of grid cell R.

We now show the correctness of Algorithm 1.

Theorem 1 An object is selected by Algorithm 1 to associate with a grid
cell if and only if it is an NN of the grid cell.

Proof: If a VC overlaps with a grid cell, at least one of the VC’s edges
should be inside the cell. Now suppose that the algorithm does not select all
of the associated objects of the cell. Without loss of generality, let’s assume
that the set of objects selected by the algorithm is A, and those that are
neighbors but not selected are denoted by B. According to the definitions
of object-grid association, the VCs of A and B together should cover the
grid cell.

We next prove that the VCs of A and B are not connected in the VD
as follows. Suppose they are connected, from Property 1, there must be
two objects, o1 from A, and o2 from B, connected in the DT. In this case,
according to the algorithm, when checking the adjacent neighbors of o1, o2

should have been selected, which is a contradiction.
Since the VCs of A cannot cover the whole cell (otherwise A is the

complete solution), and the VCs of A and B are not connected in the VD,
they cannot cover the whole cell. This contradicts to our previous claim
that the VCs of A and B together cover the grid cell. Thus, the original
assumption does not hold, and we prove that all the objects that are NNs
of the grid cell are selected.

Next, we are going to prove that only the objects that are NNs of the
grid cell will be selected. For any object selected by Algorithm 1, at least
one edge of its VC overlaps with the grid cell. By definition of VC, this
object must be an NN of some point lying in the grid cell. Therefore, any
object selected by Algorithm 1 must be a nearest neighbor of the grid cell.

�
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Object updates will result in insertion and deletion of some edges in the
DT. An incremental algorithm with a time complexity of O(log(n)) can be
employed to update the DT when objects are deleted, inserted, or modified
[2]. In the following, we describe the operations of changing the associated
objects of a grid cell in accordance with edge insertion or deletion in the
DT.

– Insertion When edge e is inserted in the DT, first we calculate the
circum-center(s) of the triangle(s) having e as an edge. If there are two
such triangles, a segment is constructed by connecting their circum-
centers. Otherwise there is only one triangle; we construct a ray ema-
nating from its circum-center. Then, we could obtain the grid cells that
overlap the segment or the ray. The object(s) of the segment or the ray
should be added to those grid cells if they are not associated with them,
and their counters for those grid cells are increased by 1.

– Deletion When an edge is deleted, the circum-center(s) of its related
triangle(s) can be obtained as in insertion. If the corresponding segment
or ray overlaps with a grid cell, the counter(s) of the object(s) for that
cell will be decreased by 1. If the counter reaches to 0, the object is
removed from the corresponding grid cell.

Figure 7(b) provides an example for the insertion operation, where a new
object o8 is added. Using the incremental update algorithm for the DT, the
affected edges can be obtained. Specifically, dash-dot edges o4o8, o5o8, and
o6o8 are added and edge o4o6 is deleted. For edge o4o6, the corresponding
ray extending from circum-center g does not overlap with R. Hence, no
action is needed. For newly added edge o5o8, the corresponding segment hi
overlaps with R. Hence, object o8 is added. The same test can be carried
out for the other two edges.

3.3 Nearest-Neighbor Search

With the grid-partition index, an NN query is answered by executing the
following three steps: 1) locating the grid cell, 2) detecting the NN, and 3)
retrieving the data. The first step locates the grid cell in which the query
point lies. The second step obtains all the objects associated with that grid
cell and detects the NN by comparing their distances to the query point.
The final step retrieves the data to answer the query. In the following, we
describe an efficient algorithm for detecting the NN object for a query point
inside a grid cell. This procedure works for all the proposed grid partition
approaches.

In a grid cell, given a query point, the sorted associated objects are
broken down into two lists: one list consists of the objects with coordinates
smaller than the query point in the sorting-dimension, and the other list con-
sists of the remaining objects. To detect the NN, the objects in the two lists
are checked alternately. Initially, the current shortest distance min dis is set
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to be infinite. At each checking step, let cur dis be the distance between the
object c being checked and the query point q; i.e.,

√

(xc − xq)2 + (yc − yq)2;
min dis is updated if cur dis < min dis. Let dis sd denote the distance be-
tween the current object and the query point along the sorting dimension;
i.e., |xc − xq| or |yc − yq|. The checking process continues until dis sd >
min dis. The correctness can be justified as follows. For the current object,
cur dis ≥ dis sd and hence we have cur dis > min dis if dis sd > min dis.
For the remaining objects in the list, their dis sds’ are even longer and thus
it is impossible for them to have a distance shorter than min dis.

Figure 8(a) gives an example in which nine objects that are associated
with the grid cell (denoted by the solid line rectangle) are sorted according
to the x-dimension over which the cell has a larger span. Given a query
point as shown in the figure, the nine objects are broken into two lists, with
one containing o1 to o6 and the other containing o7 to o9. The algorithm
proceeds to check these two lists alternately; i.e., in the order of o6, o7,
o5, o8, · · · , and so on. Figure 8(b) shows the intermediate results for each
step. In the first list, the checking stops at o4 (Step 5), since its distance to
the query point in the x-dimension (i.e., 8) is already longer than min dis
(i.e., 6). Similarly, the checking stops at o8 (Step 4) in the second list. As
a result, only five objects rather than all nine objects are evaluated. The
improvement is expected to be significant when the width and height of the
grid cell differ greatly.
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5 o4 8 stop

(b)

Fig. 8 An Example for Detecting NN

3.4 Cost Models

In our previous work [29], we proposed three basic approaches to parti-
tioning the search spaces into grid cells, namely, fixed partition (FP), semi-
adaptive partition (SAP), and adaptive partition (AP). The basic ideas are
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briefly summarized as follows. FP divides the search space into fixed-size
grid cells and hence is very simple for implementation. However, it does
not take into account the distribution of objects and their VCs. Thus, it is
not easy to utilize the index pages efficiently, especially when the objects’
distribution is non-uniform. SAP adopts the fixed-size partition along one
dimension, while keeps the partition along other dimension dynamic. It al-
lows the grid cells to expand or shrink according to the objects’ distribution.
AP adaptively partitions the space using a kd-tree-like partition method. It
recursively partitions the search space into two complementary subspaces
such that the number of objects associated with each subspace is nearly the
same. The partitioning process stops when the objects associated with each
subspace could be fitted into one page. Please refer to [29] for the detailed
partitioning schemes.

In this subsection, we derive the cost model of the grid-partition index
under three partitioning approaches. In general, index search cost and index
size are two basic measures of an index. Since the index size can be easily
obtained when an index is built, we only derive the search cost in terms of
the number of page accesses. We start by defining some notations in Table 1.

Notation Definition

sp page capacity

N number of objects

ng number of grid cells

ns number of strips (for SAP)

pi query probability in grid cell i

(ni,1, · · · , ni,mi
)

path in upper-level index from root to the leaf pointing
to grid cell i (for AP)

si

size of lower-level index for grid cell i (in terms of #
pages)

ti

cost of locating cell i in upper-level index (in terms of
# pages)

ti,j

average search cost from the root to node ni,j (in terms
of # pages)

Tu search cost of upper-level index (in terms of # pages)

Tl search cost of lower-level index (in terms of # pages)

Table 1 Definition of Notations

Generally, the search cost consists of the costs searching the upper-level
index and the lower-level index:

T = Tu + Tl =

ng
∑

i=1

pi(ti + si). (2)

The parameter si is a constant when an index is constructed, and pi

could be approximated by the ratio of the grid cell’s area to the area of
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the original search space. We only need to analyze ti for different partition
schemes. For the FP scheme, we obtain ti in (3), assuming the page capacity
is larger than the overhead for the header:

ti =

{

1 if grid cell i is on the first index page;
2 otherwise.

(3)

For the SAP scheme, we have ti in (4), assuming the page capacity is
larger than the overhead for the header in the first upper-level index page
or the discriminators in the extra index nodes:

ti =































































1 if the strip for grid cell i is on the first index page and only
contains 1 grid cell;

2 if the strip for grid cell i is on the first index page and grid
cell i is on the first page of the extra node, or if it is not
on the first index page but only contains 1 grid cell;

3 if the strip for grid cell i is on the first index page but grid
cell i is not on the first page of the extra node, or if it is
not on the first index page but the grid cell i is on the first
page of the extra node;

4 otherwise.

(4)

For the AP scheme, the index search cost for a node ni,j is denoted by
ti,j . Thus, we have ti = ti,mi

, which is obtained recursively:

ti,j =







1 if j = 1;
ti,j−1 if ni,j and ni,j−1 are on the same page;
ti,j−1 + 1 otherwise.

(5)

4 Performance Evaluation

This section presents the performance comparison of the proposed grid-
partition index to the existing indexes for NN search. Both synthetic and
real data are used in the evaluation. For synthetic data, a series of UNI-
FORM datasets is generated by randomly distributing the points (up to
1M points) in a square Euclidean space; several SKEWED datasets are also
generated following the Zipf distribution, where the skewness parameter θ
is varied from 0.0 to 0.9. The REAL dataset contains more than 100,000
postal addresses in three metropolitan areas (New York, Philadelphia, and
Boston) [4].

We compare the grid-partition index to typical solution-based indexes
and object-based indexes. For solution-based indexes, it was shown in [27]
that D-tree outperforms other existing index structures. As such, D-tree
is employed to index the solution space for NN search. It is referred to
as solution-based index in later discussions. For object-based indexes, we
evaluate the NN search algorithm based on R-tree, which is denoted as
object-based index. Since all the objects are available before the index is
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(a) UNIFORM Dataset (b) REAL Dataset

Fig. 9 Datasets for Performance Evaluation

built, the STR packing scheme [14] is employed to build R-tree to optimize
the performance.

We evaluate the indexes in both air indexing and disk indexing applica-
tion scenarios. In data broadcast, D-tree can be broadcast in either depth-
first or breadth-first order. They have the same performance. However, as
explained in Section 2, the R-tree-based NN search algorithm does not work
well for air indexing as it would cause an extremely large access latency. We
make the following revision to improve its access latency. No matter where
the query is issued, the index pages are accessed sequentially, while branches
that are guaranteed to fail are pruned according to the mindist and min-
maxdist based heuristics as in the original algorithm (see [17] for details). In
addition, R-tree is broadcast in depth-first order to reduce access latency.
Although width-first order has been proved more efficient, it asks the client
to maintain a queue to remember the distance information between the
query point and all the nodes at the same level. Therefore, the client must
have enough memory space to keep all these necessary information. Since
this requirement cannot be guaranteed for small portable clients, we adopt
the width-first order to traverse R-tree. In a traditional disk indexing envi-
ronment, the best-first ordering search is employed to process NN queries,
which selects the next node to search the NN from the set of MBRs in all
nodes visited rather than from those in the current node only [9].

In the data broadcast scenario, for simplicity, a flat broadcast scheduler
is employed (i.e., data objects are broadcast in a round-robin manner). To
multiplex the index and data on the broadcast channel, we employ the (1,m)
interleaving technique (see Section 2.1 for details). The optimal value of m
depends on the index size. It is calculated for each index structure separately
based on the technique presented in [11].

The system parameters are set as follows. In each page, two bytes are
allocated for the page id. Two bytes are used for one pointer and four bytes
are used for one coordinate. The page capacity is varied from 128 bytes to
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8K bytes.2 In the following, first, we discuss the indexing efficiency metric;
next, since the air indexing and disk indexing scenarios have different access
characteristics in various aspects (e.g., access modes, performance goals, and
page capacities), we report the experimental results for them respectively.
In the air indexing scenarios, the page capacity is set to 256 bytes by default;
while in the disk indexing scenarios, it is set to 4K bytes. The results to be
reported were obtained for 1, 000, 000 randomly generated queries on a PC
with Pentium 4, 1.8G CPU and 1G main memory.

4.1 Indexing Efficiency Metric

The metric of indexing efficiency has been used in the FP and SAP grid
partition schemes in order to determine the best grid partition. This sub-
section evaluates the effect of parameter α in the metric, which, set to a
non-negative number, weighs the importance of the saved page accesses
and the index overhead.
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Fig. 10 Performance under Different Settings of α (UNIFORM(N=10,000), FP)

Figure 10 shows the performance for the UNIFORM (N=10, 000) dataset
when the FP partition scheme is employed. Similar results are obtained for
the SAP scheme and/or other datasets. From the results, we can observe
that the value of α has a significant impact on the performance, especially
for small page capacities. In general, the larger the value of α, the better
the index search cost and the worse the index size since a larger value of α
assigns more weight to reduce search cost. As expected, the best index size
is achieved when α is set to 0, and the best search cost is achieved when α
is set to infinity. The setting of α can be adjusted based on requirements of
the applications and systems. In the disk indexing scenario, the index size
is not a big concern and the search cost is more important. Therefore, α is

2 For the disk storage, the page capacity is normally assumed in the order of
1K bytes [17,28]; for the wireless channel, the page capacity is normally assumed
in the order of 100 bytes [10,11].
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set to infinity to optimize the search cost. In the air indexing scenario, the
index size is also important as it affects the access latency. Thus, the value
of α is set to 1 in order to strike a balance between index size and index
search cost.

4.2 Performance in the Air Indexing Scenarios

This subsection evaluates the indexes in an air indexing environment, where
both index size (transferred to access latency) and index search cost (trans-
ferred to tuning time) are concerned with the performance of an index struc-
ture. In what follows, first, we report the results in terms of tuning time
and access latency; then, we evaluate the indexes’ adaptiveness to skewed
object distributions.

4.2.1 Tuning Time As explained in Section 2.1, in wireless broadcast en-
vironments, improving the index search cost saves tuning time and hence
power consumption and connection costs. Figure 11 shows the tuning times
of different indexes. For UNIFORM datasets, the performance is evaluated
under different dataset sizes with the default page capacity of 256 bytes; for
REAL dataset, it is evaluated with different page capacities varying from
128 bytes to 512 bytes.
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Fig. 11 Tuning Time in Air Indexing Environments

It can be observed that the proposed grid-partition index (with different
grid partition approaches) substantially outperforms the existing indexes in
most cases. In particular, the improvement of the proposed index over the
object-based index is over a factor of 10 on average. Among the three grid
partition approaches, the SAP gives the best performance in most cases.
The main reason for this is that the SAP approach adapts better to the
object distributions and their solution space compared to the FP, while it
has a simpler data structure for the higher-level index (i.e., the index used
for locating grid cells) compared to the AP. As a result, in most cases, the
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SAP accesses one or two pages to locate grid cells and another one to detect
the NN.

It is interesting to note that the FP deteriorates significantly with in-
creasing database size. When the dataset size becomes larger than 100,000,
it even works worse than the solution-based index (see Figure 11(a)).3 This
can be explained as follows. Recall that we set the parameter of α in index-
ing efficiency to 1 in air indexing, which means that the index size and index
search cost have equal weights in deciding the final grid cell size. When the
database becomes larger, the index overhead is increased. Hence, to achieve
the best indexing efficiency, the index search cost is sacrificed a little bit to
render a smaller index size.

We also evaluate the variance of tuning time in Figure 12. The object-
based index has the worst variance since it relies on a branch-and-bound
search algorithm. The solution-based index can provide a competitive per-
formance since the underlying D-tree was designed to be a balanced tree.
The grid-partition index has the best overall performance (less than 4 for
most cases). Among the three partition approaches, as expected, the FP
achieves a quite good performance for the UNIFORM datasets but a poor
performance for the skewed REAL dataset; both the SAP and AP have
small variance for both types of datasets.
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Fig. 12 Variance of Tuning Time in Air Indexing Environments

4.2.2 Access Latency This subsection evaluates the indexes in terms of
access latency. As explained in Section 2.1, the access latency is determined
by the index size. The larger the index size, the worse the access latency.
The result is shown in Figure 13, where the latency is normalized to the
average latency without any index (i.e., half the time needed to broadcast
all objects in the dataset).

We can see that the solution-based index gives the worst performance
because of its largest index size, which is caused by the fact that it in-
dexes the VCs (polygons) rather than the objects. It is also clear that the

3 However, as we shall show in Section 5.2.2, the large size of solution-based
index diminishes its competitiveness.
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object-based index provides the best performance since, there’s no object
duplication and we use the packing algorithm to ensure full usage of each
page when constructing R-tree index. However, as we saw in the last subsec-
tion, its search performance is not good enough to be a practical index for
NN search in wireless broadcasting environments. The performance of the
grid-partition index is not bad. Compared to the object-based index, they
introduce only a small latency overhead (within 10% in most cases) due to
object duplication in different grid cells. Given its superior performance in
tuning time, there is no doubt that it is the best index overall. Among the
three partition approaches, the AP works worse than the other two due to
the large overhead in maintaining the paged kd-tree structure.
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Fig. 13 Access Latency in Air Indexing Environments

4.2.3 Effect of Object Distributions We now evaluate the robustness of the
proposed index with respect to various object distributions, which are sim-
ulated by the skewness parameter θ as mentioned in the very beginning of
this section. The higher the value of θ, the more skewed the object distri-
bution. As shown in Figure 14(a), the average tuning time of all indexes is
almost not affected by the value of θ. However, Figure 14(b) shows that the
variance is really affected. As explained in Section 4.1, the page occupancy
with the FP approach is not uniform especially for highly skewed datasets,
since it does not consider the object distribution when partitioning the grid.
Hence, with increasing skewness, the variance of the FA increases dramati-
cally. The other grid partition approaches and indexes are not affected a lot.
This implies that they are able to adapt to different object distributions.

To summarize, compared to the solution-based index, the proposed grid-
partition index achieves a much shorter access latency and a better tuning
time in most cases; compared to the object-based index, the proposed index
improves the tuning time, on average, by over a factor of 10, while maintain-
ing a slightly worse access latency. Therefore, the proposed grid-partition
index strikes a better balance between tuning time and access latency.
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Fig. 14 Performance for Datasets of Different Skewness Levels in Air Indexing
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4.3 Performance in the Disk Indexing Scenarios

In on-demand access, disk indexing can be employed to improve the ef-
ficiency of query processing on the server. This subsection evaluates the
access latencies of the indexes. As the disk space is not an important con-
cern, the primary performance goal in this scenario is to optimize the query
latency. Thus, in deciding the grid partition for the FP and SAP approaches,
the value of α in indexing efficiency is set to infinity to allocate the entire
weight to the saved index search cost.

4.3.1 Access Latency Figure 15 shows the average query latency, which
includes the disk I/O cost as well as the CPU cost. The improvement of the
grid-partition index over the other two indexes is significant. The solution-
based index has the worst performance. This is partly because its relatively
large index size increases the depth of the tree and, hence, worsens the index
search performance. Since random access is possible in the on-demand access
environment, the object-based index now works better than the solution-
based index, but still falls behind the proposed grid-partition index.
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To obtain more insights into disk I/O cost and CPU cost, we show in
Figure 16 the index search cost in terms of the number of page accesses. As
can be seen, the relative performance of the various indexes is the same as
that shown in Figure 15. This implies that the I/O cost (i.e., index search
cost) dominates the CPU cost in the overall access latency for all indexes.
As observed in the experiments, the disk I/O delay accounts for more than
90% of the overall latency, which is consistent with the previous studies.
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Fig. 16 Index Search Cost in Disk Indexing Environments

Among the three grid partition approaches, the FP provides the best
performance in this scenario. This is mainly because we set α to infinity to
give full weight to the index search cost. Consequently, the FP constructs
the index in a way such that the objects associated with each grid cell can
fit into one page, though the average page occupancy might be low. As such,
any NN query can be answered by accessing two or three index pages (one
or two for the upper-level index and another one for the lower-level index).

4.3.2 Effect of Object Distributions As in the air indexing scenario, we
evaluate the robustness of indexes in terms of adaptiveness to various object
distributions. As shown in Figure 17, the grid-partition index outperforms
the existing indexes consistently. In particular, the FP-based grid-partition
index achieves the best performance in all cases. Its improvement is 70%
over the solution-based index and about 50% over the object-based index.

To summarize, the grid-partition index offers the best access latency with
various datasets in a disk indexing scenario. The performance improvement
over the solution-based index and the object-based index reaches a factor
of 4. Since the index search cost is the only concern in this experiment, the
FP approach performs better than the SAP and AP approaches.

5 Continuous-Nearest-Neighbor Search

We have shown the superiority of the grid-partition index for NN search; this
section proceeds to discuss answering continuous-nearest-neighbor search
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(CNN) on the grid-partition index. A CNN search retrieves the nearest
neighbor for every point on a given line segment which a mobile client may
traverse (Definition 2) [19,22]. An example of CNN search is “finding the
nearest gas stations along the route from my current location to Boston on
Highway I-93.4” Since it is natural for mobile clients to issue queries while
they are moving, such CNN queries have many important applications in
mobile computing. Sistla et al. was the first to identify the CNN problem.
Since then, it has received considerable attention thanks to the continu-
ously rapid development of location-based services and mobile computing
technologies [20,22,23].

Definition 2 For a given query line segment from point s to point e, de-
noted by se, CNN search returns an answer set cnn(s, e) that contains data
objects from the dataset, D, and satisfies the following conditions:

∀p ∈ se,∀o′ ∈ (D− cnn(s, e)),∃o ∈ cnn(s, e) such that dis(p, o′) ≥ dis(p, o)

Here, every object o in the answer set dominates a part of the line
segment; i.e., o is the NN of any query point lying on that partial line
segment. An illustrative example is depicted in Figure 18, where cnn(s, e)
contains three objects, namely, o1, o2, and o4. o1 dominates the shadowed
line segment sp1; i.e., o1 is the NN of any point lying on sp1. Similarly, o2

dominates p1p2, and o4 dominates p2e. p1 and p2 are called split points [23],
since they are the points at which the NN objects along the line segment
change.

The first proposal to address the CNN problem appeared in [20]. It
employed a sampling technique to obtain an approximate answer. Given a
query line segment, an NN query can first be processed for the pre-defined
sampling points. Although the nearest objects found are local and are not
necessarily the real nearest-neighbor objects, a search range to bound the
real nearest-neighbor objects can be determined according to these local

4 While a route may not be a line segment, it can be decomposed into multiple
line segments.
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nearest-neighbor objects. Consequently, its accuracy heavily depends on the
pre-defined sampling points on the query line.

Tao et al. carried out an in-depth study on CNN search and devised two
algorithms for CNN queries based on R-tree [22,23]. The first is based on
the concept of time-parameterized (TP) queries [22]. Treating a query line
segment as the moving trajectory of a query point, the nearest object to the
moving query point is valid only for a limited duration. Consequently, CNN
queries can be considered as TP queries. In this case, a new TP query was
issued to retrieve the next nearest object once the valid time of the current
query expired; i.e., when a split point was reached. While the TP approach
avoids the drawbacks of sampling, it is an incremental algorithm that needs
to issue n NN queries in order to obtain the final answer set, where n is the
set cardinality.

The second algorithm is based on some heuristics to obtain the whole
answer set within a single navigation of R-tree [23]. The main heuristic
employs a metric of mindist(E, q); i.e., the minimum distance between an
MBR E and a query point or query segment q. The algorithm also maintains
a list SL to record the split points found so far, together with their NNs.
The search starts from the root and traverses the R-tree according to the
following principles: i) when a leaf node is visited, SL is updated accordingly
if some objects have shorter distances to the split points than that of the
recorded nearest neighbor; ii) for an intermediate node, it is visited only if
the MBR may contain a qualified data point. The qualification conditions
are two-fold. First, mindest(E, q) should be smaller than SLmax; i.e., the
maximum distance between a split point and its NN. Second, there must
exist at least one split point si, si ∈ SL, such that distance(si, si.NN) >
mindist(E, q).

5.1 Supporting CNN on the Grid-Partition Index

Recall that the grid-partition index ensures that the nearest neighbor to
a given query point q is associated with the grid cell containing q. Conse-
quently, the answers to a CNN query for a given line segment l must be
associated with all of the grid cells that overlap with l. There are two steps
involved in the search process of a CNN query based on the grid-partition
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index. The first is to identify all the grid cells overlapping with the given
query segment and to retrieve all the objects associated with these grid
cells. Note that the segment can be divided into several parts, with each
part lying within only one grid cell. Thus, the second step is to find the
exact answer set for each part within a single cell, which can be achieved
by Algorithm 2.

Algorithm 2 Finding NN Objects of a Segment

Input: a query segment se, the located grid cell i, the answer set result;
Output: nearest neighbors of all the points along s̄e;
Procedure:

1: NNs = NN(s); NNe = NN(e);
2: result ∪= {NNs, NNe};
3: if NNe = NNs then

4: return result;
5: end if

6: let m be the object returned by SplitPoint(se, NNs, NNe);
7: NNm = NN(m);
8: if (NNm = NNs) or (NNm = NNe) then

9: return result;
10: else

11: Finding NN Objects of a Segment(sm, i, result);
12: Finding NN Objects of a Segment(me, i, result);
13: end if

Before we explain Algorithm 2, we describe some functions to be used.
The function NN(q) is to return the NN object for the query point q, which
is introduced in Section 3.3. The function SplitPoint(se,NNs, NNe) is to
find the split point along the query line segment se based on the two detected
NN objects, NNs and NNe. As shown in Figure 19, the split point is the
intersection of the segment se and the bisector of the segment NNsNNe.

The basic idea of Algorithm 2 is to employ a recursive search algorithm
similar to binary search. It first finds the NNs of the endpoints of the query
segment, namely NNs and NNe. If those two NNs are the same, the whole
line segment definitely falls within the VC of NNs, which can be easily
proven by the convexity of VCs. Therefore, the CNN search process stops.
Otherwise, the split point m is determined based on NNs, and NNe; and
m’s NN, NNm, is found. If NNm is equal to NNs (or NNe), both NNs

and NNe must be the NN of m. This can be guaranteed by the function
SplitPoint. As a result, segment sm is dominated by NNs and the segment
me is within the VC of NNe. Thus, the search is terminated. Otherwise,
the search algorithm is invoked again based on the segments sm and me.
Suppose the final answer set contains n objects, the client needs to conduct
O(n) NN searches to complete the query.
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5.2 Simulation Results

This subsection compares the proposed algorithm based on the grid-partition
index with the state-of-the-art algorithm based on R-tree [23] for CNN
search. The parameter settings are similar to those used in Section 4. We
use a new parameter QueryLengthRatio to define the ratio of the length
of query line segment to the width of the search space. Due to the reasons
explained in Section 4, the depth-first order is employed to traverse R-tree
in air indexing environment; whereas the best-first order is used in the disk
indexing environment.

5.2.1 CNN Search Performance in the Air Indexing Scenarios Figure 20(a)
shows the tuning time under different UNIFORM datasets, with the page
capacity set at 256B and QueryLengthRatio at 0.1. As in the case of NN
search, by enabling CNN search via a single linear scan, the grid-partition
index improves the performance over R-tree remarkably. On average, the
grid-partition indexes with FP, SAP, and AP outperform R-tree by 61%,
62%, and 74%, respectively. Among them, SAP and SP provide a more sta-
ble performance than FP throughout the datasets tested, which is consistent
with the results observed in Section 4.

0

20

40

60

80

100

120

140

160

1000 3000 10000 30000 100000

# 
Pa

ge
 A

cc
es

se
s

Dataset Size

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

(a) UNIFORM Dataset

0

100

200

300

400

500

600

700

800

900

0.025 0.05 0.1 0.2 0.4

# 
Pa

ge
 A

cc
es

se
s

QueryLengthRatio

Object-based index
Grid-Partition Index (FP)

Grid-Partition Index (SAP)
Grid-Partition Index (AP)

(b) REAL Dataset

Fig. 20 Tuning Time for CNN Search in Air Indexing Scenarios (PageSize=256B)

Figure 20(b) plots the tuning time of different indexes under the REAL
dataset with the parameter QueryLengthRatio varying from 0.025 to 0.4.
For all indexes, we can observe that the longer the query line segment, the
higher the tuning time. The grid-partition index outperforms R-tree in all
cases tested. In particular, the improvement increases with lengthening the
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query segment. This is because with a longer query segment, more NNs are
return and, hence, more accumulative improvement can be observed.

5.2.2 CNN Search Performance in the Disk Indexing Scenarios We show in
Figure 21(a) the disk search performance under various UNIFORM datasets
with the page capacity set at 4KB and QueryLengthRatio at 0.1. Fig-
ure 21(b) shows the results of different indexes under the REAL dataset
with various QueryLengthRatio settings.

Recall that the best-first order is employed in the R-tree-based search
algorithm in the disk indexing scenarios. This significantly improves the
performance of R-tree for CNN search. As a result, the R-tree now per-
forms better than the grid-partition index with FP; but still worse than the
grid-partition indexes with SAP and AP. Note that this is opposite to our
previous observation that the grid-partition index with FP has best perfor-
mance for NN search (Section 4.3.1). This could be explained as follows. As
mentioned before, the FP approach partitions the space as much as possible
such that the associated objects of each cell can be accommodated in a sin-
gle page. Thus, most of the NN queries need to access only a single page in
the lower-level index, which, together with the simple hashing function in
the upper-level index, optimizes the performance for NN search. However,
for CNN search, as the FP approach has smaller grid cells, much more cells
need to be checked to find all NNs of a given line segment. Consequently,
the overall performance of FP is not good for CNN search.
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Fig. 21 Search Time for CNN Search in Disk Indexing Scenarios (Page-
Size=4096B)

5.2.3 CNN Search Performance under Various Object Distributions This
set of experiments examines the impact of different objects distributions.
We vary the skewness parameter θ from 0.0 to 0.9. The search performances
for the air indexing and disk indexing scenarios are plotted in Figure 22(a)
and 22(b), respectively. We can see that the relative performances of dif-
ferent indexes are affected little by the setting of skewness level. For the
air indexing scenarios, R-tree performs the worst in almost all cases; the



32 Baihua Zheng et al.

grid-partition indexes with FP, SAP, and AP improve the performance by
15.1%, 64.7%, and 79.8%, respectively. For the disk indexing scenarios, the
grid-partition indexes with SAP and AP consistently outperform R-tree.
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Fig. 22 Performance for Datasets of Different Skewness Levels

6 Conclusion

NN search is a very important and practical application among the promis-
ing LDIS applications. In this paper, we have proposed an index, called the
grid-partition index, to address the NN search problem in mobile computing
environments. The grid-partition index combines the advantages of existing
index structures, such as the small size of the object-based index and the
fast search of the solution-based index, to provide a flexible structure that
is suitable for both disk indexing and air indexing environments. An algo-
rithm was devised to associate all the potential objects to a grid cell such
that the maintenance cost is minimized for object updates.

The performances of the grid-partition index and existing object-based
and solution-based indexes were evaluated using both synthetic and real
datasets. The results showed that the grid-partition index substantially
outperforms both the object-based and solution-based indexes. We sum-
marize the results as follows. For air indexing scenarios, the grid-partition
index outperforms the solution-based index in terms of both tuning time
and access latency; it also strikes a better balance between tuning time and
access latency than does the object-based index. For disk indexing, the grid-
partition index offers a much better access latency than the object-based and
solution-based indexes. Furthermore, we have extended the grid-partition
index to support CNN search.

In this paper, the grid-partition index was proposed to efficiently answer
NN search. Moreover, the idea of the grid-partition index can be applied to
k-nearest-neighbor (KNN) search, where the challenge is how to efficiently
associate all relevant objects to a grid cell. We shall leave this issue to a
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future study. In addition, we are examining generalized NN search such as
finding the nearest hotel with a room rate of less than $200.
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