
Optimal-Location-Selection Query Processing
in Spatial Databases

Yunjun Gao, Member, IEEE, Baihua Zheng, Member, IEEE,

Gencai Chen, and Qing Li, Senior Member, IEEE

Abstract—This paper introduces and solves a novel type of spatial queries, namely, Optimal-Location-Selection (OLS) search, which

has many applications in real life. Given a data object set DA, a target object set DB, a spatial region R, and a critical distance dc in a

multidimensional space, an OLS query retrieves those target objects in DB that are outside R but have maximal optimality. Here, the

optimality of a target object b 2 DB located outside R is defined as the number of the data objects from DA that are inside R and

meanwhile have their distances to b not exceeding dc. When there is a tie, the accumulated distance from the data objects to b serves

as the tie breaker, and the one with smaller distance has the better optimality. In this paper, we present the optimality metric, formalize

the OLS query, and propose several algorithms for processing OLS queries efficiently. A comprehensive experimental evaluation has

been conducted using both real and synthetic data sets to demonstrate the efficiency and effectiveness of the proposed algorithms.

Index Terms—Query processing, optimal-location-selection, spatial database, algorithm.

Ç

1 INTRODUCTION

SPATIAL databases play an important role in many real
applications, including geographical information sys-

tems, decision support, intelligent transportation, and
resource allocation. The key characteristic that makes a
spatial database become a powerful tool is its ability to
manipulate (e.g., model, index, and query, etc.), but not
simply store, spatial data objects (e.g., points, line segments,
rectangles, and polygons, etc.).

1.1 Motivation

Over the last decade, efficient query processing for spatial

data objects has received considerable attention from the

database research community. Representative spatial

queries include range query [26], nearest neighbor (NN)

search [5], [17], [33], spatial join [4], [21], [27], [28], and

closest pair query [6], [7], [16]. However, there are still some

interesting applications involving spatial data for decision

making that cannot be efficiently supported by existing

spatial query processing techniques. Consider the following

two example applications.

Optimal watch point selection. Bird-watching is a
popular activity in Singapore. In order to further promote
this activity, the National Parks Board (NPB) decides to
recommend some optimal watch points, so that bird-watchers
can observe clearly as many bird species as possible at those
recommended watch points. Let R be a bird habitat for bird-
watching, DA be a set of the locations li within R such that
certain bird species normally appear, dc be the maximal
distance of the objects that can be viewed clearly through
binoculars, and DB be a set of potential watch points pj
outside R (i.e., 8pj 2 DB; pj 62 R). Obviously, the more the
bird species that can be observed clearly at one watch point,
the better the watch point is. Hence, the optimality of a
watch point pj 62 R can be quantified by jflijli 2 DA ^
li 2 R ^ distðli; pjÞ � dcgj, where, without loss of generality,
distðx; yÞ is a distance function that computes the euclidean
distance between any two objects x and y, and jSj is the
cardinality of a set S.

Optimal lifeguard station selection. To ensure public

safety, a limited number of lifeguards have to be strategically

stationed on some of the busiest ocean beaches in the world.

Locations of lifeguard stations should be close to as many

accident-prone areas as possible. Let R be the water region

which lifeguards are responsible for, DA be a set of accident-

prone regions ri 2 R within an ocean beach, dc be the

maximum response time allowed, andDB be a set of potential

lifeguard locations lj located outsideR (i.e., 8lj 2 DB; lj 62 R).

Then, the optimality of a lifeguard station location lj can be

qualified by jfrijri 2 DA ^ ri 2 R ^ distðri;ljÞ
v � dcgj, in which v

denotes the average running velocity of lifeguards.

1.2 Problem Formulation

In light of the above applications, we, in this paper, introduce
and solve a novel form of spatial queries, namely, Optimal-

Location-Selection (OLS) search, which returns the object with

1162 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

. Y. Gao is with the School of Information Systems, Singapore Management
University, 80 Stamford Road, Singapore 178902, Singapore, and the
College of Computer Science, Zhejiang University, Hangzhou 310027, PR
China. E-mail: yjgao@smu.edu.sg, gaoyj@zju.edu.cn.

. B. Zheng is with the School of Information Systems, Singapore Manage-
ment University, 80 Stamford Road, Singapore 178902, Singapore.
E-mail: bhzheng@smu.edu.sg.

. G. Chen is with the College of Computer Science, Zhejiang University,
Hangzhou 310027, PR China. E-mail: chengc@zju.edu.cn.

. Q. Li is with the Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China.
E-mail: itqli@cityu.edu.hk.

Manuscript received 25 Mar. 2008; revised 6 Oct. 2008; accepted 25 Mar.
2009; published online 31 Mar. 2009.
Recommended for acceptance by D. Srivastava.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2008-03-0161.
Digital Object Identifier no. 10.1109/TKDE.2009.81.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

the maximal optimality. Before we present the optimality
metric and formalize the OLS query, we first explain the
intuition behind. Take the optimal watch point selection
depicted in Fig. 1 as an example. For a specified watch point
pj 62 R, only those locations li 2 DA with their distances to pj
not exceeding dc can be viewed clearly. We assume that all
these locations constitute pj’s optimal set Spj , defined in
Definition 1. Since bird-watchers prefer to spot as many bird
species as possible, the cardinality of Spj (i.e., jSpj j) has a
direct impact on the optimality of the watch point pj. The
lager the jSpj j is, the more optimal the watch point pj is. In
Fig. 1, for instance, the optimality of p1 is better than that of p3

as jSp1
j ¼ jfl3; l4gj ¼ 2 and jSp3

j ¼ jfl2gj ¼ 1.

Definition 1: Optimal set. Given a data object set DA, a target
object set DB, a spatial region R, and a critical distance dc, an
optimal set Spj of a target object bj 2 DB that locates outside
R is formed by all the objects ai 2 DA within R whose
distances to bj do not exceed dc, i.e., Sbj ¼ faijai 2 DA ^
ai 2 R ^ distðai; bjÞ � dcg.

However, when the optimal sets of two watch points

share the same cardinality (e.g., jSp1
j ¼ jSp5

j in Fig. 1), the tie

has to be broken. In general, bird-watchers prefer the

location closer to them because they can spot bird species

more easily. Thus, we employ the accumulated distance from

the watch point p to all the locations li in its optimal set Sp,

denoted as Dp (¼
P

li2Sp distðli; pÞ), as the tie breaker. The

smaller the Dp is, the better the p’s optimality is. For

example, as shown in Fig. 1,Dp1
¼ distðl3; p1Þ þ distðl4; p1Þ ¼

1:1þ 1:6 ¼ 2:7 and Dp5
¼ distðl4; p5Þ þ distðl1; p5Þ ¼ 1:8þ

1:9 ¼ 3:7. Although jSp1
j ¼ jSp5

j ¼ 2, the optimality of p1 is

better than that of p5, as Dp1
< Dp5

holds.
In summary, given a data object set DA ¼ fa1; a2; . . . ; ang,

a target object set DB ¼ fb1; b2; . . . ; bmg, a spatial region R,
and a critical distance dc in a multidimensional space, the
optimality of a target object bj 2 DB located outside R is
formally defined in Definition 2.

Definition 2: Optimality. Given DA;DB;R, and dc, the
optimality of a target object bj 2 DB that is outside R,
denoted by bj:OPT , is defined as follows:

bj:OPT ¼ jSbj j � �j; ð1Þ

where

�j ¼
Dbj

dc � jSbj j þ 1
¼
P

ai2Sbj
distðai; bjÞ

dc � jSbj j þ 1
:

The optimality metric considers not only the cardinality

of bj’s optimal set Sbj (i.e., jSbj j) but also the accumulated

distance Dbj from bj to all the data objects included in Sbj .

We quantify the object optimality in such a way that it can

be represented and ordered by a single value. Note that

�j ¼
Dbj

dc�jSbj jþ1 2 ½0; 1Þ, meaning that � value may change the

ranking of objects in terms of optimality only when two

objects have their optimal sets with the same cardinality.

Take watch points p1 and p3 in Fig. 1 as an example. Since

Sp1
¼ fl3; l4g; Sp3

¼ fl2g; p1:OPT (>1) is for sure larger than

p3:OPT (<1) no matter how large the value of �1/�3 is. In

other words, as the optimal sets Sp1
and Sp3

have different

cardinalities, the accumulated distances actually have no

impact on their rankings in terms of optimality.
Based on the metric of optimality, there are three

relationships between any two target objects bj; bj
0 2 DB

that locate outside R, as stated in Definition 3, Definition 4,
and Definition 5, respectively. The OLS query and the k-
optimal-location-selection (k-OLS) query are developed to
find the objects with the highest optimality, as formulated
in Definition 6 and Definition 7, respectively.

Definition 3: bj � bj0. Given bj; bj
0 2 DB outside R; bj is

superior to bj
0, denoted by bj � bj0, if and only if

bj:OPT > bj
0:OPT .

Definition 4: bj � bj0. Given bj; bj
0 2 DB outside R; bj is

equivalent to bj
0, denoted by bj � bj0, if and only if

bj:OPT ¼ bj 0:OPT .

Definition 5: bj � bj0. Given bj; bj
0 2 DB outside R; bj is

inferior to bj
0, denoted by bj � bj0, if and only if

bj:OPT < bj
0:OPT .

Definition 6: Optimal-Location-Selection query. Given
DA;DB;R, and dc in a multidimensional space, an OLS
query returns the target object bj 2 DB having the
maximal optimality among all the target objects that are
outside R, i.e., 8bj 0 2 DB ^ bj0 62 R; bj �� bj0.

Definition 7: k-Optimal-Location-Selection query. Given
DA;DB;R; dc, and an integer k (�1) in a multidimensional
space, a k-optimal-location-selection (k-OLS) query retrieves
the set of target objects, denoted as Res, such that: 1) Res
contains k target objects from DB, 2) 8bj 2 Res; bj locates
outside R (i.e., bj 62 R), and 3) none of the nonresult object bj

0

outside R is superior to any target object in Res, i.e., 8bj 2
Res and 8bj0 2 ðDB �ResÞ ^ bj0 62 R; bj �� bj 0.

1.3 Contributions

A naive solution to answer OLS (k-OLS) queries is to derive
the optimality of each target object in DB, and then, locate
these k objects with the highest optimality. In the rest of this
paper, we refer to this solution as a baseline approach. To be
more specific, the baseline method adopts a filtering and
refinement framework. In the filtering step, it prunes away

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1163

Fig. 1. Illustration of optimal watch point selection.

all target objects in DB with zero optimality, i.e., those target
objects with their optimal sets being empty, and forms a
candidate set C by including only those target objects bj 2
DB that are outside R, and meanwhile, have their minimal
distances to R not exceeding dc, i.e., C ¼ fbjjbj 2 DB ^
bj 62 R ^mindistðbj; RÞ � dcg. Thereafter, in the second re-
finement step, it derives the optimality for each candidate
object c 2 C according to (1) and returns those k objects with
the highest optimality.

The baseline approach is simple and straightforward, but
it has two deficiencies. First, the cardinality of the candidate
set C (i.e., jCj), which depends on the distribution of DB

and the sizes of dc and R, might be very large. Consequently,
a large number of target objects in C have to be evaluated,
although the users may be only interested in the optimal
one. Second, in order to derive the optimality of each
candidate object c, it needs to traverse the data object set DA

once to retrieve the optimal set for the candidate object c
(i.e., Sc). Hence, multiple traversals on DA are incurred,
resulting in high I/O overhead and expensive CPU cost.
The poor performance of this baseline approach will be
further demonstrated by our experiments, to be presented
in Section 4.

Motivated by the significance of OLS (k-OLS) queries and
the lack of efficient algorithms, in this paper, we propose
three efficient k-OLS query processing algorithms, namely,
Three-Step algorithm (TS), Reuse-Based algorithm (RB), and
Reverse Reuse-Based algorithm (RRB). Our methods assume
that both the data objects and the target objects are indexed
by R-trees [1], [15], and utilize reuse techniques to avoid
multiple scans of the data sets. All three algorithms
guarantee that the search can be completed via one single
traversal of the data object set DA and the target object set
DB, respectively, whereas they employ different heuristics
to prevent unnecessary traversals. To sum up, this paper has
made following main contributions:

. we develop the optimality metric and formalize the
OLS query and its generalization (i.e., k-OLS query),

. we propose several algorithms, including TS, RB,
and RRB, for processing k-OLS queries efficiently,
and

. we conduct extensive experiments using both real
and synthetic data sets to verify the efficiency and
effectiveness of our proposed algorithms under
various settings.

1.4 Organization of the Paper

The rest of this paper is organized as follows: Section 2
surveys the existing work related to the OLS query
problem. Section 3 elaborates three efficient k-OLS query
processing algorithms. Section 4 presents comprehensive
performance evaluation and reports our findings. Finally,
Section 5 concludes the paper with some directions for the
future work.

2 RELATED WORK

In this section, we first briefly overview the R-tree and
algorithms for range and NN queries, and then, review NN
query variants and distance join queries.

2.1 Algorithms for Range and NN Queries
Using R-Trees

Although our techniques can be used with other data-
partitioning access methods (e.g., X-tree [2], etc.), we adopt
R-tree as the underlying index structure due to its
popularity. The R-tree [15] and its variants (e.g., the R	-tree
[1]) are extensions of B-trees in a multidimensional space.
Take the data set fa; b; . . . ; jg depicted in Fig. 2 as an
example, and we assume that each node accommodates up
to three entries. R-tree groups points that are close to each
other to form leaf nodes (e.g., points a; b, and c are grouped
to form a leaf node N3), and the leaf nodes are grouped
together with the same principle to form intermediate (i.e.,
nonleaf) nodes. The clustering propagates until a Root node
is formed. Each node corresponds to a minimum bounding
rectangle (MBR) that bounds all its child entries. Normally,
the search using R-tree tries to prune away nonqualified
nodes/objects based on various distance metrics. For
instance, metric mindistðq;NÞ indicates the minimal distance
from a given query point q to a node N , and mindistðq;NÞ
equals distðq;NÞ if N corresponds to a data point. The
number in each entry N , as shown in Fig. 2b, represents
mindistðq;NÞ, which is not stored previously but computes
on-the-fly during the query processing.

R-trees can efficiently support multiple spatial queries,
including range queries and NN search. Range query
returns the data objects in a given data set D that intersect
or locate inside a specified query region W . For example, a
range query issued at point q tries to find all the objects with
their distances to q bounded by 2.5, as illustrated in Fig. 2a,
where the shaded circle centered at q denotes the query
region W . Starting from the root of the tree, the query is
processed by recursively visiting those node entries whose
MBRs intersect W . For instance, as N1 \W ¼ ;, the subtree
pointed by N1 cannot contain any qualified object and the
traversal of N1 can be skipped. In contrast, node N2 is

1164 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

Fig. 2. Example of range and NN queries on the R-tree. (a) The point

placement. (b) The corresponding R-tree.

accessed and its child nodes N5 and N6 are examined. The
range query algorithm proceeds in the same manner until
all the entries sharing common areas with W are visited and
the final query result (i.e., point i) is returned.

Given a set D of objects and a query point q, an NN
query finds the object in D that lies closest to q. Existing
algorithms for NN queries on R-trees follow the branch-
and-bound paradigm and utilize some distance metrics
(e.g., mindist) to prune the search space, based on either
best-first (BF) or depth-first (DF) traversal. The DF
approach [5], [33] retrieves the NN(s) by traversing the
R-tree in the depth-first fashion. As demonstrated in [31],
the DF algorithm is suboptimal, i.e., it consumes more I/O
than necessary.

The BF algorithm [17] achieves optimal I/O performance

because it only accesses the nodes necessary for obtaining

the NN. BF maintains a priority queue (e.g., a heap H) with

the entries visited so far, sorted in ascending order of their

mindist to q. First, it starts from the root of the tree and inserts

all its child entries E into H together with mindist(E; q). As

shown in Fig. 2, H ¼ fðN2;
ffiffiffi
5
p
Þ; ðN1;

ffiffiffi
9
p
Þg. Then, the algo-

rithm deheaps the top entry N2 in H, accesses its child

nodes, and enheaps all the entries, after which H ¼
fðN6;

ffiffiffi
5
p
Þ; ðN1;

ffiffiffi
9
p
Þ; ðN5;

ffiffiffiffiffi
45
p
Þg. Similarly, it deheaps the

next top entry, i.e., a leaf entry N6, and adds its enclosed

points (i.e., h; i; j) to H. At this time, heap H is updated to

fði;
ffiffiffi
5
p
Þ; ðN1;

ffiffiffi
9
p
Þ; ðj;

ffiffiffiffiffi
17
p
Þ; ðh;

ffiffiffiffiffi
32
p
Þ; ðN5;

ffiffiffiffiffi
45
p
Þg. The next de-

heaped entry is a data point i. As it is the first data point

discovered, point i is taken as the current NN. Since the next

head entry (i.e., N1) in H is farther (from q) than i, the search

process is terminated and i is returned as the final query

result. BF can be easily extended for the retrieval of k (�1)

NNs. Furthermore, BF is incremental, that is, it reports the

NNs in ascending order of their distances to q, so that k does

not have to be known in advance.

2.2 NN Query Variants

In addition to conventional (i.e., point) NN search, many
variations of NN queries have been proposed in the literature.
Reverse NN (RNN) search [19], [39] retrieves all the data
points that have a given query point as their NN. Constrained
NN search [11] finds the NN(s) in a constrained region of the
data space. All NN search [43] returns, for each data object
ai 2 DA, its NN bj 2 DB. Aggregate NN (ANN) query [29], [30]
retrieves the point(s) in a data setDB (e.g., facilities) with the
smallest aggregate distance(s) to points in another data setDA

(e.g., queries). For example, there are n users at locations
q1; q2; . . . ; qn, a sum ANN query finds the facility f 2 DB that
minimizes the summation of its distance to all the users, i.e.,
8f 0ð6¼ fÞ 2 DB;

Pn
i¼1 distðqi; fÞ �

Pn
i¼1 distðqi; f 0Þ. Our pro-

posed OLS query is similar to ANN query in that they both
involve two data sets and consider the distances between
objects. However, there are several differences. First, OLS
query imposes a restricted regionR (instead of the whole data
space). Second, OLS query takes into account a distance
threshold dc (instead of infinity). Third, they employ different
sorting criteria to order the result objects. The ANN query
outputs answer objects according to a specified aggregate
function (e.g., sum, max, min, etc.), while the OLS query

returns answer objects based on the optimality metric
(presented in Definition 2).

All the above work focuses on snapshot queries in which
the evaluation of query happens only once. In order to cater
for the applications that require continuous query evalua-
tion, various types of continuous queries have been
explored. Continuous NN (CNN) search [38], [40] is such a
type. It aims at finding the NN for each point along a given
query line segment. In addition, the CNN monitoring
problem that monitors the answer objects to a CNN query
for a specified duration has recently been studied, and
efficient algorithms (e.g., CPM [22], SEA-CNN [41], and
YPK-CNN [42]) have been proposed as well. Other versions
of CNN monitoring include: 1) CNN monitoring in the
distributed environment [23] and 2) CNN monitoring in the
road network [24].

More recently, some other NN query variants, such as
surface kNN query [9], range NN retrieval [18], and kNN
search over moving object trajectories [12], [13], [14] have
also been proposed and solved. However, to the best of our
knowledge, this paper is the first piece of work aiming at
efficiently handling OLS queries in spatial databases. It is
worthwhile to point out that the proposed OLS query is
different from the existing Optimal-Location (OL) query [10].
OL search uses a different metric to evaluate the object
influence/optimality. Given a set S of sites and a set O of
weighted objects, the influence of a specified site l 2 S is the
total weight of the objects in O that take l as their NN. The
OL query is to find the site l inside a given spatial region Q
with the maximal influence. Thus, it has to locate the RNN
objects of l in order to derive l’s influence. Nevertheless, the
OLS query quantifies the optimality of a specified site l
based on the data objects that are physically close to l, and
meanwhile, have their distances to l bounded by a
predefined threshold dc.

2.3 Distance Join Queries

Given two data sets DA and DB, the distance join operation is
to compute and rank a subset of the Cartesian product of
sets DA and DB based on a specified distance order. Since it
was introduced by Hjaltason and Samet [16] in spatial
databases, the distance join has received considerable
attention, largely due to its importance in many data
analysis tasks, e.g., data mining and clustering [25].

As mentioned earlier, distance join queries actually order
the data object pairs from DA �DB according to different
distance functions. Among different distance joins, closest
pair query (CPQ) is one of the most popular. Given two
spatial data sets DA and DB, the CPQ retrieves the pair of
data objects ða; bÞ with a 2 DA and b 2 DB, such that their
distance is the smallest, i.e., 8ða0; b0Þ 2 DA �DB; distða; bÞ �
distða0; b0Þ. Based on the way that the result objects are
delivered, the algorithms can be classified into two
categories, namely, incremental algorithms and nonincremen-
tal algorithms.

Incremental algorithms, e.g., the one based on best-first
traversal [16], report the result objects one by one. The key idea
is to maintain a priority queue which contains pairs of node
entries ðNA;NBÞ 2 DA �DB, sorted in ascending order of
their distances. The advantages of this approach are as
follows: 1) k has not to be known in advance and the user can

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1165

stop the algorithm when he/she is satisfied with the result
and 2) the incremental algorithms outperform nonincre-
mental methods when k is small, as demonstrated in [16].
Some techniques to enhance the search performance by using
bidirectional node expansion, plane-sweeping, and adaptive
multistage techniques have been proposed in [35], [36].

As k value increases, the pruning power of distance
priority queue degrades, because the cutoff value (i.e.,
pruning distance) stored in the distance priority queue
may remain high for a long duration. Accordingly, non-
incremental algorithms are proposed to improve the pruning
process based on several distance metrics such as minmindist,
minmaxdist, and maxmaxdist. Different from incremental
algorithms, nonincremental algorithms report the result
objects as a whole at the end of the query processing.
Consequently, the main issue that nonincremental algo-
rithms have to address is how to separate the treatment of
the terminal candidates (i.e., the elements of the final result)
from the rest of the candidates. Example algorithms include
a recursive depth-first algorithm proposed in [6] and an
iterative best-first algorithm proposed in [7].

In addition, some variants of the distance join have been
reported in the literature. Koudas and Sevcik [20] propose
the similarity join (also called �-distance join), which
involves two spatial data sets and a distance threshold �,
and returns pairs of data objects within distance � from each
other. Bohm and Krebs [3] discuss the k-nearest neighbor join,
which associates two sets of spatial data objects DA and DB

and a cardinality threshold k; the output is a set of pairs
from DA and DB that include, for each data object from DA,
its k NNs in DB. Shou et al. [37] study the iceberg distance join
where, given two spatial data sets DA and DB, a distance
threshold �, and a cardinality threshold k, the target is to
retrieve all pairs of data objects from DA and DB such that:
1) the pairs of data objects are within distance � from each
other and 2) a data object of DA appears at least k times in
the final result. Corral et al. [8] introduce the k-multiway
distance join, which involves n spatial data sets, a query
graph QG (i.e., a weighted directed graph that defines
directed itineraries between the n input data sets), and a
cardinality threshold k; the answer is a set of k distinct
n-tuples (i.e., tuples of n data objects from the n data sets
obeying the QG) with the k smallest Ddistance-value which is
the value of a linear function of distances of the n data
objects that constitute this n-tuple, according to the edges of
the QG. Recently, the problem of processing distance join
queries with spatial region constraints has also been
investigated in [32], [34].

Like distance join, the OLS query involves two data sets
DA and DB and evaluates the objects based on distance.
However, they are fundamentally different. First, their
result sets are different. OLS query aims at target data set
DB, while distance join retrieves data object pairs from
DA �DB. Second, they adopt different metrics. OLS query
evaluates each target object bj 2 DB that is outside a given
spatial region R according to our newly defined optimality
metric (see Definition 2). This means, whether bj is an
answer object not only depends on the data objects in DA

that are inside R, and meanwhile, have their distances to bj
not exceeding a specified distance threshold dc, but also

depends on the optimality of other data objects. On the
other hand, distance join employs a totally different
ordering function. It retrieves the data object pair ða; bÞ 2
DA �DB with minimum distance. Last but not the least,
OLS query takes a spatial region R and a critical distance dc
as inputs, whereas the distance join may or may not
consider any other parameters. Therefore, the OLS query
differs from the distance join query, and we need new
approaches to tackle it efficiently.

Another work that is very related to OLS query is Top-k
Spatial Join (TSJ) [44]. Given two data sets DA and DB, the
TSJ retrieves the k objects from DA or DB that intersect the
maximum number of objects from the other data set.
Several efficient TSJ processing algorithms have been
proposed in [44], and they, as mentioned in [44], can be
easily extended to support Top-k distance Semijoin where,
given two data sets DA;DB and a range e, the goal is to
return the k objects in DB that enclose the largest number of
objects from DA within the distance e. The OLS query is a
specific form of TSJ, as it imposes a spatial region R to limit
the number of objects from DA that need consideration and
utilizes the optimality metric to rank answer objects. These
constraints might render the generic methods for TSJ
processing inefficient, which motivates the work presented
in this paper.

3 OLS QUERY PROCESSING

In this section, we propose three algorithms for efficiently
processing OLS queries, assuming that the data object
set DA and the target object set DB are indexed by two
separate R-trees. Table 1 lists the symbols used in the rest
of this paper.

In order to facilitate the understanding of different OLS
query processing algorithms, a running example, as
depicted in Fig. 3a, is employed. Here, the data object set
DA ¼ fa1; a2; . . . ; a8g, as shown in Fig. 3b; the target object
set DB ¼ fb1; b2; . . . ; b8g, as shown in Fig. 3d; the shaded
rectangle represents the spatial region R; and dc is set to 2.
We further assume that the number of required answer
objects k is 1. The corresponding R-trees on DA and DB with
node capacity set to two entries are illustrated in Figs. 3c
and 3e, respectively.

1166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

TABLE 1
Symbols and Description

3.1 Three-Step Algorithm

As explained in Section 1.3, the main issue of the baseline
algorithm is that the data set DA has to be traversed multiple
times. To address this issue, a Three-Step algorithm (TS) is
developed. It aims at visiting DA only once in order to
improve the search performance. More specifically, in
step 1, all the data objects in DA that are within the
specified spatial region R are retrieved via a window/range
query and preserved in a stack stA. In step 2, DB is accessed
and all the target objects b 2 DB that are outside R, and
meanwhile, have their minimal distance to R not exceeding
dc, i.e., mindistðb; RÞ � dc, are retrieved and maintained in a
stack stB. Finally, in the third step, all the candidate target
objects in stB are evaluated, with those data objects affecting
their optimality already available in stA.

Without any auxiliary information, we need to access each

object a 2 stA to evaluate its impact on the optimality of a

given object b 2 stB. Consequently, the time complexity of

the last step is OðjstAj
 jstBjÞ. Actually, only those objects

with their distances to b bounded by dc can contribute to the

optimality of b. In order to avoid the retrieval and evaluation

of unnecessary objects from stA, we strategically sort the

objects in stA/stB based on their coordinate values along the

dimension with largest span, denoted by î. Let cori and cori
represent the maximal and minimal coordinate values of

those objects in stA along the ith dimension, and the one with

the largest span î will be the ith dimension such that

8j 6¼ i; cori � cori � corj � corj. The main motivation behind

this ordering is that if the distance between a data object a

and a target object b along the dimension î is already larger

than dc; a for sure will not affect b’s optimality, and hence, the

retrieval and evaluation of a can be saved.

Back to our running example shown in Fig. 3a. As stA ¼
fa6; a3; a2; a7g and the coordinate difference along the x-

dimension is larger than that along the y-dimension, î is set

to x. Thereafter, all the objects in stA and stB are sorted

according to ascending order of their coordinates along x-

dimension, as illustrated in Fig. 4. Here, the notation

represents the search range of the optimal set Sb for a target

object b. It is known that Sb only includes those objects that

are inside a given spatial region R, and meanwhile, have

their distances to b bounded by dc. If jb:vî � a:vîj > dc, it is

guaranteed that distðb; aÞ > dc, and thus, a for sure will be

excluded from Sb. Take object b2 as an example. Without

sorting, it has to check all the four objects in stA to form Sb2
.

However, with data objects sorted according to their

coordinates along x-dimension, only object a6 with its

x-coordinate value fallen into the range ½b2:vx � 2; b2:vx þ 2�,
i.e., ðb2:vx � 2Þ � a6:vx � ðb2:vx þ 2Þ, needs evaluation.

The pseudocode of TS algorithm is presented in
Algorithm 1. TS first initializes a min-heap H as a
temporary storage of the result, a min-heap HA for keeping
all the objects that will be included into the optimal set Sb
of a target object b, and two stacks stA and stB (line 1). It
then starts the first step, i.e., finding all the objects from DA

that locate inside the specified spatial region R via a
window query on TA, and ordering them based on
coordinate values along the dimension î with maximal
span (lines 2-3). Similarly, the target objects that are
outside R and have their minimal distances to R not
exceeding dc are retrieved from DB and maintained in stB,
again via a window query on TB (lines 4-5). Thereafter,
each candidate in stB is evaluated (lines 6-12) and those k
candidates with best optimality are returned as the final
query result (line 13).

Algorithm 1. Three-Step Algorithm (TS)
Input: TA; TB; k; R; dc;

Output: Res;

Procedure:

1: initialize two min-heaps H ¼ HA ¼ ; and two stacks

stA ¼ stB ¼ ;;
2: T ¼ faja 2 DA ^ a 2 Rg and decide î;

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1167

Fig. 3. A running example. (a) The data and target object placement.

(b) Data object set DA. (c) The R-tree TA. (d) Target object set DB.

(e) The R-tree TB.

Fig. 4. Retrieval deduction via sorting.

3: sort objects in T according to ascending order of their
coordinates along î-th dimension and put them in stA;

4: T ¼ fbjb 2 DB ^ b 62 R ^mindistðb; RÞ � dcg;
5: sort objects in T according to ascending order of their

coordinates along î-th dimension and put them in stB;

6: for each point b 2 stB do

7: P ¼ fa 2 stA ^ a:vî 2 ½b:vî � dc; b:vî þ dc�g and HA ¼ ;;
8: for each point a 2 P do

9: if distða; bÞ � dc then

10: insert ða; distða; bÞÞ into HA;

11: calculate b:OPT using Equation (1);

12: ResultUpdate (H; b; b:OPT);

13: Res ¼ H and return Res;

Function: ResultUpdate (H; b; b:OPT)

14: if jHj < k then

15: insert ðb; b:OPT Þ into H;
16: elsa if jHj ¼ k and Ht:OPT < b:OPT then

17: remove Ht entry from H;

18: insert ðb; b:OPT Þ into H;

Back to the running example. In step 1, stA ¼ fa6; a3;

a2; a7g is formed, with î set tox. In step 2,stB ¼ fb5; b2; b1; b3g is

formed. Subsequently, in step 3, the optimal set of each target

object b 2 stB is formed by scanning those objects in stA with

x-coordinate values fallen inside the range ½b:vx � dc;
b:vx þ dc�, based on what its optimality is derived. For

instance, the optimal set for b2 2 stB is ; and its optimality

b2:OPT ¼ 0. As for b1 2 stB, its optimal set is fa6; a3g and its

optimality b1:OPT ¼ jSb1
j � distða6;b1Þþdistða3;b1Þ

dc�2þ1 � 1:42. Finally,

the target object with the highest optimality (i.e., b1) is

returned as the result.
Let jTAj and jTBj be the tree size of TA and TB,

respectively, jstAj and jstBj be the cardinality of stack stA
and stack stB, respectively, and jDAj and jDBj be the size
of DA and DB, respectively. Without loss of generality, we
assume that R is much smaller than the original (i.e., whole)
data space, jstAj < jDAj and jstBj < jDBj. Then, Lemma 1
analyzes the time complexity of TS and Lemma 2 proves
its correctness.

Lemma 1. The time complexity of the TS algorithm is

OðlogjTAj þ logjTBj þ jstAj � jstBjÞ.
Proof. The TS algorithm follows the three-step framework.

In the first stage, TS takes OðlogjTAjÞ to find all the data
objects from DA that are inside R; in the second stage, it
incurs OðlogjTBjÞ to retrieve all the candidate target
objects; and in the third stage, it takes OðjstAj � jstBjÞ to
evaluate the optimality of each candidate target object.
Hence, the total time complexity of the TS algorithm is
OðlogjTAj þ logjTBj þ jstAj � jstBjÞ. tu

Lemma 2. The TS algorithm reports exactly the top-k target

object(s) that have the maximal optimality among all the target
objects that locate outside R.

Proof. During the processing of TS, it retrieves all the target
objects b 2 DB that are outside R, and meanwhile, have
their smallest distances to R bounded by dc as candidate
answer objects, and thus, no answer objects are missed

(i.e., no false negatives). In the subsequent step, TS
evaluates every candidate by considering the impact of
the data objects from DA that are inside R, which ensures
no false positives. Consequently, the correctness of the
TS algorithm is guaranteed. tu

3.2 Reuse-Based Algorithm

As mentioned before, the main issue of the baseline
algorithm is that it needs to scan data set DA multiple
times. TS algorithm tackles this issue by fetching all the
objects (from DA) inside R via traversing TA once and
maintaining them in a stack stA. However, the access to
an object a 2 stA is necessary only when it affects at least
one target object’s optimality, i.e., 9b 2 DB such that
a 2 Sb. Thus, blindly fetching all the objects within R to
form stA is not always the best choice, especially when
the given spatial region R is a hot area with stA
containing a large number of objects but actually many
objects do not contribute to any optimal set corresponding
to a target object. Motivated by this observation, we
propose an alternative, namely, Reuse-Based algorithm (RB).
The main idea is to trigger the access of nodes/points in
TA via the examination of target objects. Specifically, we
evaluate candidate target objects one by one, according to
the ascending order of their minimal distances to R. When
a candidate target object b 2 DB is evaluated, we traverse
the data set DA to find out all the data objects that can
contribute to the optimal set of b (i.e., Sb). Since the same
data objects may contribute to the optimal sets of different
target objects, stacks st/temp are employed to keep track
of the current view of DA in order to enable reuse.
Therefore, we access the nodes in st and expand the node
only when it is very likely to contain objects that will be
included into the optimal set of the current evaluated
target object.

The pseudocode of RB algorithm is shown in Algorithm 2.
RB first initializes a min-heap H to store temporary results,
two min-heaps HA and HB to accommodate the optimal set
Sb for a specified target object b and the candidate target
object set, respectively, and two stacks st and temp to keep
track of the nodes/points of TA visited so far (line 1). Then, it
retrieves the candidate set by issuing a window query based
on TB (line 2). Thereafter, it recursively evaluates every
candidate until HB is empty (lines 4-10).

Algorithm 2. Reuse-Based Algorithm (RB)

Input: TA; TB; k; R; dc;

Output: Res;

Procedure:

1: initialize three min-heaps H ¼ HA ¼ HB ¼ ; and two

stacks st ¼ temp ¼ ;;
2: HB ¼ fbjb 2 DB ^ b 62 R ^mindistðb; RÞ � dcg;
3: push ðTA:root; 0Þ into st;

4: while HB 6¼ ; do

5: de-heap the top entry b from HB;

6: HA ¼ ;;
7: Traverse-DA-Reuse (TA; b; R; dc; st; temp;HA);
8: calculate b:OPT according to Equation (1);

9: ResultUpdate (H; b; b:OPT);

10: st ¼ temp [st and temp ¼ ;;
11: Res ¼ H and return Res;

1168 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

Function: Traverse-DA-Reuse (TA; b; R; dc; st; temp;HA)
12: while st 6¼ ; do

13: pop the top entry e out of st;

14: if e is a point then

15: push e into temp;

16: if distðe; bÞ � dc then

17: insert ðe; distðe; bÞÞ into HA;

18: else

19: for each child entry ei 2 e do

20: e0i ¼ e \R;

21: if midist(e0i; bÞ � dc then

22: push ðe0i;midistðe0i; bÞÞ into st;

23: else

24: push e0i into temp;

As the optimality of a target object b is dependent on its
optimal set Sb;DA has to be scanned for obtaining Sb. In
order to enable reuse of previously accessed nodes/points
from DA, two stacks st and temp are employed. Stack st
with initial value set to TA:root (i.e., the root of TA) guides
the traversal of TA. Since the purpose of accessing TA is to
form the optimal set Sb, it only accesses those nodes that
might contribute to Sb, while the others are preserved in
temp for the formation of the optimal sets of other target
objects. Once the optimal set Sb is formed, b’s optimality
b:OPT is derived, and the result set is updated if necessary
(lines 8-9). Thereafter, st is set to temp [st in order to enable
node/point reuse and to get ready for the evaluation of the
next target object (line 10).

The formation of the optimal set Sb for a given target
object b is handled by the Function Traverse-DA-Reuse
(lines 12-24). It visits the nodes/points e locally available
(i.e., e 2 st) and the detailed evaluation of e depends on its
type. If e is a data point, it is checked against the spatial
region R and its distance to b is derived. If e is qualified,
i.e., distðe; bÞ � dc ^ e 2 R, it is inserted into HA (lines 14-
17). Otherwise, e must be a nonleaf node and we need to
access its child entries via scanning TA. As only those
objects a 2 DA that are inside R will contribute to some
optimal sets corresponding to target objects, we only
consider the portion of the entry that is within R, denoted
as e0i (line 20). If e0i for sure will not contribute to Sb (i.e.,
mindist(e0i; bÞ > dc), it is inserted into temp (lines 23-24).
Otherwise, it is inserted into st (lines 21-22). The Traverse-
DA-Reuse function terminates when all the entries in the
stack st are accessed. Then, we can derive the optimality of
b (i.e., b:OPT) based on HA, which maintains b’s optimal set
Sb, and update the result set if necessary.

Consider our example again. After initialization, RB
retrieves all the potential target objects to form HB ¼
fb1; b3; b2; b5g, and then, starts the evaluation of candidate
target objects in HB. First, b1 with the smallest mindist(b1; R)
is evaluated. As it is the first evaluated target object, we
start traversing TA from the root node. Based on R and dc,
node A1 that has mindistðb1; A1Þ ¼ 0 < dc is pushed to st,
while A2 is preserved in temp. Then, A1 is expanded and
both its child nodes A3 and A4 are accessed. Since A3

locates outside R completely, it is discarded; whereas, A4 is
pushed to st for later evaluation as mindistðb1; A4Þ < dc.
Next, A4 is visited and its child points a6 and a3 are
inserted into HA (i.e., the storage of the optimal set Sb1

)

because both have their distances to b1 not exceeding dc.
After evaluating A4, the stack st becomes empty, and
hence, the formation of b1’s optimal set Sb1

is completed,
with temp ¼ fa6; a3; A

0
2 ¼ A2 \Rg.

Thereafter, target object b3 is evaluated. RB first accesses
A02 and pushes A6 into st. Then, it visits the child points of
A6, i.e., a2 and a7, and inserts them into HA to form the
optimal set Sb3

. The search finishes as the stack st is
empty, with temp ¼ fa6; a3; a2; a7g. The next target object
evaluated is b2. According to locally available nodes/
points, its optimal set Sb2

is empty, and thus, the access to
TA is saved. Similarly, upon the evaluation of b5, all the
locally available nodes/points have their minimal dis-
tances to b5 exceeding dc, and hence, Sb5

¼ ;. Now, HB is
empty and b1 is returned as the final query result to
complete the search. This example shows a worst case
scenario for the RB algorithm as all the objects inside the
specified spatial region R are accessed. However, the
accesses to some data objects might be saved in some other
cases. For example, when dc is set to one but not two for the
same example, RB only visits two out of four data objects
(i.e., a6 and a3), while previous TS algorithm has to access
all four objects.

Let � indicate the maximal number of node accesses
incurred during the evaluation of a target object, jHBj be the
size of heap HB, and jstj and jtempj be the cardinality of
stacks st and temp, respectively. Lemma 3 presents the time
complexity of RB algorithm. Note that we ignore the proof
of Lemma 3, which is very similar to that of Lemma 1.

Lemma 3. The time complexity of the RB algorithm is
OðlogjTBj þ jHBj � logðjstj þ jtempj þ �ÞÞ.

3.3 Reverse Reuse-Based Algorithm

Both TS algorithm and RB algorithm make a conservative
assumption, i.e., all the target objects with their minimal
distances to a given spatial region R not exceeding dc have
the potential to become part of the result. Consequently,
they retrieve all the target objects b that are outside R and
have mindist(b; RÞ � dc to constitute a candidate set C.
However, only those target objects b with nonempty optimal
set (i.e., Sb 6¼ ;), but definitely not others, may become the
answer objects for an OLS query.

Take an extreme case where none of the objects in C is
qualified for the OLS query as an example. As shown in
Fig. 5, all the target objects, represented by dot points, have
their minimal distances to R equivalent to dc, while the
data objects, denoted by hollow points, are close to the
center, but not the boundary, of the spatial region R. For
any target object b, there is no data object a such that
a 2 R ^ distða; bÞ � dc. In other words, the optimal set Sb
for 8b 2 C is empty. If the distribution of the data objects
inside R is known in advance, the access and evaluation of

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1169

Fig. 5. Overestimated candidate set.

some target objects that for sure have empty optimal sets

could be saved. Motivated by this observation, we propose

our third algorithm, namely, Reverse Reuse-Based algorithm

(RRB). Here, we use the term “reverse” to distinguish RRB

from the previous RB algorithm in which all the potential

target objects are accessed to guide the retrieval of data

objects. Differently, the RRB algorithm fetches all the data

objects inside the spatial region R to guide the access of

target objects.
Algorithm 3 depicts the pseudocode of RRB algorithm.

RRB first initializes a min-heap H to accommodate

temporary results, a min-heap HA to keep all the data

objects that locate inside a given spatial region R, three

stacks stB; st, and tempwith stB holding all the target objects

b whose optimality may be affected by a specified data

object a, and st and temp serving as the working stack and

the auxiliary stack, respectively, as mentioned in previous

RB algorithm (line 1). In addition, it also maintains a list,

InfoList, with its functionality explained later. Once the

initialization is done, RRB retrieves all the data objects from

DA that are within R and maintains them in HA (line 2).

Thereafter, it deheaps the head entry of HA for evaluation

until HA is empty (lines 4-10).

Algorithm 3. Reverse Reuse-Based Algorithm (RRB)

Input: TA; TB; k; R; dc;

Output: Res;

Procedure:

1: initialize two min-heaps H ¼ HA ¼ ;, three stacks
stB ¼ st ¼ temp ¼ ;, and InfoList ¼ ;;

2: HA ¼ faja 2 DA ^ a 2 Rg;
3: push ðTB:root; 0Þ into st;

4: while HA 6¼ ; do

5: de-heap the top entry a from HA;

6: Traverse-DB-Reuse (TB; a;R; dc; st; temp; stB);

7: while stB 6¼ ; do

8: pop the head entry ðb; distðb; aÞÞ out of stB;
9: append ða; distðb; aÞÞ into the list associated with b;

10: st ¼ temp [st and temp ¼ ;;
11: for each b in InfoList do

12: calculate b:OPT according to Equation (1);

13: ResultUpdate (H; b; b:OPT);

14: Res ¼ H and return Res;

Function: Traverse-DB-Reuse (TB; a;R; dc; st; temp; stB)
15: while st 6¼ ; do

16: pop the top entry e out of st;

17: if e is a point then

18: push e into temp;

19: if distðe; aÞ � dc then

20: push ðe; distðe; aÞÞ into stB;

21: else

22: for each child entry ei 2 e do

23: if ei is not completely inside R then

24: if midist(ei; aÞ � dc then

25: push ðei, midist(ei; aÞÞ into st;

26: else if mindist(ei; R) � dc then

27: push ðei, midist(ei; aÞÞ into temp;

The main idea is that for each data object a, we find out
those target objects b whose optimality will be affected by a,
i.e., fbjb 2 DB ^ b 62 R ^ distða; bÞ � dcg. As the optimality of
a target object b cannot be derived unless all the data objects
included into its optimal set Sb are retrieved, we maintain
the partial optimal set (i.e., the fact that object a is contained
in Sb) in InfoList. Each list corresponds to one target object b,
with all the data objects a accessed so far that will contribute
to b’s optimality appended, in the format of ða; distða; bÞÞ.
After all the data objects a 2 HA are evaluated, the formation
of the optimal sets for all the candidate target objects is
completed. Then, the optimality of each candidate can be
derived and the result set can be obtained (lines 11-13).
Finally, the algorithm outputs the result (line 14).

Different from previous RB algorithm, the reuse techni-
que is applied to the data set DB but not DA. As shown in
Function Traverse-DB-Reuse (lines 15-27), the access of DB

(i.e., TB) is triggered by the data object a. Whenever a new
data object a is retrieved, the stack st is scanned to find out
those target objects b satisfying distða; bÞ � dc.

Again, back to our running example. RRB first fetches
all the data objects located inside R to form HA ¼ fa6; a3;

a2; a7g, and then, evaluates objects in HA one by one.
When a6 2 HA is evaluated, it triggers the access of
node B1 and preserves B2 in temp due to the fact that
mindistðB2; a6Þ > dc and mindistðB2; RÞ < dc. B1 has two
child entries B3 and B4. B4 is kept in temp as
mindistðB4; a6Þ > dc but mindistðB4; RÞ < dc. On the other
hand, B3 is pushed into st as its distance to a6 is smaller
than dc. Thereafter, B3’s child entries b1 and b6 are
accessed. The optimality of b1 is affected by a6, and
hence, b1 is added to stB and InfoList, while b6 is
discarded because its distance to R exceeds dc. Now, the
st is empty and the evaluation of a6 is finished with
temp ¼ fb1; B4; B2g and stB ¼ fðb1; distðb1; a6ÞÞg.

Then, a3 2 HA is evaluated. Based on locally available
nodes/points, it only affects b1’s optimality, and thus, the
InfoList is updated. Next, a2 2 HA is evaluated. As
mindistða2; B2Þ < dc, it triggers the access of node B2,
pushes B2’s child entry B5 into st, and preserves the other
entry B6 in temp. When B5 is visited, its child entry b3 is
added to stB and InfoList, whereas b8 is discarded since
mindistðb8; RÞ > dc. At this time, the evaluation of a2

terminates, and temp is updated to fb3; b1; B4; B6g. Finally,
a7 2 HA is evaluated. Based on local information, it only
affects the optimality of b3. Consequently, it does not
trigger the access of any node and the evaluation is
completed, with InfoList updated. The final InfoList

situation is illustrated in Fig. 6, based on which the
optimality of target objects is derived. Object b1 is
returned as the result of the OLS query. Compared with

1170 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

Fig.6. Example of InfoList.

the TS algorithm, the access of target objects b2 and b5 is

saved.
Let � denote the maximal number of node accesses

required during the evaluation of a data object, jHAj be the

size of heap HA, and jInfoListj be the number of elements
in InfoList. Lemma 4 provides the time complexity of RRB

algorithm. We omit the proof of Lemma 4 because it is

similar as that of Lemma 1.

Lemma 4. The time complexity of the RRB algorithm is

OðlogjTAj þ jHAj � logðjstj þ jtempj þ �Þ þ jInfoListjÞ.

3.4 Discussion

Compared with the baseline algorithm mentioned in

Section 1.3, TS, RB, and RRB algorithms improve the search
performance by reducing the traversal of DA/DB to only

once, but via different approaches. Assume that CA
represents the data object candidate set which includes all

the data objects that may contribute to the optimality of

some target objects, CB denotes the target object candidate

set which contains all the target objects that may have
nonzero optimality, RA represents the real data object set

which includes all the data objects that do contribute to the

optimality of some target objects, and RB denotes the real

target object set which contains all the target objects that do

have nonzero optimality. To be more specific, CA ¼ fa 2
DAja 2 Rg; CB ¼ fb 2 DBjb 62 R ^mindistðb; RÞ � dcg; RA ¼
fa 2 DAj9b 2 CB; a 2 Sbg, and RB ¼ fb 2 CBjSb 6¼ ;g. TS
makes a conservative assumption that CA � RA and

CB � RB. Therefore, it fetches CA (CB) via traversing DA

(DB) once. On the other hand, (CA �RA)/(CB �RB) might

be significant. RB assumes that CA is larger than RA and it

tries to save the access of those data objects included in

ðCA �RAÞ, while RRB assumes that CB is larger than RB

and it tries to save the access of those target objects

contained in ðCB �RBÞ. Consequently, TS favors the case

where ðjCAj � jRAjÞ and ðjCBj � jRBjÞ are ignorable, RB

favors the case where ðjCAj � jRAjÞ ðjCBj � jRBjÞ, and

RRB favors the case where ðjCAj � jRAjÞ � ðjCBj � jRBjÞ.

4 PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to

evaluate the efficiency and effectiveness of our proposed

algorithms for answering OLS queries. All the algorithms,

including Baseline, TS, RB, and RRB, were implemented in

C++, and the experiments were conducted on an Intel
Core 2 Duo 2.33GHz PC with 3.25GB RAM and 240GB disk,

running Microsoft Windows XP Professional Edition. We

first describe the experimental settings, and then, present

the experimental results and our findings.

4.1 Experimental Setup

We have used both real and synthetic data sets in the
experiments and fix each dimension of the search space to
[0, 10,000]. Four real data sets are deployed with cardinality
varying from 9,203 to 191,558, as summarized in Table 2. LB
and CA data sets (available at http://www.census.gov/
geo/www/tiger.) contain populated places and cultural
landmarks, in the format of 2D point locations, in Long
Beach and California, respectively. On the other hand, CL
and RS data sets (available at http://www.maproom.
psu.edu/dcw) represent two different layers of North
America’s map, with CL corresponding to cultural land-
marks in the format of 2D points, and RS corresponding to
railroad segments in the format of 2D segments. Although
our proposed algorithms can be naturally extended to
handle objects with extents, we only use point data sets in
this evaluation. Consequently, we transfer RS data set into
point data set by taking the middle point of each segment.
Fig. 7 illustrates these four real data sets.

We have also created several synthetic data sets with
dimensionality varying in the range of [2, 5] and
cardinality varying between 50,000 and 450,000, following
uniform and zipf distributions. The coordinates of each
point in a Uniform data set are generated randomly within
[0, 10,000], whereas for a Zipf data set, the coordinates
follow a zipf distribution with a skew coefficient set to 0.8.
In both cases, a point’s coordinates on various dimensions
are mutually independent.

Every data set is indexed by R	-tree [1] with 4,096 bytes
page size. We investigate the performance of our proposed
algorithms under various parameters, including the num-
ber k of required answer objects for an OLS query, the
critical distance dc, the size of the spatial region R, the
dimensionality dim of the search space, the cardinality n of
the data sets, and the buffer size bs, as presented in Table 3.
In each experiment, only one parameter varies, while the
others are fixed at their default values. Note that the lower
left point of the spatial range R in the experiments is
randomly selected from the set of data points, and all of its
edges have the same length.

The I/O cost and the query cost are employed as the
major performance metrics. The former is the number of
page/node accesses, while the latter is the average

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1171

TABLE 2
Description of Real Data Sets

Fig. 7. Real data sets. (a) CL. (b) LB. (c) CA. (d) RS.

response time of an OLS query. Here, each page access
takes 10 ms, as in [39], and the query cost is the summation
of the average I/O time and CPU time incurred to
complete one query. Each reported value in the following
diagrams is the average performance of 100 queries. Unless
specifically stated, the size of LRU buffer is set to zero in
the experiments.

4.2 Performance Study

As listed in Table 3, there are six parameters that might
affect the performance of our algorithms. In order to
evaluate the impact of each parameter, six sets of experi-
ments are performed where we only vary one parameter in
each set. Since OLS query involves two data sets (i.e., a data
object set DA and a target object set DB), we simulate three
different cases by using various data sets: 1) the data object
set is significantly larger than the target object set, i.e., jDAj
jDBj (DA ¼ RS and DB ¼ CL); 2) the data object set is
significantly smaller than the target object set, i.e., jDAj �
jDBj (DA ¼ CL and DB ¼ RS); and 3) the data object set
and the target object set are about the same size, i.e., jDAj �
jDBj (DA ¼ LB and DB ¼ CA).

Effect of k. The first set of experiments evaluates the
effect of the number k of requested answer objects on the
search performance, using both real and synthetic data sets.
Fig. 8 depicts the query cost (in seconds) of different
algorithms under various k, with the number on top of each

bar representing the number of node/page accesses during
the search.

As expected, baseline algorithm is worse than our
proposed algorithms (i.e., TS, RB, and RRB) by several
orders of magnitude. Moreover, the baseline approach is
I/O-bounded in all cases, while the other algorithms are
CPU-bounded, which will be confirmed by the subsequent
experiments as well. This is because: 1) baseline algorithm
needs to traverse the data object R-tree TA multiple times,
incurring extremely expensive I/O overhead and distance
computation and 2) TS, RB, and RRB algorithms traverse
the R-tree TA/TB at most once, which saves considerable
node accesses. As baseline for sure performs worse than
the others by factors, its performance is ignored in the rest
of experimental results.

Clearly, RRB outperforms the other algorithms in all the
cases. The reason behind is that RRB not only implements a
single retrieval of the trees TA and TB, but also employs
reuse technology to avoid loading the same index entries
(including nodes and data points) from the disk multiple
times. Although both RRB and RB enable reuse of locally
available nodes/points, their performances are different.
This is because of the setting of R and dc. As R is set to
1 percent of the search space (e.g., 1;000� 1;000 in a
2D space) and dc is set to 600, the search range for potential
target objects (e.g., ð600� 2þ 1;000Þ � ð600� 2þ 1;000Þ �
1;000� 1;000 in a 2D space) is much larger than R. In order
words, jCB �RBj will be significantly larger than jCA �RAj
(refer to Section 3.4 for the description of CA;CB;RA, and
RB). Consequently, it is more beneficial to trigger the access
of target objects only when their optimal sets are very likely
to be nonempty. That explains why RRB outperforms RB. If
we change the setting such that the number of data objects
inside R is much larger than the number of candidate target
objects (i.e., ðjCAj � jRAjÞ ðjCBj � jRBjÞ), RB is expected to
perform better.

In addition, we observe that TS and RB perform similar
in terms of I/O cost, while TS outperforms RB with respect
to CPU cost. This is because when dc ¼ 600 and R ¼ 1% of

1172 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

TABLE 3
Parameter Settings

Fig. 8. Query cost versus k ðdc ¼ 600; R ¼ 1 %Þ. (a) DA ¼ RS and DB ¼ CL. (b) DA ¼ CL and DB ¼ RS. (c) DA ¼ LB and DB ¼ CA.

(d) DA ¼ 450;000 and DB ¼ 50;000 (Uniform). (e) DA ¼ 50;000 and DB ¼ 450;000 (Uniform). (f) DA ¼ 250;000 and DB ¼ 250;000 (Uniform).

the search space, almost all the data objects inside the range
R need evaluation (i.e., CA � RA), and hence, RB does not
save any traversal of the data objects. Furthermore, RB
incurs additional overhead to reuse the entries during the
query processing, as also demonstrated by the following
experiments. Notice that the performance of all the methods
is independent of k, since they obtain the final query result
from all candidate target objects no matter how large k is.

Effect of dc. Next, we study the impact of the critical
distance dc on the efficiency of the algorithms, by fixing
k ¼ 16 and varying dc between 200 and 1,000. Fig. 9
illustrates the experimental results. As expected, the cost
of all the algorithms increases with dc, because the search
space of the k-OLS query grows as dc increases. Consistent
with the performance trend observed from previous
experiments, RRB performs better than the other algorithms

in most of the cases. In addition, we observe that TS
outperforms RB in terms of query cost when dc is small but
it loses its advantage as large dc is encountered (e.g.,
dc ¼ 1;000). The reason behind is that RB, in order to enable
reuse technique, incurs some additional overhead. Note
that RB outperforms RRB when dc is very small and
jDAj jDBj. This is because not all the data objects in R
need evaluation, and thus, RRB which first retrieves all the
data objects inside R results in some unnecessary traversal.

Effect of R. Fig. 10 plots the cost of the algorithms with
respect to the spatial region R. As expected, the query cost
of all the algorithms increases with the growth ofR. Besides,
when R is small (e.g., R ¼ 0:25 percent/0.5 percent of full
space), the performance of TS and RB is similar; whereas TS
is obviously better than RB when R is large (e.g., R ¼
2 %=4% of full space). This is because under the current

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1173

Fig. 9. Query cost versus dc ðk ¼ 16; R ¼ 1 %Þ. (a) DA ¼ RS and DB ¼ CL. (b) DA ¼ CL and DB ¼ RS. (c) DA ¼ LB and DB ¼ CA.
(d) DA ¼ 450;000 and DB ¼ 50;000 (Uniform). (e) DA ¼ 50;000 and DB ¼ 450;000 (Uniform). (f) DA ¼ 250;000 and DB ¼ 250;000 (Uniform).

Fig. 10. Query cost versus R ðk ¼ 16; dc ¼ 600Þ. (a) DA ¼ RS and DB ¼ CL. (b) DA ¼ CL and DB ¼ RS. (c) DA ¼ LB and DB ¼ CA.

(d) DA ¼ 450;000 and DB ¼ 50;000 (Uniform). (e) DA ¼ 50;000 and DB ¼ 450;000 (Uniform). (f) DA ¼ 250;000 and DB ¼ 250;000 (Uniform).

setting (i.e., dc ¼ 600, and R ¼ 0:25=0:5=1=2=4% of the
search space), most, if not all, of the data objects inside R
are accessed. Consequently, RB does not save many
traversal of DA, compared with TS. On the other hand, RB
incurs extra overhead to scan the heap st in order to find out
all the objects that contribute to the optimal set correspond-
ing to the currently evaluated target objects. The more the
target objects are evaluated, the more the overhead is.
Therefore, when R becomes larger, RB suffers more from
the extra overhead (under the current settings). Again, RRB
performs the best and its advantage is more significant
when R is small.

Effect of dimensionality dim. The next set of experi-
ments studies the impact of the dimensionality dim on the
efficiency of the algorithms. We use the synthetic data sets
(containing Uniform and Zipf) and change dim from two to
five, with the results depicted in Fig. 11. The I/O cost of all
the algorithms increases with dim because, in general,
R-trees become less efficient as the dimensionality grows
[31] due to the large overlap among the MBRs. A crucial
observation is that the CPU time of the algorithms in a
2D space is larger than that in higher dimensional spaces
(i.e., dim � 3). This is because the object density decreases
as dim increases. Thus, as the dimensionality of the search
space increases, the number of data objects that contribute
to the optimal set of each candidate target object decreases.
Fig. 11 confirms this observation, showing that the CPU cost
of the algorithms in the 2D space is the highest. In addition,
as shown in the diagrams, RRB is the best approach in the
2D space, but TS outperforms the other methods in most
cases when dim � 3.

Effect of cardinality n. To investigate the behaviors of the
algorithms under different data set cardinalities, we use
2D Uniform and Zipf data sets. We assume that the total
number of data objects and target objects remain 500,000, i.e.,
jDAj þ jDBj ¼ 500;000, and both of them follow the same
distribution (either uniform or zipf). Fig. 12 measures the

performance of the algorithms (in processing 16-OLS
queries) as a function of the data set cardinality n. The x-axis
depicts the cardinality of the data set DA in the unit of
1,000 points. For example, if the cardinality of DA is
50,000 points, then the cardinality of DB is 450,000 points.
Obviously, RRB is the most efficient algorithm for all the
settings. In particular, the cost of all the algorithms first
increases and then drops as the relative size ofDA/DB varies.
Moreover, when the two data sets share similar cardinality,
the cost of each method is the highest in the whole cost
varying process.

Effect of buffer size bs. As mentioned earlier, all
previous experiments are conducted without any buffer
(i.e., the size of LRU buffer is set to 0). The last set of
experiments examines the impact of buffer size on the
performance of the proposed algorithms. We implement
two types of buffers, namely, warm up buffer (denoted as
WU) and cold buffer (denoted as CB). The former keeps the
nodes previously accessed in the buffer to speedup the
processing of queries issued later. In our experiment, we
use the first 50 queries to warm up the buffer and the next
50 queries to evaluate the search performance. On the other
hand, the cold buffer empties the buffer every time after a
query is processed. Consequently, the processing of a new
query under cold buffer always starts with an empty buffer.

1174 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

Fig. 11. Query cost versus dimensionality dim (k ¼ 16, dc ¼ 600, R ¼ 1%). (a) DA ¼ 450;000 and DB ¼ 50;000 (Uniform). (b) DA ¼ 50;000 and

DB ¼ 450;000 (Uniform). (c) DA ¼ 250;000 and DB ¼ 250;000 (Uniform). (d) DA ¼ 450;000 and DB ¼ 50;000 (Zipf). (e) DA ¼ 50;000 and DB ¼
450;000 (Zipf). (f) DA ¼ 250;000 and DB ¼ 250;000 (Zipf).

Fig. 12. Query cost versus cardinality n ðk ¼ 16; dc ¼ 600; R ¼
1%; dim ¼ 2Þ. (a) Uniform. (b) Zipf.

In order to save space, we integrate the results under two
types of buffer schemes, using bars to represent the query
cost under WU and polylines to represent the query cost
under CB, as plotted in Fig. 13.

First, we analyze the performance under warm up
buffer. When bs ¼ 0, every node access incurs a page/node
access. Hence, the cost of baseline algorithm is much higher
than that of the other algorithms, because it has to traverse
the R-tree TA multiple times, as shown in Fig. 13a. When the
buffer size is increased from 0 to 6 percent, the performance
of baseline improves significantly since some frequently
accessed nodes (e.g., root of TA) are available in the buffer.
However, the performance remains stable as we further
increase the buffer size, which implies that only around
6 percent of TA’s nodes are accessed multiple times. On the
other hand, the buffer size has a less significant impact on
the performance of TS, RB, and RRB, as they only need to
traverse the data set once. The relative performance of all the
algorithms remains the same. We omit the baseline
approach in the rest of the diagrams for clarity.

As for the cold buffer, the performance trends of
different algorithms remain the same. In addition, we
observe that for all the algorithms evaluated, the overall
query cost under CB is higher than that under WU. This
observation implies that different query approaches actu-
ally share certain common search paths.

5 CONCLUSION

In this paper, we introduce and solve a new form of spatial
queries, namely, OLS search. It takes a data object set DA, a
target object set DB, a critical distance dc, and a spatial
region R as inputs, and returns those target objects outside R
with maximal optimality. We develop the optimality metric,
formalize the OLS query and its generalization (i.e., k-OLS
query), and propose three algorithms, including TS, RB, and
RRB, for efficient k-OLS query processing. Finally, a

comprehensive empirical study using both real and
synthetic data sets has been conducted to verify the
performance of our proposed algorithms in terms of
efficiency and effectiveness.

The work reported in this paper presents our first step
with respect to OLS queries. There are certain limitations.
First, in the current work, we only consider an euclidian
space and we plan to extend our methods to other distance
metrics (e.g., network distance in road networks). Second, the
current algorithms are designed to mainly reduce the I/O
cost via traversing the data object set and target object set
only once. However, it is also important to improve the CPU
time. Hence, our next step is to design the algorithms that can
improve both CPU time and I/O cost. Third, the current
algorithms are k-insensitive as they have to evaluate all the
candidate target objects with nonzero optimality no matter
how large the k is. We are currently working on the
incremental algorithms which can terminate the evaluation
once the k target objects with maximal optimality are
identified. In addition, we are also interested in developing
a cost model to estimate the execution time of different OLS
query processing algorithms, which can facilitate query
optimization and reveal new problem characteristics that
could lead to even faster algorithms.

ACKNOWLEDGMENTS

This research is partly supported by the Office of Research,
Singapore Management University.

REFERENCES

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R	-
Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 322-331, 1990.

[2] S. Berchtold, D.A. Keim, and H.-P. Kriegel, “The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. Very Large Data Bases
Conf. (VLDB ’96) , pp. 28-39, 1996.

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1175

Fig. 13. Query cost versus buffer size bs ðk ¼ 16; dc ¼ 600; R ¼ 1 %; dim ¼ 2DÞ. (a) DA ¼ 450;000 and DB ¼ 50;000 (Uniform), (b) DA ¼ 50;000

and DB ¼ 450;000 (Uniform), (c) DA ¼ 250;000 and DB ¼ 250;000 (Uniform), (d) DA ¼ 450;000 and DB ¼ 50;000 (Zipf), (e) DA ¼ 50;000 and

DB ¼ 450;000 (Zipf) and (f) DA ¼ 250;000 and DB ¼ 250;000 (Zipf).

[3] C. Bohm and F. Krebs, “High Performance Data Mining Using the
Nearest Neighbor Join,” Proc. Int’l Conf. Data Mining (ICDM ’02),
pp. 43-50, 2002.

[4] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient Processing of
Spatial Joins Using R-Trees,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 237-246, 1993.

[5] K.L. Cheung and A.W.-C. Fu, “Enhanced Nearest Neighbour
Search on the R-Tree,” SIGMOD Record, vol. 27, no. 3, pp. 16-21,
1998.

[6] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, “Closest Pair Queries in Spatial Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 189-200, 2000.

[7] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, “Algorithms for Processing k-Closest-Pair Queries in
Spatial Databases,” Data & Knowledge Eng., vol. 49, no. 1, pp. 67-
104, 2004.

[8] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, “Multi-Way Distance Join Queries in Spatial Databases,”
GeoInformatica, vol. 8, no. 4, pp. 373-402, 2004.

[9] K. Deng, X. Zhou, H. Shen, K. Xu, and X. Lin, “Surface k-NN
Query Processing,” Proc. Int’l Conf. Data Eng. (ICDE ’06), p. 78,
2006.

[10] Y. Du, D. Zhang, and T. Xia, “The Optimal-Location Query,” Proc.
Int’l Symp. Spatial and Temporal Databases (SSTD ’05), pp. 163-180,
2005.

[11] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. Abbadi,
“Constrained Nearest Neighbor Queries,” Proc. Int’l Symp. Spatial
and Temporal Databases (SSTD ’01), pp. 257-278, 2001.

[12] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algo-
rithms for Nearest Neighbor Search on Moving Object Trajec-
tories,” GeoInformatica, vol. 11, no. 2, pp. 159-193, 2007.

[13] Y. Gao, C. Li, G. Chen, L. Chen, X. Jiang, and C. Chen, “Efficient k-
Nearest-Neighbor Search Algorithms for Historical Moving Object
Trajectories,” J. Computer Science and Technology, vol. 22, no. 2,
pp. 232-244, 2007.

[14] Y. Gao, C. Li, G. Chen, Q. Li, and C. Chen, “Efficient Algorithms
for Historical Continuous knn Query Processing over Moving
Object Trajectories,” Proc. Joint Int’l Conf. Asia-Pacific Web Conf.
(APWeb)/Web-Age Information Management (WAIM ’07), pp. 188-
199, 2007.

[15] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 47-57, 1984.

[16] G.R. Hjaltason and H. Samet, “Incremental Distance Join Algo-
rithms for Spatial Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 237-248, 1998.

[17] G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.

[18] H. Hu and D.L. Lee, “Range Nearest-Neighbor Query,” IEEE
Trans. Knowledge and Data Eng., vol. 18, no. 1, pp. 78-91, Jan. 2006.

[19] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 201-212, 2000.

[20] N. Koudas and K. Sevcik, “High Dimensional Similarity Joins:
Algorithms and Performance Evaluation,” IEEE Trans. Knowledge
and Data Eng., vol. 12, no. 1, pp. 3-18, Jan./Feb. 2000.

[21] N. Mamoulis and D. Papadias, “Multiway Spatial Joins,” ACM
Trans. Database Systems, vol. 26, no. 4, pp. 424-475, 2001.

[22] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
Partitioning: An Efficient Method for Continuous Nearest
Neighbor Monitorin,” Proc. ACM SIGMOD Int’l Conf. Management
of Data, pp. 634-645, 2005.

[23] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao, “A Threshold-
Based Algorithm for Continuous Monitoring of k Nearest
Neighbors,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 11,
pp. 1451-1464, Nov. 2005.

[24] K. Mouratidis, M. Yiu, D. Papadias, and N. Mamoulis, “Con-
tinuous Nearest Neighbor Monitoring in Road Networks,” Proc.
Very Large Data Bases Conf. (VLDB ’06), pp. 43-54, 2006.

[25] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos, “C2P:
Clustering Based on Closest Pairs,” Proc. Very Large Data Bases
Conf. (VLDB ’01) , pp. 331-340, 2001.

[26] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer, “Towards an
Analysis of Range Query Performance in Spatial Data Structures,”
Proc. ACM Symp. Principles of Database Systems (PODS ’93),
pp. 214-221, 1993.

[27] D. Papadias and D. Arkoumanis, “Approximate Processing of
Multiway Spatial Joins in Very Large Databases,” Proc. Int’l Conf.
Extending Database Technology (EDBT ’02), pp. 179-196, 2002.

[28] D. Papadias, N. Mamoulis, and D. Theodoridis, “Processing and
Optimization of Multiway Spatial Joins Using R-Trees,” Proc.
ACM Symp. Principles of Database Systems (PODS ’99), pp. 44-55,
1999.

[29] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group Nearest
Neighbor Queries,” Proc. Int’l Conf. Data Eng. (ICDE ’04), pp. 301-
312, 2004.

[30] D. Papadias, Y. Tao, K. Mouratidis, and K. Hui, “Aggregate
Nearest Neighbor Queries in Spatial Databases,” ACM Trans.
Database Systems, vol. 30, no. 2, pp. 529-576, 2005.

[31] A. Papadopoulos and Y. Manolopoulos, “Performance of Nearest
Neighbor Queries in R-Trees,” Proc. Int’l Conf. Database Theory
(ICDT ’97), pp. 394-408, 1997.

[32] A. Papadopoulos, A. Nanopoulos, and Y. Manolopoulos, “Proces-
sing Distance Join Queries with Constraints,” The Computer J.,
vol. 49, no. 3, pp. 281-296, 2006.

[33] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 71-79, 1995.

[34] J. Shan, D. Zhang, and B. Salzberg, “On Spatial-Range Closest-Pair
Query,” Proc. Int’l Symp. Spatial and Temporal Databases (SSTD ’03),
pp. 252-269, 2003.

[35] H. Shin, B. Moon, and S. Lee, “Adaptive Multi-Stage Distance Join
Processing,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 343-354, 2000.

[36] H. Shin, B. Moon, and S. Lee, “Adaptive and Incremental
Processing for Distance Join Queries,” IEEE Trans. Knowledge and
Data Eng., vol. 15, no. 6, pp. 1561-1578, Nov./Dec. 2003.

[37] Y. Shou, N. Mamoulis, H. Cao, D. Papadias, and D.W. Cheung,
“Evaluation of Iceberg Distance Joins,” Proc. Int’l Symp. Spatial and
Temporal Databases (SSTD ’03), pp. 270-288, 2003.

[38] Z. Song and N. Roussopoulos, “k-Nearest Neighbor Search for
Moving Query Point,” Proc. Int’l Symp. Spatial and Temporal
Databases (SSTD ’01), pp. 79-96, 2001.

[39] Y. Tao, D. Papadias, X. Lian, and X. Xiao, “Multidimensional
Reverse kNN Search,” The Very Large Data Bases J., vol. 16, no. 3,
pp. 293-316, 2007.

[40] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest Neighbor
Search,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’02), pp. 287-
298, 2002.

[41] X. Xiong, M. Mokbel, and W. Aref, “SEA-CNN: Scalable
Processing of Continuous k-Nearest Neighbor Queries in Spatio-
Temporal Databases,” Proc. Int’l Conf. Data Eng. (ICDE ’05),
pp. 643-654, 2005.

[42] X. Yu, K. Pu, and N. Koudas, “Monitoring k-Nearest Neighbor
Queries over Moving Objects,” Proc. Int’l Conf. Data Eng. (ICDE
’05), pp. 631-642, 2005.

[43] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao, “All-Nearest-
Neighbors Queries in Spatial Databases,” Proc. Int’l Conf. Scientific
and Statistical Database Management (SSDBM ’04), pp. 297-306,
2004.

[44] M. Zhu, D. Papadias, J. Zhang, and D.L. Lee, “Top-k Spatial
Joins,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 4, pp. 567-
579, Apr. 2005.

Yunjun Gao received the master’s degree in
computer science from Yunnan University,
China, in 2005, and the PhD degree in computer
science from Zhejiang University, China, in
2008. He is currently a postdoctoral research
fellow in the School of Information Systems,
Singapore Management University, Singapore.
His research interests include spatial databases,
spatiotemporal databases, mobile/pervasive
computing, and geographic information sys-

tems. He is a member of the IEEE, the ACM, and the ACM SIGMOD.

1176 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009

Baihua Zheng received the bachelor’s degree
in computer science from Zhejiang University,
China, in 1999, and the PhD degree in
computer science from the Hong Kong Uni-
versity of Science and Technology, Hong Kong,
in 2003. She is currently an assistant professor
in the School of Information Systems, Singa-
pore Management University, Singapore. Her
research interests include mobile/pervasive
computing and spatial databases. She is a

member of the IEEE and the ACM.

Gencai Chen is a professor in the College of
Computer Science, Zhejiang University, China.
He was a visiting scholar in the Department of
Computer Science, State University of New York
at Buffalo, from 1987 to 1988, and the winner of
the special allowance, conferred by the State
Council of China in 1997. He is currently a vice
dean of the College of Computer Science, the
director of the Computer Application Engineer-
ing Center, and the vice director of the Software

Research Institute, Zhejiang University. His research interests include
database systems, artificial intelligence, and CSCW.

Qing Li is a professor in the Department of
Computer Science, City University of Hong
Kong, where he joined as a faculty member in
September 1998. Before that, he taught at the
Hong Kong Polytechnic University, The Hong
Kong University of Science and Technology, and
The Australian National University (Canberra,
Australia). He is a guest professor at the
University of Science and Technology of China,
a visiting professor at the Institute of Computing

Technology (Knowledge Grid), Chinese Academy of Science (Beijing,
China), an adjunct professor at the Hunan University (Changsha,
China), and a guest professor (software technology) at Zhejiang
University (Hangzhou, China). His research interests include object
modeling, multimedia databases, and Web services. He is a senior
member of the IEEE and a member of the ACM SIGMOD and the IEEE
Technical Committee on Data Engineering. He is the chairperson of the
Hong Kong Web Society and also served/is serving as an executive
committee (EXCO) member of the IEEE-Hong Kong Computer Chapter
and the ACM Hong Kong Chapter. In addition, he serves as a councilor
of the Database Society of Chinese Computer Federation, a councilor of
the Computer Animation and Digital Entertainment Chapter of Chinese
Computer Imaging and Graphics Society, and is a steering committee
member of DASFAA, ICWL, and the International WISE Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GAO ET AL.: OPTIMAL-LOCATION-SELECTION QUERY PROCESSING IN SPATIAL DATABASES 1177

