
OPAQUE: Protecting Path Privacy in Directions Search

Ken C. K. Lee†‡ Wang-Chien Lee† Hong Va Leong‡ Baihua Zheng§

cklee@cse.psu.edu wlee@cse.psu.edu cshleong@comp.polyu.edu bhzheng@smu.edu.sg

†Department of Computer Science and Engineering, PennsylvaniaState University, USA.
‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong.
§School of Information Systems, Singapore Management University, Singapore.

Abstract— Directions search returns the shortest path from
a source to a destination on a road network. However, the
search interests of users may be exposed to the service providers,
thus raising privacy concerns. For instance, a path query that
finds a path from a resident addressto a clinic may lead to a
deduction about “who is related to what disease”. To protect user
privacy from accessing directions search services, we introduce
the OPAQUEsystem, which consists of two major components: (1)
an obfuscatorthat formulates obfuscated path queries by mixing
true and fake sources/destinations; and (2) anobfuscated path
query processorinstalled in the server for obfuscated path query
processing. OPAQUE reduces the likelihood of path queries being
revealed and allows retrieval of requested paths. We propose
two types of obfuscated path queries, namely,independently
obfuscated path queryand shared obfuscated path queryto
strike a balance between privacy protection strength and query
processing overhead, and to enhance privacy protection against
collusion attacks.

I. I NTRODUCTION

With proliferation of digital maps, positioning technol-
ogy, and the Internet, we have witnessed a rapid growth of
location-based services (LBS). The analysis from Frost &
Sullivan reveals that the market, covering13 major Asia-
Pacific economies, was worth $291.7 million in 2006 and is
expected to grow15.3 percent annually to reach an estimated
$447 million by the end of2009. Among many LBSs such
as E-911, NextBus (http://www.nextbus.com), NearestToilet
(http://www.mizpee.com) etc, directions search is one of the
most popular LBSs. Well-known map service providers, such
as GoogleMap, MapQuest, MS Virtual Earth, and Yahoo! Map,
have already offered convenient directions search service.

With a source addresss and a destination addresst provided
by a user, directions search service determines a path routed
from s to t that satisfies some additional specified conditions
(e.g., avoid highways). In this paper, we assume the server pro-
viding directions search services adopts a simple client/server
architecture, as shown in Figure 1, and formulate a request for
a path between a source,s, and a destination,t as a path query,
denoted byQ(s, t). The server maintains the map data and is
responsible for path query processing. Whenever it receivesa
path query from a user (or client, hereafter), it invokes some
well-known shortest path algorithms (e.g., Dijkstra’s shortest
path algorithm [1] and A* algorithm[2]) to compute the result
path.

Client Directions search
server

path query (s,t)

result path

Fig. 1. Directions search based on simple client/server model

II. M OTIVATION

Although the directions search service gains popularity
among users, it raises a privacy concern due to the exposure of
specified sources and destinations in path queries, especially
if directions search services are run by semi-trusted parties.
Consider an example, Alice wants to visit an infertility spe-
cialist located at “56, Clinton Road, Harrisburg, PA” but she
does not know the way there. Hence, she requests driving
directions from her home to that clinic by submitting a path
queryQ(sA, tA) to a directions search server, with the source
sA set to her home address “123, Fourth Street, State College,
PA” and the destinationtA set to the clinic address “56,
Clinton Road, Harrisburg, PA”. The server, upon receiving the
query from Alice that contains accurate source and destination
addresses, can return an exact path, as depicted in Figure 2(a).

Meanwhile, the server, with the help of some public infor-
mation such as voter registration list and yellow pages, can
determine that: i) the user who submits the query is likely to
be Alice (or her family members); and 2) the destination is a
fertility clinic. Then, the server may deduce that Alice is going
to visit an infertility specialist. One may argue that the leakage
of this information, as a random case, is not an issue. However,
the server can accumulate all the path queries received to
learn where individuals travel, what routes they take, the
travel duration and so on. Moreover, the user health status,
activities, political preferences, religion or even relationships
with others can be inferred. As this privacy concern arises in
path searching through semi-trusted directions search servers,
we refer this to as “path privacy”.

It is natural to link path privacy with location privacy, as
they two appear similar in the context of LBSs. However,
existing solutions for protecting location privacy, including
landmark, cloaking and obfuscation cannot be effectively
applied to path privacy. The landmark approach uses other
locations instead of original (true) user locations and hence
it replaces a path query with another path query that has
totally different source and destination [3], [4]. Although it can
protect the path privacy, the cost is that the retrieved result path
is completely irrelevant to the original path query. An example

sA
result path

Alice’s
home

clinic

tA

road
network

(a) Path betweens and t

(irrelvant)
result path

landmarks

sA

tA

s'

t'

(b) Landmarks

(irrelvant)
result path

server picked
locations

sA

tAcloaked
segments

(c) Cloaking

s

tt1
s1

fake path
query

original path
query

(d) Obfuscation

Fig. 2. Path search betweensA and tA, and some existing location privacy protection techniques

is shown in Figure 2(b) where the source and destination are
changed to two landmarkss′ and t′, respectively, and the
retrieved result path cannot connectsA to tA.

Cloaking tries to suppress the address detail, e.g., discarding
street number and street name from an exact address [5], [6],
[7]. As shown in Figure 2(c), both source and destination
are cloaked into locations of street level. However, existing
directions search services may arbitrarily pick a point foran
imprecise address to perform the path search. Consequently,
it is very likely that an irrelevant path will be returned. By
obfuscation, a path query is mixed with a number of fake
path queries [8]. As exemplified in Figure 2(d), a path query
set {Q(s1, t1), Q(sA, tA)} that mixes a fake queryQ(s1, t1)
with the real oneQ(sA, tA) is submitted to the server. The
server returns the results for each path query involved intothe
query set and hence the result to the true path queryQ(sA, tA)
is for sure to be retrieved. In addition, the privacy concernis
addressed as the server cannot determine what path queries
it receives are true or fake. Nevertheless, clients retrieve
additional paths for the fake queries, which are redundant,
resulting in overconsumption of server and network resources.

In summary, all these existing location privacy protection
techniques can protect path privacy to a certain extent but
they either cannot provide requested results or incur high
processing overhead. In this paper, we propose the concept of
obfuscated path queryand develop a path privacy protection
system calledOPAQUE, which is named after Obfuscated
PAth QUEry, to address both the privacy and the efficiency
of path queries. The research objective is to protect user path
privacy without sacrificing the service quality of directions
searches.

III. O BFUSCATEDPATH QUERY

In this section, we discuss path query in the road network
and then detail the concept of obfuscated path query, the
theoretical foundations of the OPAQUE system.

A. Path Query

A road network is typically modeled as a weighted graph
G(N,E) where road segments are represented by a set of
edges,E, and the endpoints of edges are represented by a set
of nodes,N . Each edge(ni, nj) ∈ E linking a nodeni to a
nodenj (whereni, nj ∈ N) is associated with a non-negative
distance,d(ni, nj), that represents the traveling distance, time
or toll of a corresponding road segment. A path from asource
nodes to adestinationnodet is represented by a sequence of
edges, i.e.,〈(s, n0), (n0, n1), · · · (ny, t)〉, and itspath distance

is the sum of the distances of involved edges, i.e.,d(s, n0) +∑y−1

x=0
d(nx, nx+1) + d(ny, t). The shortest path froms to t,

denoted byP (s, t), is a path with its distance, represented by
||s, t||, being the smallest among all possible paths froms to
t. Given a road networkG(N,E), a sources and a destination
t, a path queryQ(s, t) evaluated onG returnsP (s, t).

B. Basic Idea of Obfuscated Path Query

Usually, each node in a network represents one location
in the geographical space. People and/or business associated
with nodes can be found via public information (e.g., voter
registration list, yellow pages etc). IssuingQ(s, t) indicates
an intent of a user to travel from a nodes to another
nodet, implying certain relationships between people/business
associated withs and t. Further, a user is very likely to take
the returned pathP (s, t), and the information leakage may
threaten personal safety. To address this privacy concern,we
introduce the concept ofobfuscated path query, as a key
technique for path privacy protection. It is formally defined
in Definition 1. Each obfuscated path queryQ(S, T) mixes
s and t of a path queryQ(s, t) with some fake locations.
In other words, an obfuscated path query represents a set of
path queries with their sources and destinations included in
S and T , respectively, i.e.,Q(S, T) =

⋃
s∈S∧t∈T {Q(s, t)}.

Take Alice’sQ(sA, tA) as an example. Obfuscated path query
Q(SA, TA) can be formulated withSA = {sA, s1} andTA =
{tA, t1, t2} as depicted in Figure 3(a).

Definition 1: Obfuscated Path Query. Given a path query
Q(s, t), an obfuscated path queryQ(S, T) is formulated such
that s ∈ S and t ∈ T . �

As the obfuscated path query is proposed to protect path
privacy, we introduce a new metric, calledbreach probability,
to quantify the power of the obfuscation in terms of protecting
path privacy, as defined in Definition 2. For the case of
Q(SA, TA), the probability thatQ(sA, tA) can be revealed is
1

2·3 = 1

6
. Intuitively, as the sizes ofS and/orT (i.e., |S| and

|T |, respectively) increase, the breach probability thatQ(s, t)
can be revealed is decreased. Then, one naive strategy to
increase the privacy protection is by including more locations
in S and/orT .

Definition 2: Breach Probability. Assume that a path
query Q(s, t) is obfuscated into an obfuscated path query
Q(S, T) such thats ∈ S and t ∈ T . The breach probability
is the probability thatQ(s, t) can be revealed fromQ(S, T),
i.e., 1

|S|×|T | . �

However, an obfuscated path queryQ(S, T) is a combi-
nation of |S| × |T | path queries. From the query processing
point of view, we should reduce the sizes ofS and/orT in
order to reduce server workload and improve the search per-
formance. Thus, how to strike a balance between the privacy
and performance is an important issue. In order to tackle this
issue, we analyze the nature of path query processing in road
network and propose several query processing optimization
techniques that can effectively lower the processing overhead
while retaining large|S| and |T |.

Conventionally, processing a path queryQ(s, t) on a road
network G is based on some well-known search algorithms,
for example, Dijkstra’s algorithm. The basic idea of Dijkstra’s
algorithm is to form a spanning tree rooted ats and gradually
expand the search space untilt is reached. The computational
cost and I/O cost, two of the major search processing costs,
are bounded by the size/area of a subgraph covered by
the spanning tree, assuming that nodes and their edges are
clustered and stored on disk [9]. Withs as the center and the
distance froms to t as the radius of a search area, the cost is
estimated asO(||s, t||2).

Further, Dijkstra’s algorithm is extensible to search paths
from a single source to multiple destinations by forming a
spanning tree until all the destinations are reached. Suppose
that T is a set of destinations, the search processing cost
will be O(maxt∈T ||s, t||

2). In other words, if the difference
between||s, t|| andmaxt′∈T ||s, t

′|| is not significant, searching
paths from a single source to multiple destinations incurs a
search cost similar to or slightly more expensive than that of
searching a path from one source to one destination. Then,
the overall processing cost of an obfuscated path query is
O(

∑
s∈S maxt∈T ||s, t||

2), as derived in Lemma 1. Motivated
by this observation, we balance the power of path privacy
protection and the processing cost by setting appropriate|S|
and |T |.

Lemma1: The processing cost of an obfuscated path query
Q(S, T) is O(

∑
s∈S maxt∈T ||s, t||

2). �

Proof. The total processing cost is obtained by summing
up all costs of shortest path searches initiated ats ∈ S if
there is no sharing of partial spanning time. As the cost of
individual search started froms to all destinations inT , i.e.,
O(maxt∈T ||s, t||

2), the total cost of processing an obfuscated
path query isO(

∑
s∈S maxt∈T ||s, t||

2). �

C. Variants of Obfuscated Path Query

As privacy protection is subject to personal needs, in
OPAQUE, each user can specify her preferred obfuscation
power by informing the obfuscator her desired sizes ofS

and T of the obfuscated path query, denoted byfS and
fT , respectively. The largerfS and fT are set, the largerS
and T will be formed and the stronger a protection will be
resulted. In this paper, we propose two variants of obfuscated
path queries, namely,independent obfuscated path queryand
shared obfuscated path query.

Given a set of path queries,Q(s1, t1), · · · Q(sk, tk) along
with their protection settings,(fS1, fT 1), · · · (fSk, fSk), we

can obfuscate each path query into anindependent obfuscated
path query Q(Si, Ti) with si ∈ Si, ti ∈ Ti, |Si| =
fSi and |Ti| = fT i. Suppose there are two path queries,
i.e., Q(sA, tA) submitted by Alice andQ(sB , tB) issued by
Bob. We formulate two independent obfuscated path queries,
namelyQ(SA, TA) with SA = {sA, s1} andTA = {tA, t1, t2}
and Q(SB , TB) with SB = {sB , s2} and TB = {tB , t3},
shown in Figure 3 and Figure 3(b), respectively.

t1

t2

s1

candidate
result paths

sA

tA

SA

TA

(a) Independent obf. path query,
Q({sA, s1}, {tA, t1, t2})

s2

SB

sB

tB

TB

t3

(b) Independent obf. path query,
Q({sB , s2}, {tB , t3})

Fig. 3. Independent obfuscated path query

Alternatively, we can obfuscate allk path queries into a
shared obfuscated path queryQ(S, T) such that{s1, · · · sk} ⊆
S and {t1, · · · tk} ⊆ T where |S| ≥ max1≤i≤kfSi and
|T | ≥ max1≤i≤kfT i. Reconsider Alice’s and Bob’s path
queries. Rather than generating two independent obfuscated
path queries, Alice’sQ(sA, tA) and Bob’sQ(sB , tB) can be
obfuscated into a shared obfuscated path queryQ(S, T) where
S = {sA, sB , s1} and T = {tA, tB , t1, t2}, as shown in
Figure 4.

t2

s1

sA

tA

S

T

sB

tB
t3

Fig. 4. Shared obfuscated path query

Client Directions search
server

Q(s,t)

candidate
result paths

Requested
path

Obfuscator

Q(S,T)

Obfuscated
Path Query
Processor

Path Query
Obfuscator

Secure channel

Candidate
Result Path

Filter

Fig. 5. OPAQUE system model

IV. PROPOSEDOPAQUE SYSTEM

OPAQUE architecture is based on the client-obfuscator-
server model, as depicted in Figure 5, which offers several
advantages. First, clients only need to trust a single trusted
entity, i.e., the obfuscator. Although the obfuscator would be-
come the attack point of the system or performance bottleneck,
a trusted third party is very often assumed in the field of
security [7], [10]. Second, centralized obfuscation basedon the
obfuscator is expected to provide a high obfuscation efficiency.
Third, complicated obfuscation logic, such as determiningfake

sources and destinations that needs knowledge of underlying
networks, is hidden from the clients. Last but not the least,it
offers a stronger privacy protection as clients do not directly
communicate with the server and their path queries are obfus-
cated and anonymized to the server.

In detail, the system contains three main components,
namely,path query obfuscator, obfuscated path query proces-
sor and candidate result path filter. Their interactions are
illustrated in Figure 6. Path query obfuscator and candidate
result path filter are installed in the obfuscator to obfuscate
path queries and to perform candidate result path filtering.
Obfuscated path query processor is equipped in directions
search server for obfuscated path query evaluation.

Obfuscated
Path Query
Processor

Path Query
Obfuscator

Candidate
Result Path

Filter

<u1, (s1,t1), fS1, fT1>
Q(S,T)<u2, (s2,t2), fS2, fT2>

<uk, (sk,tk), fSk, fTk>

..
.

cand
idate

path
s

P(s1,t1)
P(s2,t2)

P(sk,tk)

..
.

Obfuscator

Directions

search server

..
.

..
.

Fig. 6. OPAQUE components

All clients, ui, send their queryQ(si, ti) along with protec-
tion settingsfSi andfT i as a request〈ui, (si, ti), (fSi, fT i)〉
to the obfuscator. The communication channel between each
client and the obfuscator is secured so that every request
is not exposed to parties other than the obfuscator and the
corresponding client. In the obfuscator, the received queries are
obfuscated by the path query obfuscator into obfuscated path
queries. The detailed query obfuscation involves two steps, i.e.,
path query clusteringandquery obfuscating. The former step
partitions the received queries into disjoint query sets, while
the latter obfuscates queries in each cluster into obfuscated
path queries, which could be (i) independent obfuscated path
query, or (ii) shared obfuscated path query, as defined earlier.
OPAQUE has designed and implemented efficient path query
obfuscation algorithm to minimize the processing overhead
and meanwhile maintain the privacy protection.

Thereafter, the obfuscated path queries are sent to the
directions search server for processing. In the mean time, the
requests are kept for later result path filtering. Since finding
fake sources and destinations for path query obfuscation
requires the knowledge of the underlying road network, we as-
sume a simple road map (e.g., obtained from Tiger/Line [11])
maintained with the path query obfuscator. Different from
sophisticated one maintained in the directions search server,
this road map does not have real-time traffic information, and
driving directions needed for path search.

Upon receiving obfuscated path queries, the directions
search server evaluates the queries. In order to efficiently
evaluate obfuscated path queries, each of which representsa
set of path queries, the obfuscated path query processor is
devised. A set of efficient multiple source multiple destination
path search algorithms have been designed and implemented
by OPAQUE. After evaluation, result paths are returned to the
obfuscator. At last, those paths are screened by the candidate
result path filter and the requested paths are returned to the

corresponding clients. Thereafter, the satisfied requestsare
immediately discarded in the obfuscator, for sake of security.

V. CONCLUSION

Directions search, one of the most popular location-based
services, supports search for a path from a source to a
destination in a road network. Users specify their sources

and destinationt, and the server will return the shortest path
from s and t. As users express their search interests in form
of a path query to a semi-trusted server, a privacy concern is
raised. To address this problem, we propose the concept of
obfuscated path queries that mixes some extra fake sources
and destinations to path queries and develop OPAQUE system
hires a trusted obfuscator to sit between the directions search
server and the users. By doing the query obfuscation at the
obfuscator, the original true path queries are hidden from
the server and hence the privacy issue is addressed. On the
other hand, with the help of efficient obfuscated path query
formation algorithms and multiple source multiple destination
path search algorithms, the efficiency issue is also addressed.

ACKNOWLEDGMENT

In this research, Wang-Chien Lee and Ken C. K. Lee are
supported in part by the National Science Foundation under
Grant no. IIS- 0328881 and IIS-0534343. Besides, Wang-
Chien Lee is supported in part by the National Science
Foundation under Grant no. CNS- 0626709, and Ken C. K.
Lee and Hong Va Leong are supported in part by the Research
Grant Council, Hong Kong SAR under grant HKBU 1/05C.

REFERENCES

[1] E. W. Dijkstra, “A Note on two Problems in Connexion with Graphs,”
in Numerische Mathematik, 1959, pp. 269–271.

[2] R. Dechter and J. Pearl, “Generalized Best-First SearchStrategies and
the Optimality of A*,” Journal of ACM, vol. 32, no. 3, pp. 505–536,
1985.

[3] J. I. Hong and J. A. Landay, “An Architecture for Privacy-Sensitive
Ubiquitous Computing,” inProceedings of the 2nd International Con-
ference on Mobile Systems, Applications, and Services, 2002, pp. 177–
189.

[4] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu, “Spacetwist: Managing
the trade-offs among location privacy, query performance, and query
accuracy in mobile services,” inProceedings of the 24th International
Conference on Data Engineering, ICDE 2008, Cancun, Mexico,Apr
7-12, 2008, pp. 366–375.

[5] M. Gruteser and D. Grunwald, “Anonymous Usage of Location-Based
Services Through Spatial and Temporal Cloaking,” inProceedings of
the 1st International Conference on Mobile Systems, Applications, and
Services (MobiSys 2003), San Francisco, CA, USA, 2003.

[6] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing
Location-Based Identity Inference in Anonymous Spatial Queries,” IEEE
Trans. Knowl. Data Eng., vol. 19, no. 12, pp. 1719–1733, 2007.

[7] M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new casper: Query
processing for location services without compromising privacy,” in
Proceedings of the 32nd International Conference on Very Large Data
Bases (VLDB), Seoul, Korea, Sep 12-15, 2006, pp. 763–774.

[8] M. Duckham and L. Kulik, “A Formal Model of Obfuscation and
Negotiation for Location Privacy,” inProceedings of Third International
Conference on Pervasive Computing (PERVASIVE), Munich, Germany,
May 8-13, 2005, pp. 152–170.

[9] S. Shekhar and D.-R. Liu, “CCAM: A Connectivity-Clustered Access
Method for Networks and Network Computations,”IEEE Transactions
on Knowledge and Data Engineering, vol. 9, no. 1, pp. 102–119, 1997.

[10] B. Gedik and L. Liu, “Protecting location privacy with personalized k-
anonymity: Architecture and algorithms,”IEEE Transactions on Mobile
Computing, vol. 7, no. 1, pp. 1–18, 2008.

[11] U.S. Census Bureau, “Tiger/Line.”

